
TUTORIAL: CALLING YARP FROM MATLAB (WINDOWS)

Prerequisites

First you need to have the following programs installed on your computer:

• Matlab
• CMake
• YARP

To install CMake, go to http://eris.liralab.it/wiki/CMake and follow the instructions.

To install YARP for Windows, go to http://eris.liralab.it/wiki/Getting_YARPed and follow the
instructions. To download YARP as a source package, go to the following webpage instead of
the one given on the wiki:

http://eris.liralab.it/yarp/specs/dox/download.html

You will then be able to get the latest version of YARP.

 If you already have YARP on your computer, check if you find the ./example/swig folder
in your YARP directory. You will need this in order to use YARP with Matlab, but in the
oldest versions, the folder does not exist. If you don’t find it, download and install a
newer release of YARP.

Add to your Windows PATH (Control Panel -> System –> Advanced Tab -> Environment
Variables to edit it) the path to the ./bin folder of your YARP directory.

Now you need to install the Java development environment and SWIG.

Installing Java on Windows

Download the latest release of the Java Development Kit (JDK) from the official Java webpage
and install it:

http://java.sun.com/javase/downloads/index.jsp

Add to your Windows PATH the path to the ./bin folder of your Java JDK directory.

Installing SWIG on Windows

Download SWIG from http://www.swig.org/download.html.
You should get a ZIP folder: you just need to unpack it.

YARP side

http://www.swig.org/download.html
http://java.sun.com/javase/downloads/index.jsp
http://eris.liralab.it/yarp/specs/dox/download.html
http://eris.lira.dist.unige.it/wiki/Getting_YARPed

Now you need to run CMake in the YARP folder ./example/swig.

In the CMake configuration window, you need to specify the following paths and options:

• enable the CREATE_JAVA option
• JAVA_INCLUDE_PATH is the path to your $JAVA_JDK_ROOT/include folder
• JAVA_INCLUDE_PATH2 is the path to your $JAVA_JDK_ROOT/include/win32 folder
• SWIG_DIR is the path to the unzipped SWIG folder
• SWIG_EXECUTABLE is the path to the swig.exe file
• YARP_DIR is the path to your YARP main directory.

You should end with a configuration similar to this one:

You should find a project.sln file in the ./example/swig folder. Open it with Visual Studio and
build the BUILD_ALL solution (with the Release option if you use Visual Studio 8).

Now a folder named generated_src should have been created in the ./example/swig folder. Open
it and check if it contains many .java files. You should also find a release folder in
./example/swig which must contain a shared library: jyarp.dll

If you don’t find those folders, it means that the build operation has failed. Try to run
again CMake (delete the cache and start again). When opening project.sln, do a “Make
Clean” before building again the solution.

Now copy ./example/swig/src/*.java to ./example/swig/generated_src and compile all .java
classes in /example/swig/generated_src. To do so, type the following command:

javac -source 1.3 -target 1.3 *.java

If the compilation is successful, no message appears in the terminal window and you should
find .class files in the ./example/swig/generated_src folder.

MATLAB side

Find the Matlab classpath.txt and librarypath.txt files. You can ask Matlab about their location
by typing

which classpath.txt

in the Matlab terminal. Both files are located in the same folder, usually
C:\Program Files\MATLAB\R2006b\toolbox\local.

In both classpath.txt and librarypath.txt files, add the following lines:

yarp_root/example/swig/generated_src
yarp_root/example/swig/release

(yarp_root is the full path to the YARP directory).

The first line tells Matlab the location of the .class files, while the second points to the folder
which contains the shared library jyarp.dll.

Now if you run Matlab and type the following line in the terminal,

LoadYarp;

you should get no error. If it does not work at the first try, try to copy the jyarp.dll file in a
location contained in your Windows PATH. Every time you make a change, you must close
Matlab and open it again in order to take into account the modifications.

Testing YARP with MATLAB

The last step is to test YARP with Matlab to check if the installation has been successful. To do
so, we will use the .m files contained in the ./example/matlab folder of the YARP directory.

First open a Windows terminal and create a YARP server by typing:

yarp server

A message appears and tells you that the server has been created.

Now open two Matlab windows: place yourself in the ./example/matlab folder of the YARP
directory. In one window, launch the yarp_write.m file and in the other, launch yarp_read.m.
The first program creates a matlab/write YARP port, in which you can write, while the second
creates a matlab/read port that can read data sent through YARP. You now need to connect them
together.

To do so, open a second Window terminal and type:

yarp connect matlab/write matlab/read

You should get a message that tells you that YARP has linked an output of matlab/write to
matlab/read.

Try to type a message in the Matlab window where you have launched yarp_write.m. In the
other Matlab window, where you have launched yarp_read.m, you should get an echo of what
you have typed. If you type ‘quit’ in the first window, both applications should terminate.

If it works, congratulations, you managed to install YARP for MATLAB !

