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Abstract— The paper presents preliminary work towards an
omnidirectional vision system for mini-humanoid robots. Such
robots are currently in use in several research centers around
the world, and are also widely used in robot competitions,
for example in the yearly Spanish CEABOT contest. Mini-
humanoid robot platforms require sensing for among other
obstacles avoidance, navigation and physical interaction, and
have limited onboard information processing capabilities. The
work presented here explores different ways in which the
information from an omnidirectional camera can be used in
such a robotic system, and what advantages can be gained in
the context of a mini-humanoid robot contest. The navigation
task from the CEABOT competition is used as a case study.
Early ideas for implementation are also presented, specifically
using a Blackfin camera with onboard processing mounted on
a Bioloid mini-humanoid robot.

I. INTRODUCTION

One of the main challenges in robotics is understanding
the environment through the use of its sensors, to help give
the robot the ability to operate autonomously.

One way to inspire young engineering students to enter
into such a field is through robotics competitions, as was
emphasized in [1] and [2]. These competitions are an easy
and active way of being introduced to the development of
systems for the recognition of the environment, in addition
to a way to compare development with the other systems that
participate in these competitions. One example is the Spanish
CEABOT competition [10], held yearly, where student teams
can enter mini-humanoid robots in three different tests. This
is further described in section II.

Different types of sensors are available for this type of
competitions, which opens up a wide range of possibilities
for investigation into how to improve this area of mini-
humanoid robotics. Typically however, the sensors used
in mini-humanoid robot competitions are limited in their
coverage of the environment around them. For example
infrared sensors, which measure the distance to a point in
the environment, usually requiring up to 5-10 sensors for an
acceptable coverage, as we can see in [3].

The project described here surfaced from the motivation
to create a vision system with a more complete coverage
for the robot. This system should improve the techniques
of interaction with the environment that the mini-humanoid
robot already has, complementing ultrasonic, infrared and
pressure sensors.

Computer vision systems are important tools for detection
and recognition tasks in robotic systems. There are several
approaches to using vision system however. Among the
different configurations commonly used in mini-humanoid
robots we can highlight two; the stereo vision systems and

the omnidirectional vision systems. Among stereo systems,
we can highlight those used by the mini-humanoid robot
QRIO [4] and DARwinOP [5], that through the stereo image
processing is able to avoid obstacles, as can be seen in [6]. In
addition it is worth mentioning other stereo vision systems
that are not subject to commercial platforms. For example,
the one developed in [7], where a small stereo vision system
was implemented which can be incorporated into any mini-
humanoid platform.

Omnidirectional vision systems are especially interesting,
in that they can obtain a 360 degree view of the environment.
For the omnidirectional vision systems, see for example [8]
and [9], which through a reflector gets a full view of the
complete environment. This configuration gives a very good
result, but requires a study of how to create this reflector,
which can be quite complicated. Another option is to acquire
a commercial reflector although their prices are often high.
An alternative option is to use a wide-angled lens, with
the camera pointing downwards. This is further described
in section III.

The remainder of this paper describes the work environ-
ment assumed, the CEABOT competition, followed by early
ideas for implementation of a omnidirectional camera in the
Bioloid mini-humanoid robot, and a set of simple computer
vision algorithms suitable for such a system.

II. DESCRIPTION OF THE WORK ENVIRONMENT

This project is based on the creation of a vision system
for a mini-humanoid robot to compete in the CEABOT
competition. In [10], we can find more information in this
championship, although here we describe the main features
of the different tests of this championship.

Before choosing a mini-humanoid platform on which we
base our project, we must consider the restrictions that are
determined in the regulations CEABOT, especially the height
and weight restrictions. These are a maximum weight of 3
kg and a maximum height of 50 cm with the robot fully
extended. In addition all the computational calculation must
be performed on board.

Observing the platforms on the market, we see that not
all mini-humanoid platforms meet these requirements. For
example, platforms like DARwinOP [5] and HOAP-3 [11],
which have on-board image processing, could not participate
in this tournament as they exceed the weight and/or height
limitations. There are other platforms in the market that do
meet these requirements however, and that are commonly
used in tournaments of this type. Platforms like Robonova
[12] and Bioloid [13] are the most used in previous editions
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of CEABOT. In the work presented here the use of a Bioloid
robot is assumed, see fig. 1 below.

Fig. 1. Bioloid Robot.

The championship CEABOT has four tests to determine
the capabilities of the mini-humanoid robots participating.
These tests are:

• Obstacle race: This test is based on navigating in a
partially known environment with obstacles, having to
cross this area from one line to another, and returning.
The fixed number of obstacles used can appear in
any configuration during the competition. The lines
are yellow, the ground is green and the obstacles are
white. See fig. 2. This makes differentiating between
them easier, provided the vision system can distinguish
colors.

• Stairs: This test demonstrates the ability of the robot
to climb stairs. A good way to support the robot in
achieving this test will be the location of the stairs,
which can be determined by edge detection.

• Sumo: In this test a battle by sumo is performed
between two robots opponents. One technique from
computer vision that may be of use here is the detection
of movement, with which we can detect if the robot
opponent is moving, at what speed and in what direction
it is moving. It is noteworthy that the area of the combat
zone is marked by the regulations of CEABOT and
determined by a yellow circle line. It is thus important
to locate this line so as to avoid crossing it.

• Free exhibition: The exhibition test is based on a free
demonstration of the abilities of each robot, for example
performing a series of choreographed moves. As this
is a test in which the robot typically does not interact
with the environment the use of a camera is likely not
needed. However, if in this demonstration were to use
any external object such as a ball or a cube, a camera
could help the robot to interact with that object.

In view of the above tests and observing the robotic
systems commonly used in this type of tournament, it was
determined to focus on developing a vision system to support
navigation in the obstacle race test and to determine the
opponent’s position in the sumo test.

Fig. 2. Work environment in CEABOT during an obstacle race test.

III. OMNIDIRECTIONAL VISION SYSTEMS

As mentioned inn the introduction, there are several
alternatives to consider when creating an omnidirectional
vision system. One is the proposal in [2], where through
the reflection of the image on a conical mirror positioned
vertically relative to the robot it is possible to get a omnidi-
rectional view of the environment. This is a good solution,
but typically requires a conical mirror, which can be quite
complicated to manufacture and expensive to buy. Another
possible configuration is the use of a normal lens with a large
viewing angle, so that focusing the camera to the ground
from the top of the robot, we provide an omnidirectional view
of the environment sufficient for observing objects close to
the robot.

This omnidirectional configuration is simpler to imple-
ment, as it only requires a structure for separating the robot
and the camera. For example a transparent plastic tube, as
was used here. To test the feasibility of this configuration,
a study of the effect of a given lens viewing angle on
the height at which the camera would have to be mounted
was performed. Taking into account that the mini-humanoid
robot used (the BIOLOID) has a height of 31 cm, it was
determined that the camera would be positioned at 40 cm
above the ground, i.e. with a distance of 9 cm between the
camera and robot. This height provided a sufficient view of
the surroundings with a commercially available lens with a
viewing angle of 120 degrees. In fig. 3 , fig. 4 and fig. 5, we
see the study of these conditions.

Fig. 3. Front view of the configuration omnidireccional.

The increased height of the center of mass of the robot
will reduce the stability of the robot however. Thus it is
important to attempt to keep the mass of the camera low.
For the work performed here it was assumed that a camera
with onboard processing was used, to minimize the load
on the robot controller. For example the Surveyor Blackfin
Camera [15], which can be obtained with a lens with a
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Fig. 4. Profile view of the configuration omnidireccional.

Fig. 5. Top view of the configuration omnidireccional.

120 degrees viewing angle. This camera can be a good
option when implementing the vision system onboard the
Bioloid platform. It incorporates a Blackfin BF537 processor
of 500MHz with a camera with a optical sensor of 1.3
megapixel. In addition, it incorporates an external I/O header
of 32pins. It has a a total mass of 0.046 kg, and size 50 x
65 x 50 mm.

IV. VISION ALGORITHMS

In this section we will explain the vision algorithms that
was explored for the purpose of this project. All these
algorithms have been implemented in Matlab, as it is a
complete tool when working with matrix computation, and
in addition has a large amount of toolboxes available. This
simplifies the prototyping of the algorithms, and allows them
to be assessed and compared, before implementing them on
the camera itself. It is assumed that the robot is stationary
when obtaing images.

A. Floor-Obstacle Detection

One of the simplifying characteristics of the working
environment assumed, at least for the obstacle race and sumo
tests, is that the robot is moving in a planar world. Another
is that the different components of the environment have
different colors. If we capture an image on the CEABOT
environment from an omnidirectional perspective, we note
that the image consists of two elements defined by its
color, green for the floor, and white for the obstacles. In
the fig. 6 we can see an example of such an image. The
omnidirectional camera is here simulated by a normal web
camera mounted on a structure above the BIOLOID robot.

As the camera will be mounted directly above the robot,
and will be moving with the robot, calculating the distance
from the center of the image to white areas along the border

Fig. 6. Example image captured in CEABOT environment.

of the image, it is possible to estimate the distance between
the robot and the different obstacles. The angle with respect
to the robot can also easily be determined. Through the
preprocessing of the image and its later binarization[16], we
get an image on which these calculations can be more easily
be performed. See fig. 7.

To calculate the distances between the center of the image
and the obstacles, we generated a series of lines with origin
in the center, and simply look for the first white pixel. The
number of lines to generate depends on the coverage that we
want or need for our system. For the example shown here,
the recognition of obstacles is performed each 15 degrees to
generate 24 equally spaced lines. If we change the number
of lines to generate, we must calculate the angle of each
straight line in response to the following equation.

Ang(n) =
2π

ntotal
∗ n (1)

Fig. 7. Representation of the distance between the obstacle and the robot.

Considering the general equation of a line y = ax + b
where b is the initial y0, for our case 0, where a is the slope of
the line defined for our case as a = tan(Ang(n)), therefore
we can determine that:

y = x ∗ tan(Ang(n)) (2)

Using this equation, we will cross the x values by the
straight line of angle n to get a y value. Having calculated
x and y, we check the value of the binary image for the
pixel(x, y). If the value of pixel(x, y) is equal to 0 means
no objects and therefore will not be necessary to calculate
the distance, but if the value of the pixel(x, y) is equal to
1 means we have found the subject and therefore no longer
need to continue along the line. To calculate the distance to
the object we calculate the magnitude of the vector generated
by x and y, which we can determine how:
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Dist(n) =
√
x2 + y2 (3)

where Dist(n) is the distance to the object for line n.
Repeating the process for all lines one can obtain mapped
distances all around the robot. This mapping of all distances
is then stored in a vector Dist(n) which contain all the
distances calculated. Finally, note that these calculated dis-
tances are not real and represent the distance in pixels in the
image. To change the distances to real-world distances, the
perspective projection [16] of the camera can be used. This
equation is as follows:

x = f
X

Z
y = f

Y

Z
(4)

being the coordinates in the image variables (x, y) and real
variables (X,Y ). Furthermore, f is the focal length and
Z is the height at which the camera is mounted. To get
from pixel coordinates to the image coordinates, the intrinsic
parameters of the camera can be used, as shown in the
following equation:

x = −(xim − ox) ∗ sx y = −(yim − oy) ∗ sy (5)

where (ox, oy) are the coordinates of the center pixel of
the image, and (sx, sy) the pixel size in millimeters in the
horizontal direction and vertical image respectively. Radial
distortions are here ignored, but should be included in the
final application if exact distances are required.

The results of this algorithm are interesting, as it seems
to be relatively reliable in the real-world images used,
mainly due to the simplified planar environment and the
different colors used for floor and obstacles. This is of course
assuming that the lighting conditions are relatively constant
during the competition. A possible improvement would be
the use of edge detection as a complement to this algorithm,
although this may increase the computational load of the
system.

B. Movement Detection

The strategy that we have used for the detection of the
opponent robot in the Sumo test is based on detecting the
movement of this robot.

As shown in the book [16], any perceptible movement
in the scene results in the sequence of images taken from
that scene, so, if such changes are detected, you can analyze
the characteristics of this movement. In the general case of
three-dimensional motion of an object is only possible to
obtain qualitative estimates of the movement. In fact, when
an object moves in the direction of your line of observation,
movement is not noticeable, although there is some evidence
of movement, as the variation of its size in the image, the
movement of the shadow cast, etc. However, when the object
moves in a plane parallel to the image plane can obtain good
estimates of the components of motion.

One theory is used for motion detection is the use of the
image difference. This is based on subtraction of images,

which we can calculate the amount of movement of the
object because for a single moving object, the difference
between images will be the movement of said object. There-
fore, the image difference is defined as Imaged:

Imaged(p, t1, t2) = Image(p, t2)− Image(p, t1) (6)

where p = (x, y) is a generic pixel of the image and t1,
t2 are the time instants of two consecutive images. Note that
the values or intensities that are obtained through (6) can be
negative. The most appealing aspect of this technique is its
simplicity. The information provided, however, is not very
descriptive about the shape or motion of objects, although
it can detect the image area where changes are occurring,
and being able to concentrate the later computational effort
in the detected area.

To determine the magnitude and direction of motion of the
robot opponent, we apply this algorithm to three consecutive
images, so you get two results from the image difference,
different in the time. We can see one of these binary images
difference in the fig. 8, for a soda-can example.

Fig. 8. Example of the image difference in binary.

By having a single opponent and therefore a single moving
element, we can calculate the total centroid from all regions
of motion captured and assume that they belong to the same
element in motion. By then creating a vector between the
centroids of the two object-differences obtained previously,
we get a representative vector of movement of the robot
opponent. To calculate the centroid of all regions of motion
captured in an image difference, the contribution of each was
set to be proportional to the area of each region of movement
within the total set of motion captured. This algorithm is
performed by applying the following equation:

Centroidtotal(x, y) =
n∑

i=1

Area(i)

Areatotal
) ∗ Centroid(i) (7)

With these two centroids a vector can be created, which
provides the magnitude and direction moving object. This
can be seen in fig. 9, where the vector is overlaid on the
original image. Note that the the speed of movement is in the
image frame only, and without information about the distance
to the moving robot. However, this algorithm is sufficient for
determining in what direction the enemy robot is currentl,
and wether the enemy robot is moving tangentially with
respect to our robot.
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Fig. 9. Representation of the velocity vector in the original image.

This algorithm is a simple way to calculate the position
of the robot opponent when this is moving. Because of its
simplicity, is not affected by the illumination, making it more
robust to different lighting conditions, for example caused by
the shadows of the spectators.

C. Centered Through Optical Flow

This section describes a vision algorithm implemented to
support the first algorithm in navigation tasks. In [17] the
optical flow from a camera system was used to allow for
a centering behavior of a mobile robot when navigating in-
between obstacles. This was based on the maximum optical
flow observed on the left and right peripheral visual field as
an indicator of the proximity of obstacles. If the maximum
optical flow is greater on the right, the objects are closest on
this side and therefore, the robot should turn to the right in
order to avoid collision with the obstacle. This could also be
of interest for the obstacle race test considered here.

The optical flow plays an important role in the estimation
and description of movement in an image set, which is
used for the detection, segmentation and tracking of moving
objects in a scene. As seen in [18] optical flow can be
described as a vector field subject to the condition of the
constant brightness equation and is defined as the apparent
motion of the pattern of image brightness. The constant
brightness equation is shown below:

(∇E)T ∗ υ + ET = 0 (8)

As noted in the equation for an image E = E(x, y, t),
and a vector v motion field, the sum of the product of
the image gradient multiplied by the vector representative
of the movement, plus the time-dependent image taken ET

must be equal to zero for an environment with no change
in brightness, ie constant brightness. Therefore, the optical
flow field is the approximation of the motion which can be
calculated from sequences of timevarying images, as long as
we assume the following conditions [18]:
• Lambertian surfaces: A perfectly diffusing surface is

one that emits or reflects the light output in a form that
it presents the same luminance regardless of viewing
angle. Such a surface is called Lambertian because it
responds to Lamberts law.

• Point source of light at infinity: Refers to the light
source by placing the long distance from our catchment
area movement.

• Without photometric distortion: The photometric distor-
tion represents the variation in contrast between images,
so for the proper use of optical flow we have an
environment in which the contrast variation over time
is zero.

Therefore, to implement our vision algorithm we make the
following assumptions.
• Constant brightness equation produces a good approxi-

mation of the normal component of the motion field.
• The field motion vector field approximates well to the

constant within any small portion of the image plane.
Taking the first case, for each point pi in a region of

small Q, of size NxN , can be written as equation (3), where
the spatial and temporal derivatives of image brightness is
calculated in p1, p2 ... pNxN . Typically uses a small region
of 5x5. Therefore, the optical flow can be estimated with Q
as the constant vector, v, which minimizes the functionality
of the following equation:

Ψ[υ] = ΣPixel∈Q[((∇E)T ∗ υ + ET )]2 (9)

The solution to this least squares problem can be deter-
mined by passing a linear system, this will do as follows:

ATA ∗ υ = AT ∗ b (10)

The i-th row of the matrix A (N2x2) is the spatial image
gradient evaluated at point pi,

A =


∇E(p1)
∇E(p2)

...
∇E(pNxN )

 (11)

and b is the dimension N of the vector of temporary partial
brightness of the image, evaluated at p1,...pNxN , after a
change of sign:

b = −[Et(p1), ..., Et(pNxN ]T (12)

The least squares solution of the system through restric-
tions on (10) can be obtained as:

v = (ATA)1 ∗AT ∗ b (13)

where v is the optical flow (the estimated motion field) in the
center of the region Q; repeating this process for all image
points, we get a complete optical flow. As we can see in the
fig. 11.

Fig. 10. Real environment test.
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Fig. 11. Graphical representation of optical flow module.

To reduce the computational requirements a strategy sim-
ilar to the one developed in [19] was followed, to focus the
application of the optical flow algorithm on determined areas
of the image, in our case, on both sides of the robot. Fig. 12
shows the representation of the optical flow computation in
the areas most relevant of our image.

Fig. 12. Graphical representation of optical flow module in the relevant
areas.

Using the optical flow algorithm, we can give support to
the two previous algorithms, making the whole system more
robust and reliable. Note that this algorithm is sensitive to
changes in lighting, but that by averaging the optical flow
over large areas a more robust result can be obtained.

V. CONCLUSIONS

In the beginning of this project we have focused on
studying the regulation of CEABOT, the required features
of a omnidirectional camera, and the characteristics of mini-
humanoid robots. Through these three studies, we have
obtained determining factors when developing this project,
as for example the height of the robot with the camera,
and the dimensions of the CEABOT environment. From
this a camera with a 120 degree wide-angle lens pointed
downwards, and mounted at 40 cm, was chosen.

Regarding the three vision algorithms, initial prototypes
have so far been implemented in Matlab, and tested on
realistic images from the real CAEBOT environment. All
three are relatively simple to implement, and have a low
computational requirement. Especially the movement detec-
tor for the Sumo test. The navigation required for the obstacle
race test can likely benefit from the floor-obstacle detection
algorithm, while the optical flow algorithm may require more
work to be useful. In general, the wide view provided by

an omnidirectional camera provides a significant increase in
the resolution of sensing that is possible with respect to the
typical proximity sensing used for mini-humanoid robots.
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