

DEPARTMENT OF SYSTEMS ENGINEERING AND

AUTOMATION

FINAL YEAR PROJECT

INDUSTRIAL ENGINEERING

ANDROID CONTROLLED MOBILE

ROBOT

Author: Jorge Kazacos Winter

Tutor: Juan González Víctores

Director: Alberto Jardón Huete

Madrid, 2 of July, 2013

ii

iii

Title: Android controlled robot
Author: Jorge Kazacos Winter

Tutor: Juan González Víctores

Director: Alberto Jardón Huete

EL TRIBUNAL

Presidente:

Vocal:

Secretario:

 Realizado el acto de defensa y lectura del Proyecto de Fin de

Carrera el día ……. De ……………………… de ………., en la Escuela

Politécnica Superior de la Universidad Carlos III de Madrid,

acuerda otorgarle la CALIFICACIÓN de:

VOCAL

SECRETARIO PRESIDENTE

iv

v

Acknowledgement

 To start with, I would like to focus my appreciation to the main

impulse and motivating force of this project: Juan González Víctores. I am

aware of his effort to help and keep the robotics association alive,

sacrificing his time for the benefit of the students who come and go

always having learnt something new and exciting.

 His constant and selfless help translates in the success of others,

meaning that his contribution to the association and guidance make

students achieve their goals while interacting with other students often to

learn from one another and share resources, ideas, solutions, etc.

 Regarding this project’s framework (Robot Devastation) and its future

versions and improvements I only wish Juan and his next students the

best to carry on with this venture and I also hope the project reaches a

good endpoint with a positive outcome for everyone involved.

 As I have been working on this project, I have also received a positive

lift from my friends and especially my family, always making sure I keep

excited about moving forward. Without their kind support I would not

manage to focus as much as I need in my career. In addition, it has been a

great experience to have spent all my student life with my childhood

friend Álvaro Martínez, who has been a great support from the first

course to our attendance to the robotic association.

vi

vii

Abstract

 As a part of an early stage project, it has been the goal of this project to

serve as a prototype for such venture having set the paths to a wide range

of new opportunities in the field of remote controlled robots interaction.

 The initial and ongoing idea is to build a virtual environment for

managing real robots states and field data and on the other side getting

users to build their own robots with the capability of teleoperation. This

way, robots may interact in the same location as users control them from

any place in the world using internet and wireless networks for this

purpose.

 An important side of the project is to build an actual robot that is

subject to wireless operation from a PC or a smartphone. In this context, a

requirement of simplicity was set in order to focus on operability and

functionality, as this project is meant to serve as a starting point for the

soon-to-come fully operational robots. Along with simplicity comes the

benefit of being able to reduce costs to a minimum, task that has been

successfully accomplished.

 In the end, on one side, an inexpensive and almost fully printable robot

has been designed and built, and on the other side both the robot’s

software and the smartphone’s software have been developed, resulting in

an android controlled robot.

viii

ix

Resumen

 Como parte de otro proyecto más grande y ambicioso, este proyecto se

ha desarrollado para servir como prototipo tanto en la parte de

comunicaciones como en la de aplicación para smartphone, abriendo

camino a muchas posibilidades de mejora y ampliación.

 La idea principal y objetivo a largo plazo es desarrollar una plataforma

online mediante la cual se pueda operar remotamente robots que

interactúen unos con otros (por medio de internet). Cualquier persona,

desde cualquier parte del mundo, sería capaz de controlar su robot, que

podría estar a su vez en cualquier otra parte del mundo, todo desde su

teléfono móvil.

 Una parte importante de este proyecto sería comenzar construyendo

un robot apto para ser controlado por medio de una red inalámbrica

(mediante estándar Wi-Fi por ejemplo) a través de un smartphone o PC.

En este contexto, se ha querido primar la funcionalidad y la operatividad

antes que desarrollar en exceso cada ámbito relacionado con el robot o su

manejo (diseño, estabilidad, potencia, manejo, etc.). Una ventaja de este

enfoque es que se consigue mantener el coste del proyecto al mínimo

 En definitiva, se ha llevado a cabo el diseño y construcción de un robot

imprimible casi al 100% (siendo así fácilmente duplicable), y por otro lado

se ha desarrollado un software de control del robot tanto para el

microcontrolador de éste como para la aplicación de móvil encargada de

controlarlo, dando como resultado un robot controlado por Android.

x

xi

Table of contents

ACKNOWLEDGEMENT --- V

ABSTRACT -- VII

RESUMEN -- IX

TABLE OF CONTENTS -- XI

LIST OF FIGURES --- XIII

LIST OF TABLES -- XV

CHAPTER 1 -- 1

1.1. MOTIVATION AND AIM OF THE PROJECT --- 5

1.2. PARTS OF THE PROJECT --- 7

1.3. DOCUMENT STRUCTURE -- 9

CHAPTER 2 --- 11

2.1. MECHANICAL STRUCTURE --- 12

2.2. ELECTRONIC HARDWARE AND PROGRAMMING -- 17

2.3. DC MOTORS --- 34

2.4. SMARTPHONE APPLICATIONS --- 45

CHAPTER 3 --- 51

3.1. 3D MODELING AND DESIGN -- 52

3.2. ADDITIVE MANUFACTURING OR 3D PRINTING --- 58

3.3. ASSEMBLY --- 61

CHAPTER 4 --- 63

4.1. CONTINUOUS ROTATION MODIFICATION --- 65

CHAPTER 5 --- 69

5.1. MICROCONTROLLER --- 70

5.2. MICROCONTROLLER PROGRAMMING -- 74

5.3. WI-FI MODULE -- 81

5.4. WI-FI MODULE PROGRAMMING -- 90

CHAPTER 6 -- 101

6.1. JAVA GUI -- 103

6.2. ANDROID DEVELOPING PLATFORM --- 106

6.3. BASICS OF APPS DEVELOPMENT -- 108

6.4. APPLICATION FOR ROBOT CONTROL --- 115

6.4.1. Main activity -- 116

6.4.2. Control activity -- 118

CHAPTER 7 -- 125

xii

REFERENCES --- 129

APPENDICES -- 133

xiii

List of figures

Figure 1: Robot Devastation logo 2

Figure 2: Robot Devastation PC interface [1] 3

Figure 3: This project's Android controlled robot 6

Figure 4: Project’s workflow: Design, hardware and smartphone programming. 8

Figure 5: CNC machine 13

Figure 6: CAD/ CAM systems 13

Figure 7: CATIA design and rendering 14

Figure 8: Professional and domestic use 3D printer 15

Figure 9: Intel 4004, the first commercial microprocessor 18

Figure 10: Basic Von Neumann processor architecture 19

Figure 11: Die of an 8-bit PIC EEPROM microcontroller by Microchip [21] 24

Figure 12: Some common microcontroller applications 25

Figure 13: Arduino UNO: The most used Arduino microcontroller 26

Figure 14: Raspberry Pi 28

Figure 15: Tiny AVR ISP programmer [25]. 29

Figure 16: LiPo battery and small-sized solar cells [26] 30

Figure 17: VIew of the Arduino development environment [24] 31

Figure 18: Two-pole brushed DC motor 36

Figure 19: Floppy-Disk brushless DC motors 37

Figure 20: Industrial servomotor 38

Figure 21: Servo block diagram 39

Figure 22: Common servo parts 40

Figure 23: Power consumption of different locomotion mechanisms [33] 42

Figure 24: (a) Wheeled robot; (b) Kovan robot & (c) NASA’s wheeled robot. 44

Figure 25: Smartphone share per region 46

Figure 26: US smartphone penetration 47

Figure 27: Software and hardware platform pie 47

Figure 28: Apps available per platform 48

Figure 29: Platform market development 49

Figure 30: A look into the OpenSCAD software [8] 52

Figure 31: View of the LiPo battery 53

Figure 32: 3D representation of a TowerPro sg90 54

Figure 33: 3D view of the Arduino Fio board with the RN-XV on it 54

Figure 34: View of the front part 55

Figure 35: 3D model of the rear part plug 55

Figure 36: Rear part support 56

Figure 37: Top view of a wheel 56

Figure 38: Unassembled complete robot 57

Figure 39: OpenSCAD to STL format and STL to G-Code [40] 59

Figure 40: A view of the software Replicator G [40] 59

Figure 41: 3D printer building a wheel. [40] 60

Figure 42: Preassembled robot 61

xiv

Figure 43: Assembled complete robot 62

Figure 44: Top view of the assembled robot 62

Figures 45, 46 [41], 47, 48 & 49: Unscrewed and modified servo 65

Figure 50: Potentiometer's wires [42] 66

Figure 51: Tin ends [42] 66

Figure 52: Soldered resistors [42] 66

Figure 53: Arduino FIO 71

Figure 54: ATmega328P [16] 71

Figure 55: Main Arduino block diagram 76

Figure 56: Block diagram for storing string and converting to integer 77

Figure 57: Robot, servos and battery layout 80

Figure 58: Roving-Networks RN-XV 171 Wi-Fi module [29] 81

Figure 59: Wi-Fi module operating modes [44] 83

Figure 60: Typical TCP applications [44] 85

Figure 61: FTP client/ server configuration [44] 86

Figure 62: HTML client configuration [44] 86

Figure 63: GPIO_9 to VCC & Figure 64: Module powered by FIO 91

Figure 65: Wire for short-circuiting GPIO_9 to VCCC. 91

Figure 66: Wireless connection configuration 93

Figure 67: Layout for serial communication 96

Figure 68: Telnet communication between Laptop and Wi-Fi module 97

Figure 69: Console commands for running Java 103

Figure 70: Java User interface program for robot control 104

Figure 71: Client-server connection: client request [49] 104

Figure 72: Client-server connection: server accepts connection [49] 105

Figure 73: Android SDK manager [50] 107

Figure 74: Basic steps for apps development [50] 108

Figure 75: AVD Manager [50] 110

Figure 76: Project phases [50] 111

Figure 77: Activity lifecycle [50] 113

Figure 78: Main activity and Control activity 115

Figure 79: Main activity’s graphical layout 116

Figure 80: Block diagram for the Main activity 117

Figure 81: Graphical layout for the Control activity 118

Figure 82: Control Activity block diagram 121

Figure 83: Second thread's block diagram 122

Figure 84: Multi-threading behavior 124

Figure 85: Concept of Robot Devastation by Santiago Morante 127

xv

List of tables

Table 1: Basic information about CPU architectures [14] 20

Table 2: CISC vs RISC CPU architectures 21

Table 3: Widely used servos and their features [28] 41

Table 4: Arduino FIO features 72

Table 5: Set commands parameters 84

Table 6: Default access point mode settings 87

xvi

1

Chapter 1

Introduction

Nowadays, a new way of interacting

with robots is starting to develop

among both professionals and non-

professional electronics users. Due to

the recent development of open

source software and more recently

open source hardware, as well as the

decreasing prices in the world of

electronic tools, engineers find themselves in a situation where they can

think of and carry out a vast range of projects. These projects may start

out of the industrial environment per se, however, most of the

experience, technical abilities and new ideas are subject to be applied

later on in the industry of robotics.

 There is, consequently, an approach between consumer electronics and

traditional electronic components for developers, motivated by the

philosophy of open tools, affordable for all users, which let engineers

incorporate a wide range of functionalities to their projects.

2

 Considering these open tools as framework, a big project is being

developed at this time combining innovative ideas, wireless technologies

and an open philosophy for users to become an active part of the big

system. This idea is called ‘Robot Devastation’, a new-generation shooter

with augmented reality and real robots. Users will be able to play online

with others with a smartphone or PC, moving robots in championships

and campaigns. Everything 24/7.

Robot Devastation (Fig. 1) is the big final project that serves as

framework for ASROB, the UC3M Student Robotics Society, to develop a

variety of projects related to it. If we talk about the future of Robot

Devastation, this project has opened the way to the upcoming

developments in each field related to it, as it is only in an embryonic stage

and there is always much to create and improve.

Figure 1: Robot Devastation logo

 The idea: Users’ robots will be located in the same place and they will

be equipped with a locomotive system and a camera as the minimum

gear. These robots would be printable and open-source, although this

could not be a requirement, and be adjusted to a series of parameters to

be considered “legal” to enter this system.

 Users could be located at any place in the world as long as they have

access to the network, and would be able to control their robots either

with a PC or their smartphone (preferred option to gain portability).

3

 Last but not least, there will be a server in charge of managing all field

data, that is to say, anything relevant that happened at the location where

these robots would interact. In order to talk in greater detail about the

server’s behavior we should first define what kind of interaction there is

supposed to be among the robots.

 The purpose of this idea is to create a competitive environment

modeled as a shooter game (classic first person shooting games) where

users will compete and battle against others at anytime from anywhere.

Figure 2: Robot Devastation PC interface [1]

 In figure 2, we can see a prototype interface (for PC) with virtual

shooting lasers to give users the right perspective of the target (other

robot).

 The server will keep record of all events happening in real time,

receiving information about which robot is shooting which one, where

this is happening, when, and also information about points, rankings, etc.

 This facet of the Robot-Devastation project has not been covered at all

in this project as it is in the field of computers science programming,

4

more suitable for computer science students, hence being an ambitious

project with modules in different areas of expertise. However, in this

project in particular, a mobile robot has been built thought to be suitable

with Robot Devastation as a first approach to the initial idea.

 In addition, according to the philosophy of the robotics association,

almost all material used in this project is open-source, both hardware and

software, and the developments achieved in every area are constantly

being published so that others can use what they consider is useful for

their own projects. This assures that with a low-budget, we can develop

applications that meet most of the requirements.

5

1.1. Motivation and aim of the project

 Among all the technological and conceptual challenges faced in this

project, there is one above all, which is meant to serve as a breaking point

in the world of common user robotics, amateurs, and engineers, and this

is enabling a certain mobile robot to be controlled from a smartphone

using no more than an internet connection.

 Given that the great majority of users have access to smartphones, an

option to give wireless connectivity for any purpose comes handy so that

developers will not concern themselves about implementing new

hardware and software options to their existing projects. Instead, they can

adapt their projects to be compatible with current connectivity protocols

such as Wi-Fi or Bluetooth, and use a phone to interact with them. This

means that any of them would be capable of controlling their hardware

from their phones contrary to having to develop any significant extra

parts.

 Given this, we could make use of smartphones to our benefit with the

purpose and idea of Robot Devastation. As it is in an Alfa state, there was

no tangible ‘product’ related to Robot Devastation around which we could

start to develop the applications and dynamic systems derived from it.

Hence, the need to create a small mobile robot capable of being

controlled from Android platforms making use of the most suitable

wireless technologies available, which are for now, Wi-Fi internet

protocols.

 If we want users to be able to create their own robot designs as well as

building them using layouts available on the internet we should make use

of open hardware manufacturing tools such as the recent 3D printers,

which are increasing their presence in many environments.

6

 According to this open philosophy and as a need to materialize the

user-client part of Robot Devastation, a concept of a robot is born for this

project. It should be ready to connect to a wireless network almost

instantly upon power on and subject to being controlled from a user

interface with no delay in the communications. In addition, it should be

printable as mentioned before. All this requirements have been met in the

robot built for this project; figure 3.

Figure 3: This project's Android controlled robot

 Apart from achieving the communications part (wireless internet data

transfer, low latency and reaching long distances between the operator

and the robot), another important objective is to develop the robot and

its associated communications system under a low-cost and open source

philosophy (always if possible, depending on the part). This way we can

bring potential future users closer to the project since the whole robot

costs less than $100 (see Appendices).

 The third objective/ challenge would be to provide the robot with a

high autonomy in the sense of hours of use without the need for

recharging. At the moment, the robot uses a LiPo battery which is a long

battery life, but it could be enhanced by using solar cells (future versions,

see Chapter 7, conclusions and future work).

7

1.2. Parts of the project

 The first part is the design, manufacture and assembly of the robot’s

structure. For the purpose of 3D designing, a parametrical modeling

software was used which will be discussed later along with other

discarded options. Regarding the manufacture, the code from the 3D

software is then translated into a machine code that can be read by a 3D

printer which builds each piece layer by layer. Once the pieces are

complete, they are assembled including the electronic components and

the robot reaches its final shape, and we then proceed to modify the

servos to achieve continuous rotation by hacking the electronics as well

as its mechanical structure.

 This is all covered in Chapter 3 (3D) and Chapter 4 (servos).

 The second part concerns the programming and configuring the

electronic components for this project. First the microcontroller board

called Arduino based on the ATmega328P running at 8 MHz serving as

the main “intelligence” for the robot. This board is in charge of reading

the wireless transferred data and moving the robot’s DC motors. Second,

there is a smaller Wi-Fi module thought to be plugged on the Arduino

enabling wireless connectivity with any device with internet connection,

such as laptops, smartphones or other Wi-Fi boards. The main board is an

open source electronics platform, which users can build from common

single electronic components or buy preassembled. The programming

software can be downloaded for free. The Wi-Fi board, is not open source

hardware, but can be configured following its user’s manual.

 This is all covered in Chapter 5.

8

 The third and last major part covers all the Java programming first for

a Laptop and then for a smartphone, including socket processing, user

graphics interface and data calculations, all destined to the creation of an

intuitive application for moving the robot that is both simple and robust.

 This is all covered in Chapter 6.

Figure 4: Project’s workflow: Design, hardware and smartphone programming.

9

1.3. Document structure

 Having passed the introductory part of this document (section 1), in the

next chapters of the text we are going to discuss more extensively the

different parts of the development of this project.

 In the second section, we review the background technologies and

environment surrounding every major part of this project.

 In the third section, the design, manufactory and assembly of the

pieces involved in the robot are going to be exposed in detail, as well as

the procedures and tools involved.

 In the next and fourth chapter we proceed to describe the election,

electronic modification and implementation of the servos used as DC

motors that make the robot’s movement possible.

In the fifth chapter, we will take a look at the electronic configuration

and hardware choice as well as all the programming.

 Next, in the sixth section, we will discuss all topics related to the

smartphone remote controlling and programming involved.

 In the last section, we can find the conclusions to this project.

10

11

Chapter 2

Background

In the context of robotics there

is much to be discussed about

the technological challenges

and possible different

implementations for each

single project or solution as a

result of the increasing

development and progress in every area involved. New ideas lead to new

projects and every one of these projects lead to new ideas for improved

projects, often as an exchange of resources between different parties. This

interaction between developers among the world translates into an

accelerated progress, in which anyone, from companies to single

engineers can take part.

 This technological background and its influences are discussed in this

part of the report, dividing it the same way as the main document is

structured. First, we talk about the background of 3D modeling and

designing, followed by the background of electronics hardware and

programming. Third, we will take a look at the implementation and

incorporation of electric actuators and DC motors usually found both in

industrial environments and in other electronics projects. Fourth and last,

12

we discuss the foundations and background of smartphone oriented

programming.

 In all parts we start from a generalist point of view, talking about

possible different implementations, and then converge around the

particular cases involving this project.

2.1. Mechanical Structure

 In order to build a machine’s structure there are many professional and

non-professional solutions in the market. For the most demanding robots

the industry provides manufacturing methods and solutions that suit

high precision requirements, high torques and forces, and machine parts

that withstand high stresses and have a stable response during time. This

is the case, for example, of robots used in assembly lines or paint shops.

As the execution and field performance of these industrial robots must be

robust and precise they are manufactured with the best suitable

composite materials, such as carbon steel, titanium compounds or carbon

fiber. Cast iron, steel and aluminum are most used for arms and bases.

 These robot parts are manufactured with CNC (Computer numeric

controlled) equipment, usually by other industrial robots (fig. 5). From

the design to the manufacturing, every step is computerized according to

the automation demands in the industry. Starting with the design we will

discuss the options that we can find in the market.

13

Figure 5: CNC machine

 If we focus entirely on the engineering side of designing leaving on a

secondary level the artistic approach we come across several software

options where we can find what best suits our projects’ needs, although it

is never really possible to separate these two sides of designing. The two

main concerns that arise when having to choose a certain program are

budget and the complexity required. We will take a look at this more

deeply further in this part.

Figure 6: CAD/ CAM systems

 In practice, it is most common to use CAD/ CAM solutions (computer

aided design and manufacturing, fig. 6) which are programs specialized in

working with CNC machines. In the same plant engineers design and

14

manufacture using integrated systems sometimes specially built for their

needs. Other times, general software can be used for most of the

designing needs in the industry.

 First, for example, it is well known for its professional use the software

called CATIA [2] (computer aided three dimensional interactive

application, see fig. 7). This software is fairly widespread among all areas

of engineering that require 3D designing and it is a very powerful tool,

but has the disadvantage of being an expensive commercial software as

well as having a level of complexity above the average for this task. Apart

from this software, there are many other commercial CAD tools, but they

all share basically the same advantages and disadvantages mentioned

(AutoCAD [3], AC3D [4], LightWave 3D [5], etc.)

Figure 7: CATIA design and rendering

 These are rather expensive options suitable for industrial purposes such

as large scale manufacturing, aeronautics, etc. There are, on the other

side, inexpensive or free tools (open source software) destined for less

demanding projects that are, however, sufficient for most of the small

projects or prototyping applications.

15

 On the side of open source software tools we have less choice, but still

there are some options with different peculiarities. We have, on one

hand, interactive modelers such as Blender [6] or MeshLab [7] which

allow for advanced 3D modeling, and on the other hand, a 3D parametric

compiler called OpenSCAD [8].

 For the manufacturing part, the CNC industrial equipment carry out

operations such as machining, milling, laser cutting, threading, turning,

etc. These machines execute code extracted from the designing software

and execute movements according to a generated a set of instructions for

each operation. For smaller projects, the designer can send the CAD file

to a specialized shop and have their piece manufactured accordingly,

which results in a higher unit cost.

 Recently it is common to find both in professional and non-professional

environments what is called a 3D printer which works adding layers of a

certain material using a machine code as reference. 3D printers can be

categorized from high precision state-of-the-art machines to affordable

amateur printers. The first, are used together with professional CAD

systems and the latter are usually used with open source software tools,

both working with a digital model as reference (fig. 8).

Figure 8: Professional and domestic use 3D printer

16

 The pieces modeled with CAD software have to be “sliced” in order for

the printer to be able to build each layer. With the CAD software, in this

case OpenSCAD, we export the components into a STL format [9] which

is an intermediate data interface between the rendering software and the

machines code. This STL format approximates the object using triangular

facets which, the smaller they are, produce a higher quality of surface.

 3D printers have a working process called additive manufacturing since

it works by adding successive layers of a special polymer until it “prints”

the whole piece. Additive manufacturing is opposed to the traditional

subtractive manufacturing which is a retronym for standard machining

operations that use a raw object (filling, turning, milling, etc.) One

advantage worth mentioning is that this technique allows for almost any

shape, excluding thin based pieces that cannot support their own top

parts.

 A typical layer thickness resolution for 3d printers is 0.1 mm, although

there are models such as the 3d systems’ ProJet series [10] that allow for

lower resolutions, up to 16 micrometers. In the industry it is common to

print a slightly oversized version of the object and then use a higher

resolution subtracting process to remove the remaining material.

 One last and important advantage of 3d printers is that most of them

are approximately desktop sized, and certainly smaller than the common

subtractive machines. This is the reason why it is advantageous to first

print the piece and then perform machining processes on it.

 Various polymers are used in 3D printers such as acrylonitrile

butadiene styrene (ABS), PLA (ecological), polycarbonate (PC),

polyphenylsulfone (PPSU) and high density polyethylene (HDPE). These

polymers come as a filament wrapped around a cylinder forming a coil.

This filament goes into the extruder and when it reaches the adequate

17

temperature the plastic melts and the printer can start building the

layers.

 The previously mentioned non-professional printers are progressively

entering the world of DIY (do-it-yourself) projects both in private and in

academics environments (Universities, toy-shops). It is worth mentioning

the longest running project in the desktop category called RepRap [11]

which is a totally open source 3D printer whose full specifications are

released under the GNU General Public License and capable of printing

many of its own parts to create more machines. Another good example of

a 3D printer is the Airwolf 3D (Prusa) which is also widespread among the

open source community. In 2011 and 2012, prices of these printers have

decreased drastically as they used to cost around 20000 US $ [12]

compared to the less than $1000 that cost now.

2.2. Electronic hardware and

programming

 Previous to the release of the first single-chip microprocessor by Intel

in 1971, there were, during the 1960s, computer processors built with

hundreds of transistors and logic gates soldered, connecting several

electronic boards which resulted in a poor performing and substantial

heat loss, compared to the later integrated solutions. These were the

boards used, for example, in the Apollo space mission [13] during the late

60s and early 70s. After this, the integration of a CPU in a single chip

reduced the cost of processing power and its large scale production

system led to lower unit costs (fig. 9). This automated manufacturing also

18

led to doubling the number of components that could fit in a chip every

two years [14]. These single chips had fewer electrical connections and

thus an increased reliability. The world of electronics was soon to be

revolutionized.

Figure 9: Intel 4004, the first commercial microprocessor

 The previous medium-scaled integrated circuits architecture was used

in the first microprocessors. The first, were used in calculators and other

embedded systems such as terminals or automation devices. After this, in

the mid-70s, they appeared in the first microcomputers. From this

moment on, microprocessor architecture design starts to develop and

expand.

 In 1945, John Von Neumann published his organization of logical

elements which IBM used to develop the IBM 701, the company’s first

commercial stored-program computer in 1952. Opposed to the Von

Neumann architecture in which there are shared signals and memory for

code and data, and the CPU can be either reading an instruction or

writing/ reading data to/ from the memory, we have the Harvard

architecture with physically separate storage and pathways for

19

instructions and data. Also, in the Harvard architecture the CPU can both

read an instruction and perform data memory access at the same time.

 Computer architecture is the combination of microarchitecture and

instruction set design. Microarchitecture is the way the instruction set

architecture (ISA) is implemented in a microprocessor, so that a given ISA

can be implemented with different microarchitectures. The instruction

set architecture defines the codes that a central processor reads. A

minimal hypothetical structure would include an Arithmetic Logic Unit

(ALU) and a Control Logic section. The ALU performs logical operations

while the logic section retrieves instruction operation codes from memory

(fig. 10).

Figure 10: Basic Von Neumann processor architecture

 In the next table we can see the differences between many of the

processors found in the market.

20

Table 1: Basic information about CPU architectures [15]

Architecture Bits Introduced Type Design Registers Open

Alpha 64 1992
Register-
Register

RISC 32 No

ARM 32 1983
Register-
Register

RISC 16 Unknown

ARM 64 2011[2]

Register-
Register

RISC 30 Unknown

AVR32 32 2006 RISC 15 Unknown

Blackfin 32 2000 RISC[4] 8 Unknown

DLX 32 1990 RISC 32 Unknown

eSi-RISC 16/32 2009
Register-
Register

RISC ago-72 No

Itanium (IA-
64)

64 2001
Register-
Register

EPIC 128 Yes

M32R 32 1997 RISC 16 Unknown

m68k 16/32 1979 CISC 16 Unknown

Mico32 32 2006
Register-
Register

RISC 32[6] Yes[7]

MIPS

64(32→6

4)
1981

Register-
Register

RISC 32 Unknown

MMIX 64 1999
Register-
Register

RISC 256 Yes

PA-
RISC (HP/PA)

64(32→6

4)
1986 RISC 32 No

PowerPC

32/64(3

2→64)
1991

Register-
Register

RISC 32 Yes[9]

S+core 16/32 2005 RISC Unknown

Series 32000 32 1982
Memory-
Memory

CISC 8 Unknown

SPARC

64(32→6

4)
1985

Register-
Register

RISC
31 (of at
least 55)

Yes

SuperH (SH) 32 1990s

Register-
Register/
Register-
Memory

RISC 16 Unknown

System/360 /
System/370 /z
/Architecture

64(32→6

4)
1964

Register-
Memory/M
emory-
Memory

CISC 16 Unknown

VAX 32 1977
Memory-
Memory

CISC 16 Unknown

x86

32(16→3

2)
1978

Register-
Memory

CISC 8 No

x86-64 64 2003
Register-
Memory

CISC 16 No

http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/DEC_Alpha
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_architecture#ARMv8_and_64-bit
http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures#cite_note-2
http://en.wikipedia.org/wiki/AVR32
http://en.wikipedia.org/wiki/Blackfin
http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures#cite_note-4
http://en.wikipedia.org/wiki/DLX
http://en.wikipedia.org/wiki/ESi-RISC
http://en.wikipedia.org/wiki/Itanium
http://en.wikipedia.org/wiki/Itanium
http://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
http://en.wikipedia.org/wiki/M32R
http://en.wikipedia.org/wiki/Motorola_68000
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/LatticeMico32
http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures#cite_note-6
http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures#cite_note-7
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/MMIX
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/PowerPC
http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures#cite_note-9
http://en.wikipedia.org/wiki/S%2Bcore
http://en.wikipedia.org/w/index.php?title=Series_32000&action=edit&redlink=1
http://en.wikipedia.org/wiki/SPARC
http://en.wikipedia.org/wiki/SuperH
http://en.wikipedia.org/wiki/VAX
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/X86-64

21

 Today, most CPU architectures implement one of the next two

instruction set design strategies: RISC, reduced instruction set

computing, that uses a small, highly-optimized set of instructions that

provide a high performance and a fast execution as opposed to CISC,

complex instruction set computing with a specialized and more complex

set of instructions.

 CISC RISC

1 Emphasis on hardware Emphasis on software

2
Multi-clock complex
instructions

Single-clock, reduced
instructions

3 Small code sizes Larger code sizes

4 Many addressing modes Few addressing modes

5 Easy compiler design Complex compiler design

6

Pipelining does not function
correctly because of
complexity of instructions

Pipelining not a major
problem, this option speeds
up the processors

Table 2: CISC vs RISC CPU architectures

 In table 1, we can observe the famous Intel’s x86, which is a family of

instruction set architectures, based on the 8086 (1978). Another worth

mentioning microprocessors are the AVR [16] and ARM [17] families.

 Intel has been one of the most important players in the recent history

of microprocessor and embedded systems. As seen in the first picture of

this chapter, the 4004 was the first commercial microprocessor by Intel in

1971. This 4-bit microprocessor was soon followed by an 8-bit 8008

processor, the first of its kind, which in turn was followed by the very

successful 8080 (1974) with a much improved performance, being the first

widely used microprocessor. Motorola had, at the same time, its

competitor 6800. Later on, in 1978, a 16-bit processor called the 8086 was

released and it was the first of the x86 family which powers most modern

PC type computers. In the early 80s we started to see the first 32-bit

22

processors being one of the most important the Motorola MC68000 [18].

Along with this processor another 32-bit worth mentioning units are the

AT&T BELLMAC 32-A (the first with 32-bit data paths, buses and

addresses), Intel’s iAPX 432 and the first ARM (1985).

 The next step were the 64-bit processors, which we could find in the

90s in several machines such as the Nintendo 64 gaming console,

however, it was not until the early 2000s that this microprocessors

targeted the PC market. Today the PC market is majorly divided between

AMD and Intel, with an important share for both 32-bit and 64-bit

architectures.

Microcontrollers

 Sometimes abbreviated µC or MCU, microcontrollers are integrated

circuits that can act as small computers used for embedded automatic

controlled products or devices. Microcontrollers contain a similar

structure as found in regular computers, integrating in a single circuit a

processor core, memory and programmable input and output peripherals.

The core is a microprocessor as described before, but there are several

features that make microcontrollers the preferred solution for most

systems that require an automatic response and behavior.

 The following parts are usually found in a microcontroller:

 Central processing unit (CPU), ranging from 4 up to 64 bits.

 Volatile memory (RAM) for volatile data storage.

 Non-volatile program memory. This can be PROM, EPROM,

EEPROM or flash.

 Serial input and output such as serial ports, and other serial

communications interfaces (SPI, I2C, etc.)

 Peripherals such as timers or PWM generators.

23

 Clock

 Analog-to-digital converter or/and Digital-to-analog converter,

with analog and digital inputs or outputs.

 In-circuit programming.

 These features are what make a microcontroller different from a single

microprocessor.

 At the same time that Intel started producing the 4004 (1971), the first

microcontroller was about to see the light thanks to the engineers Gary

Boone and Michael Cochran [19]. The result of their work was the TMS

1000, the first lone-chipped CPU which went commercial in 1974. Soon

after, and partly in response to this, Intel developed the 8048 (1977), a

chip optimized for control applications becoming one of the most

successful microcontrollers in the company’s history. They sold over one

billion 8048 chips mostly for keyboards and other numerous applications.

 At this time, microcontrollers had two memory variants. One was only

programmable once (PROM) and the other, called EPROM (erasable

PROM) could be rewritten thanks to a quartz window allowing for

ultraviolet light exposure and thus making it erasable. These two

memories were actually the same, but the EPROM required a ceramic

package instead of an opaque plastic package as found in the PROM

version. Only the ceramic package with the quartz window made the

EPROM a much more expensive option.

 Later, in 1993, an electrically erasable programmable read-only memory

(EEPROM) was introduced which allowed users to quickly erase the

memory without the need of an expensive package. This kind of

technology also allowed for in-system programming (write data in a

completely installed system). In the same year, a new kind of EEPROM

24

was introduced by Atmel called Flash memory and quickly other

companies started manufacturing with this kind of technology. In the

future, a possible new technology still under development could be used

as a replacement for flash memories: The MRAM (magnetoresistive

random-access memory), with a better performance, power consumption,

and faster access times [20].

 Nowadays, the unit cost of microcontrollers has decreased to a

minimum, resulting sometimes, in $1 or fractions of a dollar per unit. It is

estimated that around 55% of all CPUs are 8-bit microcontrollers of

microprocessors. These inexpensive 8-bit processors suit perfectly for

endless purposes such as automobiles, office and home systems, medical

equipment, robots, toys, remote controls and many other embedded

systems. 8-bit processors have the advantages of being robust and easy to

program and they are rather inexpensive low consumption solutions with

a size that fits almost in any system.

Figure 11: Die of an 8-bit PIC EEPROM microcontroller by Microchip [21]

 Depending on the system requirements we can find processors from 4-

bits, for devices that can operate with small data sizes, up to 64-bits

microprocessors for the most demanding systems. The first, together with

8-bit processors can be found in digital calculators (HP-48) and remote

controls, although nowadays it is becoming difficult to find 4-bits

25

processors. 8-bit processors enable engineers to support a wide range of

applications and functions including automotive, motor control, LCD

drivers, USB connectivity, lighting applications and more. A typical mid-

range automobile is estimated to have around 30 microcontrollers,

typically for window lift, low end airbags, pumps, steering angle sensors,

cooling fans and valve/ throttle control. This is the case, for example, of

the 8-bit microcontroller family XC800 by Infineon [22]. However, in

both industrial and automotive applications, it is becoming more

common to find 32-bit microcontrollers as its unit cost is similar to the

previously mentioned processors, but these can operate with bigger data

sizes (fig 12.).

Figure 12: Some common microcontroller applications

 It is worth mentioning a family of modified Harvard architecture

microcontrollers from Microchip Technology called PIC [23], (Peripheral

Interface Controller, see figure 11) popular among both industrial

developers and hobbyists due to low cost and wide availability (users

could usually get free samples). Also used for educational purposes, these

microcontrollers have been used in the last years and have become

tremendously famous.

 In the last few years, supported by the internet community, there has

been a substantial growth in the use of a new kind of open source

microcontrollers and programmable hardware by a new generation of

enthusiasts all around the world that use them as powerful tools to carry

26

out projects either in the field of education or just as a hobby. For

engineering students or graduates these new microcontrollers serve as

great tools for developing their ideas or projects. Where PIC

microcontrollers used to be the rule for small projects, prototypes and

hobbyists devices a new family of microcontrollers called ARDUINO [24]

has displaced it, becoming, in short time, a very famous tool for

developing almost any engineering project that requires a

microcontroller.

 In 2006, the Arduino Uno was announced (Fig. 13), and from then on,

the Arduino community started. This project is based on an Arduino

microcontroller, and therefore, we will explore in detail the

characteristics of this product.

 It is quite essential, nowadays, that for a kind of technology such as this

to succeed there is a huge community behind it to support it as well as a

vast source of information where developers can easily find the solution

to their problems and at the same time contribute to that community to

help others.

Figure 13: Arduino UNO: The most used Arduino microcontroller

27

 As we can see in the picture, in the Arduino microcontrollers we have a

typical layout where we can easily spot the microprocessor, input/ output

pins, serial peripherals, USB connector, a button, etc.

 What makes this technology preferable over other options is the fact

that every part of the Arduino family devices is open source, what makes

it more accessible and maintainable. From users to companies everyone

can contribute either writing new software such as libraries, firmware or

program codes or developing new electronic boards based on the Arduino

configuration.

 The original Arduino boards are manufactured by the Italian company

Smart Projects, and other typical Arduino-branded boards have been

designed by the American company SparkFun Electronics.

 Some of the official boards:

 Arduino Extreme with USB interface and ATmega8.

 Arduino Mini, a miniature version using ATmega168.

 Arduino Nano, even smaller with ATmega328.

 Arduino Bluetooth, with a Bluetooth interface.

 Arduino Mega with additional I/O and memory.

 Many other Arduino boards can be found in the market manufactured

by other companies or engineers.

 Before starting in detail with the Arduino project, it is worth

mentioning that other new devices are just starting to see the light and

seem to be plausible competitors for the most demanding needs. Projects

that may need a higher computing power and more versatility are

becoming more frequent since they incorporate all components of a

computer in a single embedded electronic board. As an example, we have

28

single-board-computers (SBC) such as Raspberry Pi (fig. 14, BeagleBoard-

XM or iMX233 suitable for running desktop software (Windows, Linux)

and with a much larger RAM and flash memory than the typical

microcontrollers. Processors on SBCs are also more powerful and capable

of dealing with more computing workload.

 This integration of computing power is an answer to the demands of

complex systems of processes. Optimized chips for specific processes or

particular tasks are rather expensive and rigid options, so these

embedded systems are usually the answer for integrating all processing

and automation power in one single board, resulting in a more affordable

option.

Figure 14: Raspberry Pi

 Arduino Hardware

 The first Arduino microcontrollers were based on 8-bit Atmel AVR

microcontrollers, typically the megaAVR series of chips, with

complementary components to facilitate its integration with other

circuits. More recently, a new version has been designed around a 32-bit

29

Atmel ARM. The pin connectors are exposed allowing the board to be

connected to other external interchangeable modules called shields in

order to get extra features (connectivity, battery, etc.). Most include a 5

Volt line regulator, although there can be found some that operate at 3V.

They usually include a 16 MHz or 8 MHz crystal oscillator or ceramic

resonator.

 They come pre-programmed with a boot loader to help uploading

programs to the flash memory so that they do not need an external

programmer. All boards can be programmed with an RS-232 serial

connection although the way this is implemented varies for some

hardware versions. They use an FTDI cable (USB to serial) that can be

detachable or incorporated to the board. There is also a way of

programming it wirelessly either by Bluetooth or Wi-Fi.

 The fact that the hardware design is open source means that users can

be perfectly aware of every component of the board and, what is more,

they can build their own version with single electronic components that

are found in any electronics store. This way, developers can also program

the microprocessor with an AVR programmer for the firmware (Fig. 15).

Figure 15: Tiny AVR ISP programmer [25].

 Some companies such as DIGI, Roving-Networks or Adafruit Industries

manufacture shields that suit Arduino projects. Roving-Networks and

30

DIGI have a variety of Radio modules that can operate with Bluetooth or

Wi-Fi protocols and Adafruit makes, for example, a special shield for

motor control.

 Arduino boards can be powered with normal 9V or 5V batteries, LiPo

batteries and also have a solar panel support (Fig. 16).

Figure 16: LiPo battery and small-sized solar cells [26]

 Arduino Software

 In order to program the Arduino microcontrollers, the founders of the

project designed and created a tool intended to be easy and intuitive for

new users. This is called the Arduino IDE (integrated development

environment), a Java written program that allows developers to write,

debug and compile programs as well as uploading them to the electronic

board. It is derived from the Processing [27] programming language IDE

which is an open source programming language built with the purpose of

teaching the fundamentals of computer programming in a visual context.

 The programs written for the Arduino are called Sketches and are

written in C or C++. The IDE comes integrated with some libraries such as

the Wiring library which makes it easy to operate with inputs and

outputs, and other standard libraries for working with extra hardware

31

(servos, internet shields, steppers or LCDs). Nevertheless, Developers can

include extra libraries either creating them for particular needs (extra

hardware, specific math functions, etc.) or using other developers’

libraries. In line with the philosophy of open source coding, developers

usually publish their new libraries and maintain the code for others to

incorporate them in their own projects. These projects, if published, at

the same time serve as guidance and support for others. This cyclic

contact is what nourishes the developer’s community, and in the end

contributes to the Arduino project. In fact, as soon as a new piece of

hardware that is subject to be incorporated to Arduino boards goes

commercial, documentation in the form of libraries, code examples and

troubleshooting instantly appears on specialized Arduino and DIY

forums.

 In order for users to make runnable cyclic executive programs in

Arduino, they only need to write two functions called setup() and loop().

The First, is executed only once for initializing settings and variables. The

loop() function runs cyclically until the board powers off (fig. 17).

Figure 17: VIew of the Arduino development environment [24]

32

 All Arduino software tools are available for Windows, Linux and Mac

platforms.

 Communications hardware

 As mentioned before, Arduino boards allow for external modules or

shields to be attached to them in order to provide extra features to an

existing design. In particular, for external communications we have

devices either for wired or wireless connections. For the first, there is for

example, an Ethernet shield capable of providing internet (RJ-45)

connections, and for the latter we can choose among various technologies

depending on the protocols they use.

 There are plenty RF modules available in the market belonging to the

WPAN standards (wireless personal area networks) that operate in the

802.15 frequencies working group. The IEEE 802.15 is a group of standards

for local area communications used in many devices and products. For

example, we have the DIGI’s ZigBee RF modules [28] that use the 802.15.4

standard or other DIGI’s modules with 802.15.1 (first Bluetooth assigned

standard). Apart from Bluetooth, and radio frequency, makers such as

Roving-Networks or DIGI among others sell 802.11 b/g/n modules for Wi-

Fi connections, capable of acting as server or clients depending on the

desired topology or our system.

 From all available devices for wireless communications, we have to

choose one that is suitable for Arduino, not very expensive and pluggable

into an XBee socket. At this point we have two options, first a DIGI’s XBee

Bluetooth module, which in short acts as a node for an Ad-Hoc

connection allowing for two XBees modules to interact in short distances

with low power consumption. Second, we have the option to use a Wi-Fi

33

module (Roving Networks RN-171 [29]) which is a little bit more

expensive.

 The first module is easy to configure on windows, with a program

called X-CTU but users need an extra device for it, an USB adapter. Also,

these modules are thought to be used normally in pairs, communicating

with one another so it is a bit of an issue to get one working with a more

complex device, for example a smartphone. Another disadvantage of the

Bluetooth module is that it only works well in short distances allowing

only for Ad-Hoc connections. On the other hand it has three worth

mentioning advantages which are lower consumption than the Wi-Fi

module, lower market price and is easier to use.

 The second option is the RN-171 Wi-Fi module which allows for more

complex types of wireless networks. Users can interact with this module

in Ad-hoc mode and more importantly, with an access point. Both ways

this module can act as a server or as a client depending on what role it is

playing in a specific topology. A drawback for using Wi-Fi Ad-hoc

connections with Android is that only the last version (4, Jelly Bean)

allows for it.

34

2.3. DC Motors

 In the world of robotics, most of the times engineers incorporate DC

motors to every kind of robot due to the electronic controlling

advantages, motor sizes and the fact that robots are usually powered by

DC currents and voltages. In the industry, robot actuators can also be

pneumatic or hydraulic differing only in their capability to pressure the

fluid. Pneumatic actuators, compared to hydraulic, are low cost ecological

solutions for less demanding forces whereas hydraulic actuators stand

high power loads. Both have the advantage of having non-electrical

components, making them the best option for critical environments or

processes.

 The third and previously mentioned option, the electric actuators, is by

far, the most implemented in industrial or domestic robots. There are

basically three kinds of electric motors: AC, DC and stepper motors. In

high-power single or multiphase industrial applications AC motors are

used where a constant rotational torque and speed is required to control

large loads. On the other hand, for light duty applications and since many

autonomous robots are powered by DC batteries, the actuators that they

incorporate must be DC motors or steppers. These are used along with

microcontrollers, positional electronics and small robots.

 Before entering into the types of DC motors we will discuss some

important variables that should be considered when designing robot

motion functionalities.

35

 The two most important values when powering a DC motor are voltage

and current, where voltage is related to speed and current to the torque

that we make the motor develop.

Further considerations

 It is important to bear in mind that a constant current produces a

constant torque regardless of speed and given a constant load (constant

torque) the speed of a motor only depends on the voltage applied to it.

The maximum power (product of torque and speed) is produced at the

operating point of half the no-load speed together with half the stall

torque, although due to thermal considerations, a DC motor will not

normally operate at maximum power. When supplying a constant voltage

the speed and torque are inversely related so that the higher the torque

that the motor is forced to develop, the lower the speed will be. Last, for

lower noise generation and better life characteristics the motor should be

chosen with higher voltage ratings than the voltage supply, and when

using with gearing it should be selected for the minimum speed [30].

 Types of DC motors

 Brushed DC motor

 These are a classical example of DC motors. The stator generates a

permanent magnetic field that surrounds the rotor either with permanent

magnets or electromagnetic windings whereas the rotor is made up with

one or more windings. The rotor receives current through a commutator

and carbon brush assembly, hence the term “brushed” (fig. 18).

36

Figure 18: Two-pole brushed DC motor

 With brushed DC motors, on one hand it is simple to modify the speed

of the motor by applying different voltages, so in order to make it rotate

faster one only has to increase the voltage. On the other hand, however, if

the user wants to rotate it in both directions it is necessary to build a

controller, an expensive option unless it is possible to build an H-bridge.

It is possible to use pulse width modulation (PWM) to increase/ decrease

the speed without compromising the power, which is a better option than

changing the voltage. A square signal acts, in essence, as a variable

average voltage. These motors are cheap, small and easily controllable but

they produce a relatively low torque [31].

 Brushless DC motors

 In this type of motor the rotor is a permanent magnet whereas the

stator is an electromagnet. Instead of using brushes, commutation is

achieved electronically so in order to detect changes in orientation

brushless motors generally use Hall-effect sensors to detect the rotor’s

magnetic field. These motors are more expensive than the previous kind

because of their design complexity and they need a controller to control

the speed and rotation.

37

Figure 19: Floppy-Disk brushless DC motors

 They are more efficient and have a longer life thus being more capable

for robotic applications providing more torque and speed than brushed

motors. They are usually found in floppy-disks (fig. 19) and other low-

noise devices [31].

 Stepper motors

 Basically a sub-type of brushless motors, stepper motors only have

more magnetic poles on the stator. They convert a pulsed digital input

signal into a discrete mechanical movement and require a special

controller for the current to be applied in the desired sequence. The rotor

is made up of sometimes hundreds of magnetic teeth and it does not

move in a continuous fashion but in discrete steps, thus the name stepper

motor. They are used in many industrial control applications that require

accurate positioning with low-time response [31].

38

 Servomotors

 These are brushed motors integrated with a control system that enables

precise positioning as they are built coupled with a feedback control

circuitry. The way to control them is by PWM and the typical positional

and speed feedback devices are encoders, resolvers and potentiometers.

They also incorporate a gear system to increase the torque and decrease

the speed [31].

 Servomotors, unmodified, do not exhibit continuous rotation and are

used for various purposes from robotics, CNC machinery, automated

manufacturing and RC devices. They are used for higher performance

needs compared to stepper motors.

 Their input is a signal that can be either analog or digital and it

represents the position commanded for the output shaft. The difference

between servos and the previous DC motors is that these are closed-loop

mechanisms that incorporate circuitry and gearing.

Figure 20: Industrial servomotor

39

 As mentioned before, servomotors are widely used in the industry due

to their high performance in relation to accurate positioning, speed, and

torque. Plus, they usually incorporate error control circuits (figure 20).

 For non-industrial inexpensive solutions, there are also mass-

produced servos suitable for any engineer or electronics amateur available

from $2 to a range of $100-$200, offering a relatively good performance in

most cases. They were commonly used in radio control devices (RC), but

have had a huge increase in the world of small robotics.

 These servos have a potentiometer for measuring the position of the

output, and from the comparison between that position and the

commanded position an error signal is generated to drive the motor. The

servo will stop moving when it reaches the zero-error position (a PWM

commanded position) (fig. 21).

Figure 21: Servo block diagram

 Servo hacking

 As for these small versatile servos, it is common practice to use them

for continuous rotation projects such as robot wheels, or robot arms that

need to rotate more than the servo’s limited angle range since most

standard servos allow the shaft to be positioned only between 0 to 180

40

degrees. In order to do this, users have to modify some mechanical and

electrical components of the servo. Each servo has its differences, so the

way to achieve this varies from servo to servo.

 First, one should eliminate any mechanical stops that the shaft, gears or

potentiometer may have in order to let the shaft rotate beyond a full

revolution.

 Second, it is necessary to cancel the feedback that the circuit sends to

the DC motor through the potentiometer, eliminating the electrical

connection between this and the circuit that controls the DC motor. The

potentiometer, however, should be kept as it normally is part of the shaft

or the shaft itself.

 These are the common steps to modifying servos, but the way it is

achieved may vary from model to model. Next, some common parts

found in a servo.

Figure 22: Common servo parts

41

Table 3: Widely used servos and their features [32]

Make -
Model

Modulati
on

Weight Torque Speed

Motor Gear Street

Type

Mater
ial

Price

TowerPr
o MG995

Analog
1.94 oz 4.8V: 4.8V:

Coreless Metal $11.95
(55.0 g) (10.0 kg-cm) 0.20 sec/60°

TowerPr
o SG-
5010

Analog

1.34 oz 4.8V: 4.8V:

3-pole Plastic $8.90
(38.0 g) (8.0 kg-cm) 0.17 sec/60°

 6.0V: 6.0V:

 (11.0 kg-cm) 0.14 sec/60°

Align
DS610

Digital

1.85 oz 4.8V: 4.8V:

Coreless
Titaniu
m

$67.99
(52.5 g) (9.6 kg-cm) 0.10 sec/60°

 6.0V: 6.0V:

 (12.0 kg-cm) 0.08 sec/60°

Align
DS520

Digital

0.91 oz 4.8V: 4.8V:

Coreless Plastic $49.99
(25.9 g) (1.9 kg-cm) 0.09 sec/60°

 6.0V: 6.0V:

 (2.5 kg-cm) 0.07 sec/60°

Hextroni
k HXT900

Analog
0.32 oz 4.8V: 4.8V:

Coreless Plastic $3.65
(9.1 g) (1.6 kg-cm) 0.12 sec/60°

Hitec HS-
645MG

Analog

1.95 oz 4.8V: 4.8V:

3-pole Metal $39.95
(55.2 g) (7.7 kg-cm) 0.24 sec/60°

 6.0V: 6.0V:

 (9.6 kg-cm) 0.20 sec/60°

Hitec HS-
311

Analog

1.52 oz 4.8V: 4.8V:

3-pole Plastic $12.95
(43.0 g) (3.0 kg-cm) 0.19 sec/60°

 6.0V: 6.0V:

 (3.5 kg-cm) 0.15 sec/60°

Futaba
S3001

Analog

1.59 oz 4.8V: 4.8V:

3-pole Plastic $24.99
(45.0 g) (2.4 kg-cm) 0.28 sec/60°

 6.0V: 6.0V:

 (3.0 kg-cm) 0.22 sec/60°

Hitec HS-
5955TG

Digital

2.17 oz 4.8V: 4.8V:

Coreless
Titaniu
m

$98.98
(61.5 g) (18.0 kg-cm) 0.19 sec/60°

 6.0V: 6.0V:

 (24.0 kg-cm) 0.15 sec/60°

Futaba
S3010

Analog

1.45 oz 4.8V: 4.8V:

3-pole Plastic $24.99
(41.0 g) (5.2 kg-cm) 0.20 sec/60°

 6.0V: 6.0V:

 (6.5 kg-cm) 0.16 sec/60°

 Recently, it is also possible to purchase continuous rotation servos so

that we can avoid tampering with them, but these are more expensive and

not as common as the limited range servos.

http://www.servodatabase.com/?sort=modulation
http://www.servodatabase.com/?sort=modulation
http://www.servodatabase.com/?sort=weight
http://www.servodatabase.com/?sort=torque
http://www.servodatabase.com/?sort=speed
http://www.servodatabase.com/?sort=motor
http://www.servodatabase.com/?sort=gears
http://www.servodatabase.com/?sort=price
http://www.servodatabase.com/?sort=motor
http://www.servodatabase.com/?sort=gears
http://www.servodatabase.com/?sort=gears
http://www.servodatabase.com/?sort=price
http://www.servodatabase.com/servo/towerpro/mg995
http://www.servodatabase.com/servo/towerpro/mg995
http://www.servodatabase.com/servo/towerpro/sg-5010
http://www.servodatabase.com/servo/towerpro/sg-5010
http://www.servodatabase.com/servo/towerpro/sg-5010
http://www.servodatabase.com/servo/align/ds610
http://www.servodatabase.com/servo/align/ds610
http://www.servodatabase.com/servo/align/ds520
http://www.servodatabase.com/servo/align/ds520
http://www.servodatabase.com/servo/hextronik/hxt900
http://www.servodatabase.com/servo/hextronik/hxt900
http://www.servodatabase.com/servo/hitec/hs-645mg
http://www.servodatabase.com/servo/hitec/hs-645mg
http://www.servodatabase.com/servo/hitec/hs-311
http://www.servodatabase.com/servo/hitec/hs-311
http://www.servodatabase.com/servo/futaba/s3001
http://www.servodatabase.com/servo/futaba/s3001
http://www.servodatabase.com/servo/hitec/hs-5955tg
http://www.servodatabase.com/servo/hitec/hs-5955tg
http://www.servodatabase.com/servo/futaba/s3010
http://www.servodatabase.com/servo/futaba/s3010

42

Locomotion issues

 When designing a robot, we should first consider the way we want it to

move through its environment and how it should accomplish it,

depending on what advantages and disadvantages each locomotion type

has and how they suit our robot’s requirements. [33]

 Legged locomotion. Often inspired by biological systems, these kinds

of mechanisms are very successful in moving through a wide area of harsh

environments but often have problems with stability, complexity and

power consumption. A legged robot is well suited for rough terrain, since

it is able to cross gaps, climb steps and cross obstacles so it usually is the

right choice when there are ground irregularities.

Figure 23: Power consumption of different locomotion mechanisms [33]

 As we can see in figure 23 compared to wheeled robots, these are two

orders of magnitude more inefficient on a hard, flat surface since legged

motors need more motors and thus more degrees of freedom than the

first. However, the legged locomotion is more power efficient than

wheeled when the ground is softer.

43

 Stability is also an important issue. From 1 leg to n legs, including 2, 4

and 6 (normally based on animal or insect movements) static and

dynamic stability is a complex engineering challenge, certainly more

difficult than the wheeled robots case.

 Wheeled locomotion. This is the most popular method for providing

robot mobility. It is normally more power efficient, and requires a simpler

mechanical approach, less motors and it is stable most of the time. There

are robots with two wheels, with a third stable point, but it is more

common to find 4-wheeled robots for better traction (sometimes more 6

or more wheels). Stability here is not a major problem, but there are other

issues worth mentioning. The focus on research in wheeled robotics is on

traction, stability on rough terrain, maneuverability and control.

 Stability: It is only necessary that the center of gravity is on the

stability polygon.

 Maneuverability. If the movement is differential, (turning is

achieved by powering the wheels at different speeds) the robot will

be omnidirectional. If the robot has an Ackermann steering

configuration, used by cars, the vehicle will have a turning radius

larger than itself, which results in less maneuverability.

 Controllability. The disadvantage of the differential configuration

is that controlling the robot becomes harder than with the

Ackermann configuration. For example, it is difficult to keep the

robot in a straight line compared to standard vehicles since these

use the same power for both wheels.

44

 Here there are some examples for wheeled robots:

 2 wheels 3 wheels 4 wheels

Figure 24: (a) Wheeled robot; (b) Kovan robot & (c) NASA’s wheeled robot.

 The first (fig. 24a) is the simplest configuration. For a correct balancing,

it is necessary that the center of mass is below the axle. Difficult to

control but good maneuverability. Cheap and small.

 The second configuration (shown in figure 24b) consists in three

steering wheels arranged in a triangle. Usually for indoors. Great

maneuverability. All wheels driven by a single belt.

 The last Image (fig 24c) shows NASA’s rover. A 4-wheeled robot with

the two front wheels acting as steering and the rear two as drivers. This is

the preferable configuration for non-flat surfaces.

45

2.4. Smartphone Applications

 Over the past few years, the market of touchscreen mobile devices has

experienced an enormous growth to the extent that, according to the last

surveys [34], around half of the US mobile consumers own smartphones.

The European mobile market as measured by active subscribers of the

top 50 networks is 860 million and the rate of smartphone adoption is

accelerating, and is soon expected to reach a third of the sales [35].

 A smartphone is a mobile phone built

on an operating system, with more

advanced computing capability than a

feature phone (media players, camera,

GPS, internet browsing, etc.).

 Although the term was coined years before, the real push that opened

this market was the original iPhone by Apple Inc. in 2007, one of the first

mobile phones to use a multi-touch interface. After, in July 2008, Apple

announced its second generation phone with 3G support. By then, the

App Store reached over 1000 million downloads in the first year having

started with only 500. Two more versions of the iPhone have been

released so far, being Apple the leading company in all aspects from

design to functionality [36].

 Following the success of the Apple’s App Store other smartphone

manufacturers soon launched their own software application stores, such

as Google’s Android Market or Blackberry’s App World between others.

46

 The Applications market is highly attractive for small companies and

third-parties. In 2012, the Apple’s Store recorded $5782 million of

revenues, relatively high compared to other competitor’s stores. This

could be attributed to having the largest number of applications or apps

available as well as the highest download volume in 2010. Also, only 28%

of the apps in the Apple Store were free compared to the 57% in the

Android Market [37].

 In the next image we can see how deep the smartphone share is in each

market:

Figure 25: Smartphone share per region

 As we can see, the leading market for smartphone sales is the Japanese

market, followed by the American market. The special case of Japan can

be explained by their early and massive use of mobile devices, with more

rotation than in other markets and always 3 or 4 years ahead. In Japan,

almost all technological advances are in more widespread than in other

countries and the smartphone market has never been an exception for

47

this. Forecasts are optimistic about a complete penetration of

smartphones for all mobile device users as we can see next (by the end of

2014 an 80% of population is supposed to be carrying a smartphone):

Figure 26: US smartphone penetration

 In the rising years of smartphone technology the software and

hardware market had the next distribution:

Figure 27: Software and hardware platform pie

48

 We can see that both in software and hardware markets, Apple has

experienced a notable growth while Nokia has decreased its share

accordingly. It is important to remember that before the smartphone era,

Nokia was the undisputable leader and Apple was not even a player in

this market.

 Nowadays, however, Apple’s iOS and Google’s Android are the two

biggest competitors in both number of applications and market share,

which translates into smartphone sales as users perceive the availability

and utility of the applications software as a key factor for a mobile device

election. Also, in the last 2 years tablets have joined this hardware market

competing in the same application stores. Tablets are intended for

different reasons (with less portability, bigger screens, less connectivity)

but share almost all apps with smartphones.

 The next chart shows the number of applications in each store for every

of the last years.

Figure 28: Apps available per platform

49

 This actually does not translate into sales (hardware and software) in

the same relation as shown for number of applications offered per store.

In the next chart we can see how Apple’s App Store is losing ground

against Android, which is its major competitor right now. Before

smartphones were ruling the technological panorama the most installed

systems were from Nokia (Symbian), Microsoft, Palm and Blackberry

(Rim).

Figure 29: Platform market development

 As mentioned before, Apple’s iPhone meant a breaking point in both

the perception users have from a mobile OS and the performance and

usability that companies give to their systems (fig 31.). New mobile

devices allow for user-friendly applications in all aspects possible, from

internet browsing, web services, camera applications, etc. These

requirements were only met first by Apple and also now by Android.

50

In conclusion, with this information we can foresee an attractive

future for investors and developers in the applications software

environment. Smartphones are becoming more than just a

communicating tool to become all-in-one devices with which we can

control and monitor any other electronic devices subject to wireless

communications.

 At this point, when developing applications most companies choose

building multi-platform applications for both Android and iPhone. Both

operating systems are widely used and cannot be set aside. However there

are big differences in both worlds while developing and programming

that should be noticed.

 On one hand, Android is completely open source, has a large

community of developers and is a light-weight operating system. It is

completely free to start developing for it, and has a vast database of

resources available on the internet, but applications should be runnable

by many different devices, with different hardware configurations and

computing power.

 On the other hand, the iOS for iPhone is only intended to work in

iPhones thus making it easier for developers to develop focusing less on

hardware requirements and more on code. It is a proprietary system

available only for Apple’s devices and it costs $99 to become an iOS

developer and purchase the complete developing toolset (version for

developers outside Apple).

51

Chapter 3

Design and manufacture

Although one of the main concerns of

this project is providing robots with the

capability of teleoperation, there has been

no better way of carrying this out than

building the robot itself, allowing for

great versatility and full understanding

between both the commanding part and

the robot. This is also a substantial and

important part, since we determine how the robot is going to physically

behave according to how we implement the control and programming.

 By being able to design the robot from scratch we try to simplify its

mechanic behavior allowing for a m0re robust prototype in the sense that

we can focus on the main issues rather than having to deal with

unwanted working areas, such as behavior against obstacles, energy

efficiency, high torques or accelerations, degrees of freedom or even less

the appearance of the machine. Nevertheless, by designing the robot with

the simplest way of movement, which is two wheels, we do not lose the

flexibility that a more complex topology might provide. Instead, it can

52

change speed and direction almost instantly when commanded and at the

same time assuring reliability.

3.1. 3D modeling and design

 For the purpose of designing and modeling the structure of the

different parts of the robot there are different tools available, each having

their advantages and disadvantages, as mentioned in the background

chapter.

 For this project it has been decided that OpenSCAD is the best choice

since it focuses on the computer aided design aspects instead of the

artistic aspects. This software is entirely open source, and a very powerful

parametrical tool that works by rendering scripts (fig 32). This way,

programmers build their models with parametrical code and the software

compiles the scripts and renders the object. The great advantage of this

program is that by being parametrical users can modify their objects’

attributes by changing certain values of their code. However, this is also a

disadvantage since it makes it more complicated to create objects

compared to other alternatives.

Figure 30: A look into the OpenSCAD software [8]

53

 As we can see, on the left side we type the code of the piece, while in

the right side, we can see the rendered result. The objects are created

using mathematical basic functions, from which, we can achieve more

complex shapes.

 Among the locomotion systems previously discussed, for this project,

the 2-wheeled option has been selected in order to focus on other aspects

of the robot, such as communications and interfaces, so that we can have

the smallest robot to test (approximately 5 cm long) as well as the

cheapest configuration.

 There are 7 pieces modeled for this project’s design. Some are created

as new structure pieces and others are only 3D models of real objects like

servos or the electronic board. Next, we describe each in detail.

 Real objects 3D models:

- LiPo battery. Model of a lithium polymer battery for placing it

under the robot. This will be discussed in a later section.

Figure 31: View of the LiPo battery

- Servos. After measuring all the distances of the servos, we build a

3D object that represents them accurately, in order to serve as a

guide to design and develop the structure objects of the robot.

54

Figure 32: 3D representation of a TowerPro sg90

- Electronic Board. There is also an accurate 3D representation of

the board also needed for the construction of the structure pieces.

Figure 33: 3D view of the Arduino Fio board with the RN-XV on it

 Structure objects:

 As the servos are built opposite to one another, with nothing between

them, they will constitute the main core of the structure so that the

pieces that are going to be designed should basically hold the servos

together firmly. The designed structural pieces should also be able to hold

the electronic board, the Wi-Fi board and the battery always minimizing

the complexity and number of pieces involved.

55

- Front part. This is a simple piece and it is destined to hold the

front ends of the servos together by having two holes prepared for

ISO metric M2 screws. There is no need for threads because the

screw fits firmly in the holes.

Figure 34: View of the front part

- Rear part plug. In the back of the robot we have two complex

pieces. The rear part plug serves as a grip for the back part of the

servos, with holes for M2 screws, and at the same time it works as

a plug for the electronic board which fits tightly into the piece.

This is actually the only way of assembling the electronic board

since it does not come prepared for bolts or any other way of

fastening.

Figure 35: 3D model of the rear part plug

- Rear part support. This part is destined to serve as a third support

for the rear weight of the robot, aside from the wheels. It also fits

within the rear part plug using the same screws.

56

Figure 36: Rear part support

There is a modification of this part which has a marble destined

to roll in any direction the wheels go. However, a more simple

way is preferred, in which this rear support simply slides. The

force of friction is insignificant since the robot weighs very little.

- The wheels. The wheels are designed so that the servos’ plugs fit

into the wheels very tightly, having for this purpose a hole similar

to the plugs. These wheels also have a decrease in the radius of

their center so that we can place a rubber O-ring to enhance the

grip.

Figure 37: Top view of a wheel

57

 In this design it has always been a priority to give the robot an easy

maintenance and functionality so that it is not necessary to

disassemble it for operations like changing or charging the battery,

reprogramming the board, attaching or detaching the wheels and making

any cable connection. All of these procedures can be done keeping the

robot assembled and intact.

 In the next picture we have an unassembled view of the robot, in which

there is a better understanding of each piece separately.

Figure 38: Unassembled complete robot

 It is also worth saying that some pieces have been redesigned several

times until they have met the requisites of the 3D printer. Not all shapes

58

and angles can be printed because of the working process of the 3D

printer which is adding layers from bottom to top in order to create the

object.

 Finally, no matter how precisely we design the pieces to fit together we

will always need some retouching in the sense that sometimes the

precision of the printer is lower than the precision needed for all pieces to

fit. Therefore, some smoothing is needed on some pieces’ edges and

holes.

3.2. Additive manufacturing or 3D

printing

 Once the pieces are designed, the next step is manufacturing the

designed pieces. This is accomplished by a machine called a 3D printer.

 The STL files are then opened by a program called ReplicatorG [38] (fig.

42) which serves as the main interface for operating the 3D printer. With

this software we place the object in the adequate “printable” way (always

with the largest part at the bottom) and then translate the STL code into

GCode [39] which is the machines operative code. This code carries the

information of how the printer will move and the order of the steps. [40]

See figure 41.

 After the GCode is generated we have to indicate some of the printer’s

options. Although it allows us to choose among many variables the two

most important of them are the platform’s temperature and the extruder

temperature.

59

Figure 39: OpenSCAD to STL format and STL to G-Code [40]

 The platform is the base on which the object will be laying and should

be about 120 ºC. The extruder melts the plastic at 220 ºC and makes the

plastic go through it as a fine strip.

Figure 40: A view of the software Replicator G [40]

60

 After setting up the printing parameters with this program we

command the printer to start working. Each piece takes, on average,

about 20 to 30 minutes to be printed, which makes, for the entire robot, 1

hour and 40 minutes.

 The material from which they are made in this case is called ABS

(acrylonitrile butadiene styrene) and comes in a coil prepared to feed the

printer. It is an inexpensive material, if we consider the €/g, compared to

other manufacturing materials.

 In the next picture we can take a look at the printer while building one

of the wheels. As we can see, it works by adding layers from bottom to top

using the extruder as starting point of the melted polymer.

Figure 41: 3D printer building a wheel. [40]

61

3.3. Assembly

 The next and last step of the manufacturing process is the assembly of

the pieces once they all have been printed. However, first and as

mentioned before, some pieces need their surfaces and edges to be

smoothed in order to fit with the others.

 When they are ready, we put together the two servos with their ends in

opposite sides and attach to them the front and rear pieces using two

screws for each one of them. After this we can plug the electronic board

into the rear piece.

 For the battery we use a sheet of Velcro placed under the servos. This

way we can attach and detach the battery easily and as many times

needed. In the next picture we can see the results so far:

Figure 42: Preassembled robot

 Prior to assembling the electronic board we have to solder the male

headers in order to start working with the pins. Next, we assemble the

rear part support, the wheels, and the Wi-Fi board.

62

The complete model

 After all the pieces are assembled together, we can take a look at the

final layout of the robot’s design, a 3D model of the complete robot in

which one of the wheels has been removed for a better view.

Figure 43: Assembled complete robot

Figure 44: Top view of the assembled robot

63

Chapter 4

Servomotors and servo hacking

For the robot’s wheels, we have to

choose a pair of servos that suit our

needs. They should be small enough,

so that the we have the lowest power

consumption and make the smallest

robot possible with the tools at hand.

All of this in line with the previously

designed small parts of the robot.

Apart from the obvious specifications that we must seek in any servo

such as torque, speed, voltage, ect. Another element to bear in mind

while choosing a servo is budget. There is actually a huge variety of

different servos offering similar features, and almost all of them could suit

our robot’s demands, so these are not really important at the time of

choosing one servo or another. However, depending on the fiability that

they provide, prices vary within a considerable range.

As mentioned in the first parragraph, the most important feature that

we look for in a servo is size. The world of electronics is constantly

developing devices with enhanced features but smaller sizes and the new

64

generation of servos is not an exception. Although with less fiability, users

can find in the market much smaller servos than before and even build

their own controlling circuits for small DC motors using cheap affordable

components.

 Apart from the hardware (servos and electronics), it

is important to remember that a limiting factor for

reducing the robot’s size is the accuracy with which

the printer builds each piece. If we try to build pieces

that are two small, the printer will not build them with

the right accuracy.

 As this project focuses on communications and building the controlling

interface, we could allow ourselves to choose a small cheap servo, only

with the necessary features to move the robot. This is the TowerPro’s

SG90, a lightweight servo, which for the price, is very high-quality and

fast.

It comes with accessories for attaching, and has two holes for screws. In

the picture below, we can se these holes on the sides of the servo. It is to

these fins that we attach the front and rear parts of the robot, using

screws to hold them together.

 This ~$5 servo, which we can see in the introductory picture has one

big disadvantage, shared with other similar medium-quality servos, which

is that it requires time, effort and skills to modify it in order to make it

rotate 360º. It is possible that upgrading to more expensive but

continuous rotation servos is more worthwhile, in order to avoid all the

trouble related to modifying the structure of these servos. However, it

serves as a learning tool both in mechanics and analog electronics.

65

4.1. Continuous rotation modification

 First, we have to get the four bottom screws out which will let us

disassemble the top and bottom plastic parts:

Figures 45, 46 [41], 47, 48 & 49: Unscrewed and modified servo

 After this we have to remove three

mechanical stops. First, two metal fingers in

the potentiometer must be cut using a small

screwdriver to lift the metal plate and then cut

its ends with a diagonal cutter.

 Figure 47: Mechanical Stops [41]

 Next we remove the other mechanical stop

which is a small nub on the bottom of the

output gear, using a cutter this time but being

careful not to break it. This way, the gear will

be able to rotate freely.

 Figure 58: Output gear [41]

 After removing the mechanical stops

we have to reassemble the potentiometer

and every gear in the right order engaging

the motor’s gear.

 Figure 5: Gear train [41]

66

 Now comes the most difficult part. In order to cancel the feedback that

the potentiometer puts into the circuit we have to modify its electronic

behavior:

First we cut the three wires that go

from the potentiometer to the circuit

(red arrow). We have to be really

careful not to desolder any other wires

since the tin unions are quite delicate

and break easily.

 Figure 50: Potentiometer's wires [42]

Below the chip (H-bridge) we leave

3 tin ends that must be reconnected

to fixed resistor values in order for

the circuit to be closed and dismiss

any changes in the position of the

shaft. These were previously

connected to the potentiometer.

 Figure 51: Tin ends [42]

 In this picture two SMD 2.2 KΩ

resistors have been soldered to the

circuit. This is actually a quite difficult

task if we lack specific soldering tools

for SMD resistors, since any common

solder will break or damage the board.

 Figure 52: Soldered resistors [42]

67

 To solve this problem two common 1/4 W resistors have been used

being really careful not to damage any part while soldering the resistors

legs. However, this method has one big disadvantage; the new circuit with

these resistors will not fit into the servo’s box so the only way possible is

to make a hole in the box and let the resistors out through it.

 In conclusion, it is possible that this part of the project could be

reconsidered because of its complexity and difficulty, in the sense that we

could avoid the technical trouble involved in this in favor for a better

performance servo. The only disadvantage would be an over cost for each

servo.

68

69

Chapter 5

Electronic hardware and

programming

In this part, we will cover everything

related to the election and use of all

electronic devices involved in the

robot. In order to make the robot

work and move we need a

microcontroller destined to serve as

the main “intelligence”; it deals with

the possible inputs or outputs that the robot may implement, for

example, activities such as running the servos, communicating with other

devices or algorithm execution.

 For this specific project, we also need a communicating module that

will deal with the data transfer between the microcontroller board and

the controlling device. This module might or might not come

incorporated to the main board, meaning that we have the possibility of

either an integrated solution or two separate but compatible devices for

the microcontroller and communicating module.

70

 The first choice must be the microcontroller. As mentioned in the

background part, the best choice for a low-budget starting project with no

professional requirements would be a microcontroller from the Arduino

family.

5.1. Microcontroller

 Now, depending on our project we should choose the adequate model

that fit exactly with the robot’s power, size and I/O requirements.

 First we should know the minimum amount of I/O pins that the robot

needs, so that there are enough digital and analog outputs for the servos

and other controlled devices. In order to provide connectivity, the board

should also allow for an external Wi-Fi, Bluetooth or RF module and they

should be compatible.

 Another factor to consider is the necessary computing power needed

for receiving instructions, computing the algorithm and commanding the

servos at the same time with the minimum lag. Any 32-bit microprocessor

should be enough for this task.

 For now, we still have several boards that suit our needs, most of them

being more than enough for our needs, but if we want the microcontroller

to be as small as possible our choices narrow a lot.

 For these reasons the FIO [43] model has been chosen, which is an

Arduino board intended for wireless applications (fig. 55).

71

Figure 53: Arduino FIO

 In the previous picture we can see a top view of the board, with the

microprocessor in the middle and the I/O pins on the sides.

 The Arduino Fio is a microcontroller based on the ATmega328P

running at 8 MHz and at 3.3V (fig. 56). It has 14 Digital inputs and

outputs and 8 analog inputs, an on-board resonator, a reset button and a

socket for XBee modules. XBee is a standard pin-arrangement from DIGI

for its RF and Bluetooth modules but it has been adopted by other

companies so that we can find other maker’s modules with different

features all having the same pin arrangement.

Figure 54: ATmega328P [16]

72

 It has connections and a USB internal charging circuit for a lithium

polymer battery.

 Summary

Table 4: Arduino FIO features

Microcontroller ATmega328P

Operating Voltage 3.3V

Input Voltage 3.35 -12 V

Input Voltage for Charge 3.7 - 7 V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 8

DC Current per I/O Pin 40 mA

Flash Memory 32 KB (2 KB used by bootloader)

SRAM 2 KB

EEPROM 1 KB

Clock Speed 8 MHz

 Memory

 This microprocessor has 32 KB of flash memory for storing code (of

which 2 KB are for the bootloader. It has 2 KB of SRAM and 1 KB of

EEPROM.

 Input and output

 All 14 pins can act as digital output or inputs with an internal pull-up

resistor of 20-30 k (disconnected by default). They operate at 3.3V and

provide or receive a maximum of 40 mA. Some pins have the next special

functions:

73

- Serial: RXI (D0) and TXO (D1). Used to receive (RX) and

transmit (TX) TTL serial data.

- PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with

the analogWrite() function.

- SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support

SPI communication.

- LED: 13. There is a built-in LED connected to digital pin 13.

- 8 analog inputs with 10 bits of resolution.

 Communications

 The ATmega328P provides UART TTL serial communication, available

on pins 0 (RX) and 1 (TX). This serial connection can be monitored by the

Arduino software through the serial monitor in which we can see the

serial data sent to the Arduino from the computer and vice-versa. This

should be done with a 3.3V FTDI cable. The mini-USB that comes with

the board is only for charging the battery and not for uploading

programs. For further use of the Serial communications interface we can

use the SoftwareSerial library.

 The ATmega328P also supports I2C and SPI communication. For I2C

we should include the Wire library in the Arduino software. For the SPI

communication we need to check the datasheet.

 The board was designed by Shigeru Kobayashi and manufactured by

SparkFun Electronics.

http://arduino.cc/en/Reference/AnalogWrite

74

5.2. Microcontroller programming

 In order to start using the board we must solder either the male or

female headers on the board. In this case we soldered a row of male

headers per row of I/O pins.

 When it comes to programming the board we have two options: With

an FTDI cable or wirelessly which only works with a pair of DIGI’s RF

modules. As this project uses another board it is a must to program it

with the cable.

 After this, we start developing the sketch or Arduino program. As

mentioned before, there are two functions that we must implement in

any program. However, before the first function we include the necessary

libraries for our program, and then we write the setup() and loop()

functions. First, in the setup() function we will initialize the variables,

attach one digital output for each servo, and configure the software serial

connection for carrying out the serial monitoring. (This will be explained

along with the softwareSerial library).

 In the setup() function we also set the data rate for serial data

transmission with serial.begin(9600). A working value for the Arduino

FIO is 9600 bps (bits per second).

 In the loop() section we will write the main algorithm in charge of

receiving the instructions from the smartphone and commanding the

servos. We read char values from the corresponding Arduino FIO buffer,

which come from the default serial connection with the Wi-Fi module.

 As the values received from the Wi-Fi module and sent to the Arduino

are treated as characters, we need to implement a char to int

transformation prior to executing any code that uses the received data.

75

 The values sent from the Wi-Fi module to the Arduino are numbers

from 0 to 180 coming from the commanding device (In this case an

Android phone) that represent the desired servo speed. The algorithm

then, groups any incoming char data in separate strings (to differentiate

separate values) and converts the strings into integer values with the

atoi() function.

 Only after we have the data converted to an integer we can start

developing the main algorithm which is in fact very simple, excluding a

few issues. As we will receive information to move two separate servos,

but there is only one data channel (Wi-Fi board) and only one buffer for

the serial connection, we have to transform the data so that the Arduino

program knows which servo it is intended to. To achieve this, we send

values from different ranges being each range associated to one servo.

 From the smartphone’s application software values are sent from two

different special sliding buttons, one for each servo. Both values travel

through different listeners but are already sent with different ranges as

there is only one channel.

 The next image shows the flow chart of the steps explained above. It is

a simplified flow of events that sum up the algorithm behind the robot.

76

Figure 55: Main Arduino block diagram

Inside the “receive string and convert to integer” box there is also a sub-

routine in charge of doing that task. The next image shows the flow chart

for this task.

77

Figure 56: Block diagram for storing string and converting to integer

 When sent to the Arduino from the Wi-Fi module, a number can have

from 1 to 3 digits. Each digit is sent separately and treated as a character.

As the Arduino buffer allows for only one variable to be stored in it, we

have to build a loop that first reads that incoming value, and then stores

78

it in the first position of an array. If there is more incoming data, that is to

say, another number’s digit, we place it in the next position of the array.

 As we do not know how many digits the number will have we still have

an array with a variable number of elements which are undetermined,

with no assigned value. In order to use the function atoi() which only

works with a NULL ended string, we have to fill the remaining positions

with NULL values or “\0”. We then convert the string to an integer and it

is ready to be read as a valid number for a servo.

 After the data is written to the servo we clean the buffer for the next

loop with serial.flush(). It is important that we add a delay of 10 ms

between the data is being written in the serial buffer and when reading

the data. This way we allow the buffer to have completed before we read

any values.

 Regarding the servos, from two of the digital pins capable of providing

PWM signals we connect each servo’s control wire whereas the other two

go to the power supply, in this case, the battery. Servos have 3 wires:

GND, VCC and signal (PWM control). Next we discuss more in deep how

to write values to the servos in the loop() function.

 In order for our program to deal with servos, we have two options: We

could either write PWM signals by software as explained in the servo

controlling section of the background chapter or use an available

standard servo library (Servo.h). To simplify the program, in this project,

the library option has been chosen. This library allows for attaching or

detaching a servo to and from any digital pin, as well as writing a value to

the servo controlling the shaft accordingly. For this we could either use

the function write() or writeMicroseconds(), being the latter more

precise.

79

On standard servos a value from 0 to 180 will command a position for

the shaft, and on continuous rotation servos this will set up a speed, being

90 the value of no movement.

 It is worth mentioning that near-end values (o to 20 and 160 to 180)

could not be well differentiated as many servos achieve full speed with

lower values.

 Technical issues

It is necessary to notice that this specific hardware configuration

(FIO + RN-171 Wi-Fi module) is especially difficult to work with since they

use for communicating the same serial (TX and RX) pins as used for

uploading sketches. Here comes the biggest disadvantage of these two

modules when used together. Despite all the advantages that come when

choosing the FIO board (size, connectivity, ect.) it has been thought for

being used with a DIGI’s XBee Bluetooth or RF module, which even

allowed for wireless programming, so if we want to connect it to the Wi-

Fi module we will have to put up with some difficulties when making it

work. As mentioned early, we have to detach the Wi-Fi module every

time we want to upload a sketch, but this is not the biggest trouble. In

order to start working with the module and check for incoming data we

should use the serial monitor that comes with the Arduino IDE. However,

the default serial pins are being used for data transfer to/ from the Wi-Fi

module so that we cannot monitor this flow of information.

 In order to solve this issue and achieve data transfer and proper

monitoring we should use the softwareSerial.h library which allows for

any other digital pin to serve as serial transfer (RX and TX). We then

connect the RX and TX from the FTDI cable to these new pins and the

rest (VCC, GND, ARef and DTR) to the corresponding FIO pins. For this

we have to disassemble the FTDI cable. In conclusion, we have two

80

running serial communications at the same time, one for monitoring the

buffered read values, and other for communicating with the Wi-Fi

module.

 Layout

 The next picture shows the electronic configuration of the robot. It is

quite simple, only taking care in powering the servos with the battery and

not with the Arduino, which can only supply 40 mA.

Figure 57: Robot, servos and battery layout

81

5.3. Wi-Fi module

 After considering the pros and cons of the two main options for

providing connectivity (Bluetooth or Wi-Fi), it has been decided that the

best choice would be the Wi-Fi module. The advantages are data with

ultra-low cost transport, the biggest connectivity range (if using local area

networks with access point we can connect to everywhere in the world),

and a greater versatility providing many different configurations. This

way we have the possibility to interact with any device that is connected

somehow to the network. A significant factor is that between 2009 and

2010 there was a 158% growth in Wi-Fi enabled consumer electronics and

it was present in 90% cell phones [44].

 The best choice is the Roving-Networks RN171XV (fig. 60), which is a

standalone, complete TCP/ IP wireless networking module. Due to its

small size and low power consumption it is perfect for mobile wireless

applications such as sensing and portable devices. It is the best option for

projects migrating from existing 802.15.4 architecture to a standard 802.11

TCP/ IP based platform without any changes in their existing hardware.

Figure 58: Roving-Networks RN-XV 171 Wi-Fi module [29]

82

 The module incorporates a 32-bit processor, TCP/ IP stack, real-time

clock, crypto accelerator a power management unit and analog sensor

interface. It also offers additional functionality through its 8

programmable GPIOs (general purpose input/ output) and 3 ADCs. The

ADCs provide 14-bit resolution while the GPIOs can be configured to

allow standard functionality or status signaling to a host microcontroller

minimizing the need for serial polling between the module and the

microcontroller.

 Among all the features (See manual, or main web site), we can outline

some important ones:

- Based common 802.15.4 footprint.

- Access to every node. Ad-hoc and AP configurations.

- Low power

- 3.3V supply

- Secure Wi-Fi authentication

- Configuration over UART or wireless interface (telnet) using ASCII

codes.

 For this project the module has been connected to the Arduino

hardware with the simplest configuration, only using PWR, TX, RX and

GND for communicating with the microcontroller: A common serial

communication. This is showed in the circuit layout in the 3.2 section.

 The module has an endless set of applications and lets the user set

multiple configurations according to their needs. To begin with there we

will offer a general overview of the configuring commands, default

features and working modes. Later we will see some typical applications

83

in which to incorporate the module and some hints on how to implement

them.

 First of all, the module can be in two modes or states: Data mode or

command mode:

Figure 59: Wi-Fi module operating modes [44]

 Data mode (default state).

- WiFly module like data pipe.

- TCP/ UDP header stripped or added, transparent to UART.

- Data written to UART is sent out to Wi-Fi.

- Data received from Wi-Fi is read from UART.

 Command mode.

- Used to assign data, SSID, pass phrase, etc.

 To configure parameters and/ or view the current configuration, we

must put the module into command mode. There are various ways to

connect to the Wi-Fi module and enter in command mode for the first

time. In all of them, the user has to establish connection with the module

and send the escape sequence $$$. If the module answers CMD it means

we are in command mode.

 Note: In the configuring part, next section, we will take a look at how to

connect and configure the module.

84

 Upon entering the command mode, the module can accept five types of

commands:

- Set commands: These take effect immediately and are stored in

memory. They include the categories shown in table 5.

Table 5: Set commands parameters

- Get commands: These commands retrieve the stored

configuration and display it. They are basically the same

commands as the “set commands” but take no parameters.

Instead, they show the current configuration.

- Status commands: These commands display the interface

status, the IP status, etc.

- Action commands: for scanning, connecting, disconnecting,

etc.

- File I/O commands: to upgrade, load and save configuration,

delete files, etc.

85

Some possible Wi-Fi applications

 TCP connections and embedded applications

 We can connect from/to module to/from host using TCP. In the next

image we can see the typical applications for this module (fig. 62).

Figure 60: Typical TCP applications [44]

 Roaming and FTP

 Used for asset tracking, fleet management and remote sensor

applications. The configuration is more complicated than the previous

one and combines broadcast UDP, wake timers and auto join.

 The module can act as an FTP client streaming files to/from FTP server

(useful in data logger applications), and as an FTP server accepting

multiple clients concurrently.

86

 The next image shows this configuration:

Figure 61: FTP client/ server configuration [44]

 HTML client and sensors

 In the next image we can see the architecture for this application:

Figure 62: HTML client configuration [44]

87

 With this configuration we can post data to a web server associating the

module to an access point. (The image shows RN-370 modules but this

also works with the 170 series). In HTTP client mode the module sends

the next request message, including comm remote string and sensor

readings:

GET /server.php?value=0F3000001111222233334444555566667777\n\n

When serial UART data arrives the module auto-connects to web server

and sends.

Access point mode (AP mode)

 In addition to infrastructure and Ad-hoc mode, the module can act as

an access point, providing several advantages over Ad-hoc mode:

- The module creates an AP network to which Android devices can

join.

- The module runs a DHCP server and issues IP addresses to seven

clients, which is much faster than automatic IP and Ad-hoc mode.

- The module supports routing between clients.

 There are two methods for enabling AP mode, hardware and software.

To enable it in hardware, we must hold the GPIO9 to 3,3V and then reset

the module. It starts with the next default AP mode settings:

Table 6: Default access point mode settings

88

To enable it via software we use the next commands. After the first we

do not need to enter them in the same order.

 Once the module boots up in AP mode, any client device can associate

with the network the module is broadcasting. Once associated, the

module DHCP server assigns an IP address to the client device.

Ad-hoc mode

 An Ad-hoc network is a point-to-point network in that each Wi-Fi

device is linked directly to all other devices on that network with no

access point. All devices participate in keeping the network alive and each

keeps track of the other active devices on the network by sending and

receiving beacon and probe packets. In most cases, IP addresses are

assigned through automatic IP, although one of the Wi-Fi devices can be

configured as a DHCP server. There are also two ways to enable Ad-hoc

mode.

set wlan join 7 // Enable AP mode

set wlan channel <value> // Specify the channel

set wlan ssid <string> // Set up network broadcast SSID

set ip dhcp 4 // Enable DHCP server

set ip address <address> // Specify the IP address

set ip net <address> // Specify the subnet mask

set ip gateway <address> // Specify the gateway

save // Store settings

reboot // Reboot the module in AP mode

89

 The first, via hardware, we set GPIO9 high at power up. Upon

powering up with that pin high, the module creates an Ad-hoc network

with the next settings:

 Via software, we introduce the next commands:

 Once a computer is associated with the Ad-hoc network, we can use

the module’s IP address to open a connection or connect using telnet.

SSID WiFly-GSX-XX, (XX is Mac address)

Channel 1

DHCP OFF

IP address 169.254.1.1

Netmask 255.255.0.0

set wlan join 4

set wlan ssid “name”

set wlan chan 1

set ip address 169.254.1.1

set ip netmask 255.255.0.0

set ip dhcp 0

save & reboot

90

5.4. Wi-Fi module programming

 The following part of the document explains how to configure and

program the WiFly module (RN-171) to connect it to a WLAN and act as a

server for any Android device to talk to it via TCP.

This chapter is a summary of an extended tutorial by

the same author of this document on how to use and

configure the module with Arduino. It can be found at

http://asrob.uc3m.es/index.php/Tutorial_Wifly, a

Spanish step-by-step tutorial for programming the

module for the first time.

 Among the many ways possible for the module to work (acting as

access point, Ad-hoc or infrastructure) it has been decided that it would

be appropriate to configure it to connect to a local network providing it

with a static IP so that it would be reachable at all times and would have a

wide coverage in a certain spot. Besides this is a much simpler

configuration than making it broadcast its own wireless network.

However, this last option (acting as an access point) would mean that we

could use the robot in any place without the need for an external wireless

network. The disadvantage of configuring it as an AP is a lower coverage

area (less than 10 m).

 The module will be configured so that it rapidly connects to a router at

power up. Apart from the Wi-Fi module, we will use the next tools:

 Ubuntu

 Arduino FIO

 WiFly Manual and datasheet

 FTDI 3,3V cable and a small thin wire.

http://asrob.uc3m.es/index.php/Tutorial_Wifly

91

 We will show three different ways to configure and achieve the same

results. The first will be via hardware (and then telnet) and the last two,

software. Configuration parameters will be stored in the module’s

memory so that every time it reboots it can auto-connect to the router.

Hardware and telnet

 First of all, we enable the WiFly’s Ad-hoc mode by connecting GPIO_9

(8th pin of the XBEE’s pinout to VCC (3,3v, 1st pin). See images below:

Figure 63: GPIO_9 to VCC & Figure 64: Module powered by FIO

Figure 65: Wire for short-circuiting GPIO_9 to VCCC.

92

 By forcing it enter in Ad-hoc mode we can connect to it via telnet for

the first time and then configure it. There is also a software way to

configure it in Ad-hoc but we must first establish contact with it by

forcing a hardware Ad-hoc.

 When powered up with the FTDI cable from a computer through the

Arduino FIO (it could be from the battery) we should see the three LEDs

on (amber, red and green). This means the connections are correct.

 Second of all, we should try to reach its network. According to the

manufacturer, the default values are:

 IP: 169.254.1.1

 Netmask: 255.255.0.0

 This Netmask means that if we want to reach its net we should have a

169.254.XXX.XXX type of IP, being XXX any number from 0 to 254 (except

for 1.1 which is the address of the module itself).

 Once powered up we should wait (perhaps some minutes) until we can

see WiFly-GSX-XX on the available wireless networks list on Linux (top-

right corner, connection configuration). The last two XX are the last two

bytes of the modules MAC address. Once it shows up (Fig. 68) we go to

edit connections and select the WiFly-GSX-XX inside wireless and edit it.

Inside the wireless tab we select Ad-hoc and leave everything else intact.

In the wireless security tab we select none (for simplicity reasons) and in

the IPv4 tab we select manual method and click on add in address.

93

Figure 66: Wireless connection configuration

 At this point we have to set an IP for our computer that is inside the

subnet ranged by 255.255.0.0. For example we can set an IP of 169.254.1.1

and a Netmask of 255.255.0.0. We then save the changes and connect to

WiFly-GSX-XX.

 Once connected, we open a prompt (Linux terminal) and ping to

169.254.1.1. This way we check if we can send and receive TCP packets to

that address. If everything goes well we should receive data. To exit we

press ctrl + c.

 Now it is time to configure the module. From the terminal we type:

telnet 169.254.1.1 2000 which starts a communication with the module

using the telnet protocol. (By default the module listens for telnet

94

connections on port 2000). Once we open the connection the module

answers “HELLO”.

 After the connection is opened we type $$$ without carriage return (to

enter in configuration mode) and should receive “CMD”. We are now

ready to configure it by typing the next commands followed by “enter”.

 The next time we power the Arduino with the WiFly module plugged

in, it will reach for the router’s network and connect to it using the

assigned static IP.

Arduino IDE and library

 On the internet we can find some libraries (written in C) destined to

work with the WiFly module (WiFlyHQ [45], WiFlySerial [46], WiFly,

etc.) and they all work in a similar way. The most complete and robust is

set wlan auth 0 Open network, no authentication.

set ip dhcp 0 DHCP off: It will not ask for an IP or gateway.

set ip adress X.X.X.Y. We set the WiFly’s IP.

set ip host X.X.X.Z. The router’s IP. (Same subnet).

set ip netmask 255.255.255.0.

set wlan ssid "name".

set wlan channel 0. It will look in every channel.

set wlan join 1. Automatically join the stored ssid.

 After this we save and rebot.

save.

reboot.

95

the WiFly-Shield library [47]. To install it we have to download it and

decompress it creating a libraries folder in the sketchbook, inside the

Arduino folder. (“~/sketchbook/libraries/”). This library comes with some

example codes for Arduino (Client, Server, FTP, HTTP, etc.). To use it in a

sketch we have to write #include<WiFly.h>.

 In order to start working with it we write the next setup() function:

 Within this initialization setup

function, we will use the

WiFly.begin() function to enter in

command mode and connect to

an external server to get the time

and date. We should comment

this part of the code in the

WiFlyDevice.cpp file.

 With the different Serial.begin()

functions we initialize the serial

ports. With the SoftwareSerial.h

library we enable different TX

and RX pins for serial comm. We

also enable the UART to be able

to communicate with the Wi-Fi

module serially.

 With the join() function we

establish communication with

the ssid and passphrase specified

in the credentials file.

96

 In order to make this work we need two FTDI cables. The first powers

the Arduino FIO and loads the program to the board using the standard

TX and RX serial pins, which also communicate with the Wi-Fi module

through Serial.print(). The second cable only needs its yellow and orange

wires to act as software RX and TX and will connect (through another

USB port) to the defined pins by the SoftwareSerial object. See figure 69.

Figure 67: Layout for serial communication

97

 Data flowing through this second cable will be showed in the serial

monitor of the Arduino IDE. For this purpose we could have a loop()

function as follows:

 With this function, any data

coming through the Wi-Fi

module will be read by the FIO’s

UART and written to the serial

monitor through the second TX

and RX (Software serial pins).

 When the setup() sketch is run, the serial monitor shows the module’s

assigned IP with serialTest.println(Wifly.IP()). If we telnet to that IP and

to port 2000 any data written with the line of commands from Linux will

be quickly showed in the serial monitor (fig. 70).

Figure 68: Telnet communication between Laptop and Wi-Fi module

98

 This way we have established, through Arduino, a configuration,

connection and data streaming.

 Next, the last way to configure the Wi-Fi module.

Directly with Arduino Sketch and IDE

 This last method for configuring the module is the simplest in terms of

external help as we do not use libraries or extra material apart from the

Arduino board and the Wi-Fi module. However we are required to dig

into the user’s manual and add a little bit of complexity to our code.

 We will write a code in which the serial functions write() and read()

will communicate with the Wi-Fi module using the UART. (Let us recall

that this serial pins are the standard pins for serial communications,

usually used for monitoring data and uploading sketches). This way, we

use the same pins that the Arduino uses for talking to the module for

uploading our program to the Arduino memory.

 This program automatically sends to the Wi-Fi’s module a set of

instructions similar to the ones used in the first method. The same

instructions that we use to configure it by telnet can be written to the

UART and then serially read by the WiFly. The only precaution that we

must take is that we should leave a few milliseconds between each

instruction so that it can take effect.

99

 Next, goes the check() function, which waits for the module to respond

to each instruction and stores it in an array. Then, it prints this answer to

the serial monitor.

100

 As loop() function we can use the same as found in the second method.

Last, it is important to notice that we send the character ‘\r’ as line feed

for the instructions to take effect (unless we send the $$$ command to

start configuring the module, which does not go with \r).

101

Chapter 6

Android application software

This project focuses mainly in building a

software application for controlling a

robotic machine. In particular, the

application controls a wheeled robot but it

is possible to generalize the contents and

functionality of this software to extend it to

other types of robotic control (robot arms,

humanoids, industrial machinery, etc.).

 It has been developed for Android with the possibility of being run by

smartphones and tablets with wireless internet connections.

 Java was the preferred language for this project, although as mentioned

in the background section it is possible to write parts of the code in both

C and C++. The code has been written using Linux (Ubuntu distribution)

and Windows both with Eclipse as IDE (integrated developing

environment). Almost all features of the final application have been

previously tested in an Android virtual device (AVD) where developers

can check the behavior of their applications before installing them in a

real device. There have been parts, however, that could not be run in an

102

AVD such as connectivity with other devices (TCP sockets) and some

multi-thread code.

 Before developing for Android directly, it has been the intention of this

project to fully understand the possibilities given by the Java language

when interacting with external electronic devices (Arduino) using

sockets, and at the same time, understand the way data is transferred

through a TCP connection and how it is treated by the Arduino board.

This is covered in the next subsection.

 As explained before, all data transferred to the Wi-Fi module, either

using Bluetooth protocols or TCP/IP protocols is treated always as

characters.

 For this reason, although we send integers with one or more digits, it is

from the Arduino software side that we must implement a routine, if we

need it, to convert these characters or strings into integers.

103

6.1. Java GUI

 In order to test and demonstrate the communications with the Wi-Fi

module and Arduino, a Java program has been built using simple TCP

connections and a Java graphic user interface to interact with the servos.

 The two most important console commands both in Windows and

Linux to work with Java are Javac for compiling .java code and Java for

running the resulting .class compiled file (fig. 71):

Figure 69: Console commands for running Java

 Note: it is important that we have previously installed the Java platform

(Java SE), which includes the Java Development Kit (JDK) and the Java

Runtime Environment (JRE) to run applications (More on this in the next

section) [48].

 With the first command we compile the code. After compiling, and if

there has been no error, with the second command we launch the

program. In the next image we can see the resulting Java GUI, which is a

104

simple window with two controllers (sliders) that send information to the

Arduino (fig. 72).

Figure 70: Java User interface program for robot control

 This Java Application creates a socket and acts as a client in order to

send the data to the Arduino (server, listening for incoming data).

 What is a socket? A socket is one endpoint of a two-

way communication link between two programs running

on the network. A socket is bound to a port number so

that the TCP layer can identify the application that data

is destined to be sent. An endpoint is a combination of an

IP address and a port number [49].

 The Client-side knows the hostname of the machine on which the

server is running and the port number on which the server is listening

(fig. 73).

Figure 71: Client-server connection: client request [49]

105

 The server-side: If there is no error in the connection, the server

accepts the connection and gets a new socket bound to the same local

port. It keeps the socket open so that it can continue to listen for client

requests (fig. 74).

Figure 72: Client-server connection: server accepts connection [49]

 Next, some captures of the Java code necessary for this application. In

the first capture we create and show the window containing the program.

 In the next capture we create and configure the Sliders. The class

constructor of JSlider allows for initial, minimum and maximum values

that will be sent through the socket.

private static void createAndShowGUI() {
 //Create and set up the window.
 JFrame frame = new JFrame("sliders");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 Sliders animator = new Sliders();

 //Add content to the window.
 frame.add(animator, BorderLayout.CENTER);

 //Display the window.
 frame.pack();
 frame.setVisible(true);
 //animator.startAnimation();
}

106

6.2. Android developing platform

 In order to start developing for Android it is recommended to

download the ADT Bundle (Android Developer Tools) [50]. It includes

the Android SDK components (Software developing kit, a comprehensive

set of development tools, a debugger, libraries, sample codes, etc.) and a

version of the eclipse IDE with built-in ADT. This project has been

developed completely under Eclipse, since it is the officially supported

IDE. Some parts have been done in Linux and others in Windows.

 Under Linux we must follow the next steps to have all packages

configured and ready: After downloading the SDK we untar the .tgz into

an appropriate location which we will refer to later when setting up the

ADT plugin. The next step is downloading the ADT plugin and once

Eclipse starts we must specify the location of our ADT directory. This

plugin extends the capabilities of Eclipse to let us quickly set up Android

projects, build an app UI, debug it and export app packages for

distribution.

 Now if we are running a 64-bit system we must install the ia-32 libs

package using apt-get (Ubuntu):

 ubuntu : ~$ apt-get install ia32-libs

 //Create the sliders
 JSlider rightSlider = new JSlider(JSlider.VERTICAL,
 MIN_RIGHT, MAX_RIGHT, INIT_RIGHT);
 JSlider leftSlider = new JSlider(JSlider.VERTICAL,
 MIN_LEFT, MAX_LEFT, INIT_LEFT);

 rightSlider.addChangeListener(this);
 leftSlider.addChangeListener(this);

 //leftSlider.setMajorTickSpacing(10);
 //framesPerSecond.setPaintTicks(true);

107

 After, we install Java:

 ubuntu : ~$ apt-get install oracle-java7-installer

 Now, we have to launch the SDK manager and install the last Android

platform and the latest SDK platform-tools. This is because the original

SDK package includes only the SDK tools.

 In the next picture we can see the SDK manager, which we can launch

from Linux just by typing sdk in the command line.

Figure 73: Android SDK manager [50]

 When the Android tools are updated or a new version is released, we

can use the SDK Manager to quickly download them to our environment.

108

6.3. Basics of apps development

 Once we downloaded and installed the set of tools included in the SDK,

we can access them form the Eclipse IDE. The basic steps for developing

applications are shown in figure 76.

Figure 74: Basic steps for apps development [50]

109

Setup

 During this phase we install the development environment (2º part of

this chapter) and create our Android virtual device (AVD)

Development

 We develop our source code and include all media files needed for the

application (video, photo, music, etc.).

Debugging and testing

 In this phase we build our project into a debuggable .apk that we can

install or run on the emulator. We can also test the application using

various SDK Android testing tools.

Publishing

 The last step is building the application for release and distributing it.

 In this project we will focus in the first two parts. First, we will see how

to set up an Android virtual device followed by how to install the

application on a real Android hardware, and last, we will cover the

building and running.

Managing virtual devices

 First, from Eclipse we launch the AVD manager (fig. 77) which is an

emulator configurator that lets us model an actual device by defining

hardware and software options to be emulated by the Android emulator.

We can select a hardware profile for hardware features, for example, if it

has a camera, a physical QWERTY keyboard, memory options and so on.

110

Figure 75: AVD Manager [50]

 Through this window we create and configure as many virtual devices

as we need. It is important that we test our application on different

devices with different screens and features to enhance the application’s

performance.

Using hardware devices

 First we have to declare our application as debuggable in our Android

manifest. (This step is automatic with Eclipse). After this, we have to

enable USB debugging under Settings > Applications > Development. Last,

we have to set up our system to detect our device.

 Under Ubuntu Linux we have to add a udev-rules file that contains a

USB configuration for each type of device. Each device manufacturer is

identified as a unique vendor ID.

 First, we log in as root and create this file:

/etc/udev/rules.d/51-android.rules

 We should use the next format to add each vendor to the file:

SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", MODE="0666", GROUP="plugdev"

111

 Then execute:

chmod a+r /etc/udev/rules.d/51-android.rules

Building and running

 When building an application Android projects are compiled and

packaged into an .apk file containing the compiled .dex files, a binary

version of the manifest and compiled and uncompiled resources.

 The following diagram shows the components involved in building and

running an application:

Figure 76: Project phases [50]

 Before we run our project we should be aware of a few important

directories and files in the Android project.

AndroidManifest.xml

 This file describes the fundamental characteristics of the app and

defines each of its components. We define how the resources are going to

be displayed and how each feature will behave. Also, we specify the

activities and services that will run in the application and the target

Android version.

112

Src/

 This is the directory for our app’s main source files.

Res/

 This folder contains several sub-directories for app-resources, for

example:

 Drawable/

 Directory of the drawable objects (bitmaps) included.

 Layout/

 Files that define our app’s user interface.

 Inside this folder we will put all images (drawable objects, .jpg, .png,

etc.) and the .xml files containing the layout information for each activity.

 In Android, every app is built with activities or services. An activity is

an application component that provides a screen with which users can

interact to perform different actions. Every activity is given a window

with a user interface. Every time that we open a new “window” from the

classic computers point of view that window is an activity. When we

transition from one screen to another, with different components and

functions, we change from one activity to another.

 Another application component of the same hierarchy is a service. A

service can perform long-running operations in the background (but in

the same thread) but does not provide a user interface.

113

Managing the activity lifecycle

 The Android system, unlike other programming paradigms which

implement a main() method, initiates code in an activity instance by

invoking specific methods that correspond to different stages of its

lifecycle. There is a sequence of methods for starting the application and

other sequence to tear it down (fig. 79). This two make a sequence similar

to a step pyramid being the top of the pyramid (resumed) the point at

which the activity is running and the user can interact with it.

Figure 77: Activity lifecycle [50]

 Depending on the complexity of our activity we probably do not need

to implement every method of the lifecycle as the system normally

manages them if they are not specifically defined. In the paused state,

the system is partially obscured by other activity and cannot receive any

input or execute any code.

 In the stopped state the activity is completely hidden and not visible to

the user (background). The instances and activity information is retained

but cannot execute any code.

114

 The created and started states are transient and the system quickly

moves from them to the next state. After the system calls onCreate(), it

quickly calls onStart() followed by onResume().

 The onCreate() method is invoked when the user selects the app icon

from the Android system and it is equal to a main method (launcher

method). The onCreate() method should define the user interface as well

as basic application startup logic.

 Transitions between the other states are done by invoking the

functions between them (Figure 79) but are normally not specifically

defined as the system does that automatically (for example, if we do not

implement the onDestroy() method, the system will destroy all local class

references from memory when no longer needed).

 This project’s main application only defines the onCreate() method for

building the user’s interface, buttons, and other objects. The rest of the

methods are managed by the system while users run the activity.

However, for the second activity (controlling activity), we manually

define the onStart() method for creating a second thread (apart from the

main) in charge of sending cycling chain values for controlling the robot.

 In the next section of this chapter we will take a look at the two

activities (Main activity and Control activity) involved in the application,

their function, some significant pieces of their code and the block

diagram for each of them.

115

6.4. Application for robot control

 This project’s application consists of two Activities and two different

threads for the second activity.

 First, upon launching the application we have an initial screen (for the

first activity) in which we can introduce an IP and port for later

connecting to a robot using that address. If we do not introduce anything,

the application will use default values. This first activity acts as an

introductory screen, and the only thing left to do there is pressing a

button to change to the controlling activity (fig. 80).

 Basically, the user decides when to start controlling the robot, so the

connections are not going to begin until the second activity is launched.

It is a “waiting room” for the Android–robot interaction to begin running.

Figure 78: Main activity and Control activity

116

 As we can see in the previous image, these two activities form the

Android application.

6.4.1. Main activity

 When launched (fig. 81), the application starts with this activity,

defining so in the Manifest as the main activity (this way Android keeps

record of the activities’ hierarchy in the AndroidManifest.xml). It only

serves as an introductory screen from which users can introduce an IP

and a port, (different from default) that will be transferred to the second

activity for connecting to the robot.

Figure 79: Main activity’s graphical layout

117

 The code for this activity is very simple, only having the onCreate()

method and an event object that relates a button to the second activity.

The controlling button (middle of the screen) starts the second activity

and leaves this one behind. Within the onCreate() constructor, we set the

rules for the layout (path to xml file) and the objects to build in the

screen.

 Next, the block diagram for this activity:

Figure 80: Block diagram for the Main activity

 When the control button is pressed, the control activity is launched. In

the next section we will explore in detail this second activity.

118

6.4.2. Control activity

 In this activity users perform two important actions. First, with the

connect button we can start the communications. The program opens a

socket with either the previously specified address or the default IP and

port. In the middle of the screen there is a text box that serves as a log for

monitoring the sequence of actions that the program runs.

 As we can see in Figure 83, the layout for this activity is in landscape

mode by default so that it is easier to control using the thumbs. With the

upper button we connect and with the bottom button we disconnect.

Figure 81: Graphical layout for the Control activity

 If connected successfully, a “connection accepted” message will appear

in the log showing the socket’s IP and port. If there is an error, the log will

try to catch the exception produced and will show the corresponding

119

error. We then, can associate the message to a specific cause and try to

solve it. This log text-box is able to auto-scroll when new messages are

written and do not fit anymore. This way there is always room for more

messages and users are able to scroll upwards to read previous messages.

 In the next image we can see the code in charge of that function:

 There is also a disconnect button to close the socket. This is always

recommended and considered a good practice before closing the

application, so that we do not leave a sleeping process in memory or a

useless open connection.

 Next, the code for opening the socket and connecting the seekbars’

values (integers subject to be sent to the Arduino) to the socket’s

associated output object (socket.getOutputStream()). Apart from opening

a TCP channel (as client) with the Arduino (server) we relate the

constantly changing values from the seekbars to the output buffer of the

socket (object that sends information to the server). If we needed to

implement a two-way connection, we would use also an InputStream

object (associated to the socket as well) to receive information from the

server. This would be interesting if, for example, we were required to read

120

field data from sensors or third applications (web services) and use that

incoming data in our main application.

 As this is a prototype, we should first focus on the main issues and

build a robust application by debugging errors involved in this process.

Later on, we could expand the functionality of the application as well as

the robot.

 The codes showed in this document are a minor part of the complete

code, but are also fundamental for the application and worth analyzing.

 Next, the block diagram for this second activity together with the

second thread for communications.

public void InicioConexion (View view) {

 if (!conectado) {
 Log("Intentando iniciar conexión...");
 Log("IP: " + IP);
 Log("Puerto " + puerto);
 try {
 socket = new Socket(IP, puerto);
 Log("Conectado con Arduino");
 try {
 salida = new PrintWriter(socket.getOutputStream(), true);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 Log("error print-socket");
 try {
 Thread.sleep(4000);
 } catch (InterruptedException e1) {
 // TODO Auto-generated catch block
 e1.printStackTrace();
 }
 e.printStackTrace();
 }
 conectado = true;
 } catch (UnknownHostException fallo) {
 Log("No ha sido posible conectar - UnknownHostException");
 Log(fallo.getMessage());
 conectado = false;
 } catch (IOException fallo) {
 Log("No ha sido posible conectar - IOException");
 Log(fallo.getMessage());
 conectado = false;
 }
 } else {
 Log("ya estas conectado");
 }
}

121

Figure 82: Control Activity block diagram

 This program runs in the user’s interface main thread and any changes

in the seekbars are written in a variable that is accessible from the second

thread through a pipe that connects both threads. It is not possible for a

second thread to access (read or write) any variable or instance created in

the main thread so a special binding is required between both threads.

122

 The second thread (fig. 85) is constantly sending the values received

from the first thread, regardless of whether any seekbar changes its value

or not.

Figure 83: Second thread's block diagram

 In order to control the robot, sending values to the Wi-Fi module, this

implementation is not the only one possible. Indeed, there are other ways

with different advantages and disadvantages to approach the issue of

commanding a robot with numeric values. For example, the first way to

develop the program was using a single thread for the second activity.

 This way, we opened the connections in the main thread and any

changes in a seekbar were treated as events which resulted in instantly

123

writing the seekbars values in the output buffer, and then being sent to

the robot. This was a simple solution from the Android side but an

ineffective one for the robot since values were sent with no separation

from one another making it incapable of distinguish different numbers.

3 4 36 40 3 4 3 6 40

 Android Robot

 This resulted in an erratic movement.

 There was also another problem; we could not solve this from the

Arduino side (robot) making it sample two-cypher numbers because the

range covered numbers from one to three cyphers.

 This implementation was the fastest but resulted inefficient. A solution

for this problem came with the second implementation: Instead of

sending a value for every event launched by the seekbars class listeners,

we could only send a value when a seekbar stopped moving, that is, when

users released their thumb from the screen (assuming they use that

finger). This assured that values where sent isolated from one another

making it impossible to create an overlapping in the data transfer.

 However, there was a problem with this. Users did not get a fluid

feeling when controlling the robot since they had to release and touch

back again the screen with every change in direction, making it both

rough and uncomfortable.

 The third improvement was simple; we could make the change listeners

wait a short delay before sending a value to the output buffer, so that

124

there is no overlapping because the Arduino has time to process a single

value before receiving another. This actually resulted to be really fluid

since users do not perceive this delay (10 ms) which is perfect to create

the right synchronization between both sides of the communication.

 The last solution is probably the most professional but also the most

complex of all. As previously mentioned we create a second thread in

charge of a cyclic communication. This way the constantly changing

seekbars and their associated event listeners are isolated from the code in

charge of sending the values through the socket (fig. 86).

 50 ms

Figure 84: Multi-threading behavior

 The complexity of this last implementation is far greater than the

previous solutions since we are working with multi-threading and its

implications. Although the user does not perceive it, values are actually

sent always every 50 ms, which is a rigid rate, separating the user

commands from the data transfer. This means, we have an indirect

control which could be prejudicial for critical real-time applications.

Actually, this last method has not proved to be 100% solid, since the

application sometimes crashes in some Android devices. This could be,

probably, because of the fact that Android versions behave differently and

treat (or manage) threads and processes differently. Another issue is that

the Android virtual machine does not always behave correctly when

working with multi-threading applications.

125

Chapter 7

Conclusions and future work

Within the boundaries of this project and

regarding its purposes in relation to

manipulating low level wireless electronic

modules as well as open source hardware

and software (both Arduino and Android),

we can assume that many of the initial

goals have been accomplished resulting in

an almost fully printable robot subject to

teleoperation from any place in the world with an accessible Wi-Fi

network. Nevertheless, almost none of the fields developed in this project

can be considered in a dead-end state, as this is only an initial approach

to the yet theoretical system that is currently under construction: Robot

Devastation.

 We are now expecting developers (electronics or computers engineers)

to start digging into this project and pick an area that is yet to be built, as

the UC3M robotics society is always available with the support and tools

necessary for it. Although it may seem an arduous work at first, we

encourage them to join this project, as it is worth the effort to work as

126

part of a bigger project to have an understanding of the different areas

and how they connect between them.

 Among all that is left to be developed, we can start by mentioning a few

inner projects that are already theoretically pre-defined (each one up to a

certain point).

 First, for example, we would need a group of computer engineers to

build the server system: it should be a robust system in charge of

managing all data at all times (24/7) and it should be accurate in terms of

response time. If we consider Robot Devastation as a game, latency times

should always be reduced to a minimum (which is a difficult task). A

typical situation that we could think of would be an encounter between

two robots (active at the same moment). These two start with life points

and have the ability to aim and shoot the opponent decreasing its life

points. All of this information would be managed from a server to which

robots would constantly upgrade with their status. This status at the same

time would be instantly reported to the user/ operator.

 Second, from the electronics side, apart from improving the current

robot (all its features are subject to redesigning for future versions),

someone could provide a future version with sensors to achieve field

information transmissions. Each robot would need a sensor to receive the

shots from others and a shooting device as well. Besides, we could

improve its performance by providing it with solar cells up to a point

where the robot would need to recharge much less often.

 As a conclusion to this, there will be a lot of work to do for a long time

in all areas which will favor research and experience to those involved.

127

Figure 85: Concept of Robot Devastation by Santiago Morante

 In the picture we can see a possible future version of the smartphone

application in which we can actually see the environment at the time of

playing as well as some augmented-reality objects.

128

129

References

[1] J. González Víctores, "ASROB," May 2013. [Online]. Available:

http://asrob.uc3m.es/index.php/INTERFAZ.

[2] 3ds, May 2013. [Online]. Available: http://www.3ds.com/products/catia/.

[3] Autodesk, "AutoCAD," May 2013. [Online]. Available:

http://www.autodesk.com/products/autodesk-autocad/overview.

[4] Invis, May 2013. [Online]. Available: http://www.inivis.com/.

[5] Newtek, Inc., May 2013. [Online]. Available: https://www.lightwave3d.com/.

[6] Blender foundation, May 2013. [Online]. Available: http://www.blender.org/.

[7] ISTI-CNR, May 2013. [Online]. Available: http://meshlab.sourceforge.net/.

[8] C. Wolf and M. Kintel, May 2013. [Online]. Available: www.Openscad.org.

[9] 3D Systems, May 2013. [Online]. Available:

http://www.ennex.com/~fabbers/StL.asp.

[10] 3D systems, May 2013. [Online]. Available: http://printin3d.com/3d-printers.

[11] A. Bowyer, "RepRap," May 2013. [Online]. Available:

http://reprap.org/wiki/Main_Page.

[12] N. Bilton, "Disruptions: 3D printing on the fast track, NYT," May 2013. [Online].

Available: http://bits.blogs.nytimes.com/2013/02/17/disruptions-3-d-printing-is-

on-the-fast-track/?nl=todaysheadlines&emc=edit_th_20130218.

[13] H. Blair-Smith, "Back to the moon: NASA," May 2013. [Online]. Available:

http://klabs.org/richcontent/verification/80k85_verification/index.htm.

[14] G. E. (. Moore, May 2013. [Online]. Available:

http://download.intel.com/museum/Moores_Law/Articles-

Press_Releases/Gordon_Moore_1965_Article.pdf.

[15] Wikipedia, "Basic information about CPU architecture," May 2013. [Online].

Available: http://en.wikipedia.org/wiki/Comparison_of_CPU_architectures.

130

[16] Atmel, "AVR," May 2013. [Online]. Available: www.atmel.com.

[17] A. Holdings, "ARM," May 2013. [Online]. Available: arm.com.

[18] Motorola, "MC68000," May 2013. [Online]. Available:

http://www.freescale.com/files/archives/doc/ref_manual/M68000PRM.pdf.

[19] "The Most Widely Used Computer on a Chip: The TMS 1000 State of the Art: A

Photographic History of the Integrated Circuit (New Haven and New York:

Ticknor & Fields)," May 2013. [Online]. Available:

http://smithsonianchips.si.edu/augarten/p38.htm.

[20] O. Jostein Svendsli, " Atmel’s Self-Programming Flash Microcontrollers," May

2013. [Online]. Available: http://www.atmel.com/Images/doc2464.pdf.

[21] Microchip, June 2013. [Online]. Available: http://www.microchip.com/.

[22] Infiniteon, "XC800," May 2013. [Online]. Available: http://www.infineon.com/.

[23] Microchip Technology, "PIC," May 2013. [Online]. Available:

http://www.microchip.com/.

[24] Arduino, May 2013. [Online]. Available: http://arduino.cc/.

[25] June 2013. [Online]. Available: https://www.sparkfun.com/products/11460.

[26] June 2013. [Online]. Available: https://www.sparkfun.com/products/341;

http://sra-solder.com/section.php/139/1/arduino_compatible_solar_cells.

[27] MIT media Lab, June 2013. [Online]. Available: http://www.processing.org/.

[28] DIGI, "DIGI's RF modules," May 2013. [Online]. Available:

http://www.digi.com/products/zigbee-rf-modules/.

[29] Roving-Networks, "Roving Networks RN-171XV," May 2013. [Online]. Available:

http://www.rovingnetworks.com/products/RN171XV.

[30] Micromo, "Micromo: "How to choose a DC motor"," May 2013. [Online].

Available: http://www.micromo.com/how-to-select-a-dc-motor.aspx.

[31] Wikipedia, "DC Motors," May 2013. [Online]. Available:

http://en.wikipedia.org/wiki/DC_motor.

[32] Servodatabase.com, "Servo database," May 2013. [Online]. Available:

131

http://www.servodatabase.com/.

[33] S. Bottcher, May 2013. [Online]. Available:

http://www2.cs.siu.edu/~hexmoor/classes/CS404-S09/RobotLocomotion.pdf.

[34] " "The magic moment: Smartphones now half of all U.S. mobiles"

Venturebeat.com," May 2013. [Online]. Available:

http://venturebeat.com/2012/03/29/the-magic-moment-smartphones-now-

half-of-all-u-s-mobiles/.

[35] telecomsmarketresearch.com, "Europe's mobile operators look to international

opportunities and LTE for future growth," May 2013. [Online]. Available:

http://www.telecomsmarketresearch.com/resources/Mobile_Market_Europe.sh

tml.

[36] A. I. J. 1. 2. Press Release, ""Apple’s App Store Downloads Top 1.5 Billion in First

Year"," May 2013. [Online]. Available:

http://www.apple.com/pr/library/2009/07/14Apples-App-Store-Downloads-

Top-1-5-Billion-in-First-Year.html.

[37] Appleinsider.com, ""Apple's rivals battle for iOS scraps as app market sales grow

to $2.2 billion"," May 2013. [Online]. Available:

http://appleinsider.com/articles/11/02/18/rim_nokia_and_googles_android_bat

tle_for_apples_ios_scraps_as_app_market_sales_grow_to_2_2_billion.html.

[38] "ReplicarotG," May 2013. [Online]. Available: http://replicat.org/.

[39] MIT, "Gcode," May 2013. [Online]. Available: http://carlsonmfg.com/cnc-g-code-

m-code-programming.html.

[40] ASROB, June 2013. [Online]. Available:

http://asrob.uc3m.es/index.php/Instrucciones_de_impresion_R26.

[41] "SG90 Continuous rotation tutorial," May 2013. [Online]. Available:

http://www.fetchmodus.org/projects/servo/.

[42] "SG90 Electrical modification," May 2013. [Online]. Available: http://www.dr-

iguana.com/prj_TPro_SG90/index.html.

[43] S. Kobayashi, "Arduino FIO," May 2013. [Online]. Available:

http://arduino.cc/es/Main/ArduinoBoardFio.

[44] Roving-Networks, "RN171 presentation," May 2013. [Online]. Available:

http://www.rovingnetworks.com/resources/download/150/Wifly_Training_Pres

132

entation.

[45] "GitHub," May 2013. [Online]. Available: https://github.com/harlequin-

tech/WiFlyHQ.

[46] T. Waldock, "GitHub," May 2013. [Online]. Available:

https://github.com/perezd/arduino-wifly-serial.

[47] C. Taylor, P. J. Lindsay, J. Crouchley, B. Breznak and jmr13031, "GitHub," May

2013. [Online]. Available: https://github.com/sparkfun/WiFly-Shield.

[48] "Java Download," May 2013. [Online]. Available:

http://java.com/en/download/index.jsp.

[49] "Java tutorials," May 2013. [Online]. Available:

http://docs.oracle.com/javase/tutorial/networking/sockets/definition.html.

[50] Google, "Android developer tools," May 2013. [Online]. Available:

http://developer.android.com/sdk/index.html.

[51] R. Wilson, ""The Great Debate: SOC vs. SIP". EE Times," May 2013. [Online].

Available: http://www.eetimes.com/electronics-news/4052047/The-Great-

Debate-SOC-vs-SIP.

133

Appendices

PROJECT BUDGET

UNIVERSIDAD CARLOS III DE MADRID

Escuela Politécnica Superior

1. Author: Jorge Kazacos Winter

2. Department: Electronic Systems and Automation

3. Project Description: Android Controlled Mobile robot

 Duration: 10 months

 Indirect costs rate: 20%

4. Budget breakdown

LABOUR COST

Name Category
Dedicated

time (hours)

Cost per

Hour (€)

Cost

(€)

Jorge Kazacos Winter Engineer 110 50 5500

Juan González

Víctores

Senior

Engineer
40 100 4000

Alberto Jardón Huete
Senior

Engineer
4 100 400

 Total €9900

134

EQUIPMENT COST

Description Cost (€)
% of

use

Duration

(months)

Depreciation

period (months)

Attributable

cost (€)

3D printer 600 10 2 60 2

Arduino FIO 20 100 10 60 3.3

RNXV-171 35 100 10 60 5.83

LiPo battery 8.9 100 10 60 1.48

2 SG servos 3.5 100 10 60 0.58

Set of tools 20 100 10 60 0.33

Laptop 800 100 10 60 133.33

Android tablet 300 100 10 60 50

 Total €199.90

Amortization formula:

 (for final cost).

Where A = Number of months of use of the equipment.

 B = Depreciation period

 C = Cost of the equipment

 D = Percentage of use of the equipment.

And Indirect cost = 0.2 x (Labour + Amortization)

135

COST SUMMARY

Description of total cost Total cost (€)

Labour cost 9900

Amortization cost 199.90

Indirect cost 2019.98

Grand total 12119.88

