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Resumen

Este trabajo se centra en temas referentes a la interacción y la colaboración entre

humanos y robots humanoides para realizar tareas en un entorno colaborativo

de trabajo. En el marco de este trabajo se desarrollo una arquitectura de co-

laboración robot-humano-robot para que un operador humano y un robot local

puedan colaborar con un robot situado en una ubicación remota. Se presentan

tres formas de interacción, a) humano-robot colaborativa a distancia, en la que

un operador y un robot en un entorno de trabajo remoto interactuan a través

de una HRI en trabajos colaborativos. b) humano-robot cercana, donde un hu-

mano, maestro, enseña a un robot varias demonstraciones de una tarea. b) robot-

robot, para transferir los modelos de las habilidades aprendidas entre un robot

local, enseñado por un operador, y un robot remoto ocupado de realizar tareas

en un entorno de colaboración a distancia. Para probar el sistema se presenta

un escenario de trabajo collaborativo humano-robot en un entorno espacial. El

operador se conecta al robot remoto a través de la HRI. El robot se mueve y fun-

ciona de forma autónoma de acuerdo a la solicitud del operador. Cuando surge

una situacion nueva o desconocida el robot remoto pide al operador el modelo

de la habilidad. El operador enseña al robot local, y se produce una interacción

robot-robot para la transferencia de los modelos de conocimiento de la tarea. El

robot remoto reproduce las habilidades aprendidas para completar la tarea.
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Abstract

This work deals with issues of interaction and collaboration between humans

and humanoid robots performing tasks in a collaborative working environment.

A robot-human-robot collaboration architecture was developed for a human op-

erator and a local robot to collaborate with a robot located at a remote location.

In this work three forms of interaction where presented, a human-robot remote

collaboration interaction where a human operator and a robot at a remote work-

ing environment interact through a HRI in achieving collaboratively a global

goal. A close human-robot interaction where a human teacher present a robot

several demonstration of a task. And a robot-robot interaction for transferring

the learned skills models between a local robot, that is taught by a human opera-

tor, and a remote robot performing task autonomously in a remote collaboration

environment. The system was tested in a scenario presenting a robot working

in collaboration with a human in a space environment. The human operator

connects to remote robot through the HRI. The robot moves and performs au-

tonomously according to the request of the operator. When new or unknown

request arise the remote robot ask the operator for the teaching of the skill. The

human teaches the local robot, and a robot-robot interaction ensue to transfer the

learned models of the task. The robot reproduce the learned skills to complete

the task, with operator supervision.
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Chapter 1
Introduction

While the modern conception of robotics comes from the science fiction books

and movies, the obligatory mentions to Karel Capek “R.U.R. (Rossum’s Univer-

sal Robots)”(Capek, 2004) and Isaac Asimov “I, Robot”(Asimov, 2008) needs to

come here, technological advances throughout the 20th century has allowed for

the development of robotic solutions, in industrial and manufacturing applica-

tions, as a reality.

Since 1980’s robots has been progressively introduce in the industry for the

automation of manufacturing process performing precise and repetitive task,

handling delicate or dangerous substances, lifting heavy objects, etc. Robots

has been use for tasks that can be accurately defined and must be performed

the same way every time, in well know and highly structured environments,

standing in the place of human workers for jobs that were considered as dull,

dangerous or dirty (know as the 3 D’s of robotics). Robotic systems are broadly

employ in several areas such as the automotive, metal products, the chemical,

the electronics and the food industries.

Recent developments and technological advances has allowed for robotics to
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expand its applications from a largely dominant industrial focus into the chal-

lenges of the human world. The new generation of robots should be able to in-

teract with humans in homes, workplaces, and communities, providing support

in services, entertainment, education, healthcare, manufacturing, and assistance

(Siciliano & Khatib, 2008). The future robotic systemsmust depart from the sim-

ple and repetitive 3 D’s tasks and evolve to more complex and dynamic 3 A’s

tasks (The 3 A’s stand for Aware, Autonomous and Assistant) (Pierro, 2009).

Humanoid Robots are suitable for this tasks since they have a human shape

design that will allow them to collaborate and work with humans in the home,

office or workplace without the need to adapt the environment and it will allow

a higher acceptance and a more intuitive and natural interaction between hu-

man operators and the robotic agents. Recent years have seen and increase in

research of humanoid robots like the WABIAN-2 from the University of Waseda

(Ogura et al., 2006), ASIMO of Honda (Sakagami et al., 2002), the HRP-2 from

the National Institute of Advanced Industrial Science and Technology of Japan

(Kaneko et al., 2004) or the RH-1 and RH-2 designed at the Universdad Carlos

III de Madrid (Arbulú, Kaynov, Cabas, & Balaguer, 2009).

1.1 Robots in the HumanWorking Environment

Research on the subject of collaborative robots and the collaborative working

environments has not receive extensive attention from the robotics community.

Themain fundamental target of research is toward specific applications in which

the collaborative working is only a subsequent problematic. However there are

various projects related to collaborative environments with robots financed un-

der different European frameworks programmes.

• ACROBOTER : Autonomous collaborative robots to swing and work in

everyday environment. The project aims to develop a radically new robot
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locomotion technology that can effectively be used in home and/or in of-

fice environments for manipulating small objects autonomously or in close

cooperation with humans (ACROBOTER, 2010).

• PHRIENDS : Physical Human-Robot Interaction: depENDability and Safety.

The project aims at developing robots that can co-exist and co-operate with

people, enabling a physical human-robot interaction which is dependable

and safe (PHRIENDS, 2010).

• SMErobot : The European Robot Initiative for Strengthening the Competi-

tiveness of SMEs in Manufacturing. The project aims at creating robots ca-

pable of understanding human-like instructions (by voice, gesture, graph-

ics). And a safe and productive human-aware space-sharing robot (SMErobot,

2010).

• Robot@CWE : Advanced robotic systems in future collaborative working

environments. The Projects aims to research and demonstrate integrative

concepts of advanced robotic systems, to be seen as collaborative agents,

in various environments working together with humans. ROBOT@CWE

will design suitable architectures and technologies to achieve this goal

(Robot@CWE, 2010).

Thisworkwas carried out under the Robot@CWE framework. In Robot@CWE

the future robotic system is envisaged as potential working agents collaborating

with humans in different collaborative environment clusters. Human centred

robotics poses several challenges, such as: acceptability in the society, auton-

omy, interactivity, flexibility, and versatility (Arbulu et al., 2007).

Robot@CWE focus on humanoid robots as robotic full agents capable of in-

teracting with themselves, humans and their environments in various autonomy

and operational modes. It extend from the concept of human centred design to-

wards a CWE-centred robotic design. This requires a system that is capable of

handling shared spaces, of using functional representations through virtualized
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and mixed environments, of tele-working in multi-operator control modes, of

collecting information using human communication interfaces, etc. (Hernández

et al., 2009). When several human operators and robotic agents are added in an

open space collaborative working environment, eventually at a remote location

communicating through possible virtualization of functional aspects, there are

huge potentialities and challenges in the working architecture design (Stasse et

al., 2008). Figure 1.1 illustrates the ROBOT@CWE framework.

Figure 1.1: A general framework architecture to realize task in a collaborative environment

In the scope of Robot@CWE a functional collaborative working architecture

was proposed. A Robot system must perform in an environment, where they

communicate, interact, work, collaborate, and share resources with human part-

ners. The technical requirements in terms of robots interfacing with various

collaborative environments, working in collaboration with humans and sharing

a common environmental working space, assumes robots to be flexible enough
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to adapt to different working styles, taxonomies and situations. Figure 1.2 de-

scribes an overall functional architecture to achieve collaborative work with a

humanoid robot.

Figure 1.2: Global Overview of the Architecture

The aim was to design flexible architectures capable of realizing the frame-

work for different working paradigms and applications. From this it was pro-

posed a multi-layer architecture allowing humanoid robots to become CWE-

robots with the following functionalities:

• Realize autonomously high-level behaviours such as:

– Search for an object in an unknown environment.

– Plan a trajectory from one point to another autonomously.

– Recognize and identified objects.

– Realize whole-body motion based on visual information.
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• Act as a proxy for a remote operator to perform a collaborative task.

• Interact with an advanced Collaborative Working Environment (BSCW)

which can specify high-level task to be realized.

1.2 Human-Robot Interactions

Humanoids robots are one of the main topics in service robots investigation. As

humanoid robots are design to resemble a human shape and to poses human

capabilities, they are capable of performing tasks in a world that is made for

humans and to safely share the same space with people. Humanoid robots have

many features that make them a very suitable partner in collaborative work-

ing environments. There are many experiments proving that humanoid robots

can manipulate human tools (Ambrose et al., 2000) or even drive human vehi-

cles (Yokoi et al., 2006), also, humanoid robots can enter environments in which

simple mobile robots can hardly move and where humans are used to traverse

(Yokoi et al., 2004).

Humanoid Robots are flexible and versatile machines able to help humans

and work with them as an active agent. To achieve this goal, humanoid robots

would have to interact not only with humans but with the environment as well.

In order to do so, it is necessary to design new control architectures that allow

them to perform all kind of tasks helping humans and sharing the same working

environment.

The field of human-robot interaction is one of great interest for the robotic

community. Many researchers are studying and developing several ways to

permit robots to easily and explicitly communicate with a human by gesture

or speech (Gorostiza et al., 2006). But this type of interaction - which is actually

suitable for tasks in social robotics - may become inappropriate for human-robot

cooperative work in terms of the user’s cognitive load because it forces a user to

become familiar with explicit communication protocols (Stasse et al., 2008).



1.2 Human-Robot Interactions 7

We are still far from having a fully autonomous collaborative robot. This

work concentrates on the robot as an intelligent tool but commanded and su-

pervise by the human operator. A Telepresence system would require that a

human operator control the actions of a remotely operated robot. While a com-

pletely autonomous robot will simply interact with the human, but never collab-

orate. Collaborative robots are different from industrial robots and computers

or other technology typically found in the work environment, because they are

mobile, semi-autonomous and interactive. In figure 1.3, (Pierro, 2009), one can

graphically understand the trade-off between total control on the robot and its

complete autonomy.

Figure 1.3: Human Control vs. Robot Autonomy

Humanoids robots working on a collaborative environment would present
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Direct Control Visual and Vocal
Interaction

Table PC PDA System Remote
Control

Communication Security high low medium medium low
Precision high low high medium medium
Adaptability to different
tasks

low low medium medium high

Composition of Robot
Teams

homogeneous heterogeneous heterogeneous heterogeneous heterogeneous

Interaction Roles operator team-mate team-mate team-mate operator
Human-Robot Physical
Proximity

close close relatively-close relatively-close far

Interaction Roles operator team-mate team-mate team-mate operator
Decision Support for Oper-
ators

high availability
of sensors

no availability of
sensors

medium
availability of

sensors

low availability of
sensors

high availability
of sensors

Time/Space Taxonomy synchronous-
collocated

synchronous-
collocated

synchronous-non-
collocated

synchronous-non-
collocated

asynchronous-
non-collocated

Required Autonomy Level
of the Robot

no autonomy high autonomy semi-autonomy high autonomy reduced
autonomy

Ease of Use complex easy medium easy medium

Table 1.1: Interaction Modalities in a Collaborative Working Environment

different models of interaction, from direct control or teleoperation of the robot

to robot with an autonomous and independent behaviour and ambient intelli-

gence. In the Robot@CWE project (Stasse et al., 2008) a possible classification of

the different types of interaction modalities in a collaborative context has been

proposed. The classification, synthesized in Table 1.1, has been analysed for the

following modalities:

• Direct Control: refers to interacting directly with the onboard Robot PC.

• Visual and Vocal Interaction: refers to a explicit interaction based on hu-

man gesture and/or speech.

• Tablet PC and PDA systems: refers to the possibility to communicate via a

notebook, or a PDA equipped with a touch screen giving the possibility to

work with a fingertip, instead of a keyboard or mouse.

• Remote Control: refers to the possibility of operating the robot remotely

using teleoperation methodologies.

This work presents an interaction combining two of the modalities: Remote

control and Tablet-PC HRI system, for a robot-human collaborative interaction

for executing a task. It also present a modality not contemplate in the previous
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classification: Physical Interaction in the form of imitation learning and kinaes-

thetic teaching of a task skill.

1.3 Learning Algorithms and Knowledge Representation

Current robot systems working in the industry perform repetitive tasks that are

well known for the robot developers. The reproduction of this task required

highly specific embedded controllers with an extensive knowledge of the robot’s

architecture and of its environment. For humanoid robots to collaboratively

work with humans in and unstructured environment the robot must be able

to perform dynamically changing tasks that require great adaptations to react

to new constraints. To Foresee and program specialized controllers for every

single task and situation that could be encounter seems like an impractical and

unfeasible goal.

To develop the capacities expected for humanoid robots, flexible and generic

control methods that can adapt to various tasks and robot’s constraints are nec-

essary. Robot Learning by Imitation, also referred to as Robot Programming by

Demonstration, explores novel means of implicitly teaching a robot new motor

skills. From (Billard, Calinon, Dillmann, & Schaal, 2008) some of the advantages

that providing a robot with imitation abilities presents are:

• Provides a natural, user-friendly means of implicitly programming the

robot.

• Constrains the search space of motor learning by showing possible and/or

optimal solutions.

Robot Programming by Demonstration offers an implicit means of training

a machine, such that explicit and tedious programming of a task by a human

user can be minimized or eliminated. Studying and modelling the coupling of

perception and action, helps to understand the mechanisms by which the self-

organization of perception and action could arise during development.
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(a) (b)

Figure 1.4: Learning of a Skill: (a) Exact copy of a skill. (b) Generalization of a skill.

A first approach, to PbD, the position of the end-effector and the forces ap-

plied on the object manipulated were stored throughout the demonstrations to-

gether with the positions and orientations of the obstacles and of the target. This

sensorimotor information was then segmented into discrete sub-goals and into

appropriate primitive actions to attain these sub-goals, Figure 1.4-a.

Generic approaches for learning a skill allow a robot to automatically extract

the important features characterizing the skill. So first must be determine a met-

ric of determining the weights one must attach to reproducing each components

of the skill. Once the metric is determined, an optimal controller to imitate by

trying to minimize this metric can be found. One common approach consists in

creating a model of the skill based on several demonstrations of the same skill

performed in slightly different conditions, Figure 1.4-b.

Robot systems need to make models of the representation of the learn skills.

This models need to be generic and they should be accessible for itself and other

robots sharing the working environment. Approaches to represent a skill can

be broadly divided between two trends: a low-level representation of the skill,

refer to as “trajectories encoding”, taking the form of a non-linear mapping be-

tween sensory and motor information. And, a high-level representation of the

skill, refer to as “symbolic encoding”, that decomposes the skill in a sequence of

action-perception units. Table 1.2, (Billard et al., 2008), summarizes the advan-

tages and drawbacks of the different approaches.
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Span of the
generalization

process

Advantages Advantages
Drawbacks

Symbolic level Sequential
organization of
pre-defined

motion elements

Allows to learn
hierarchy, rules

and loops

Requires to
pre-define a set of
basic controllers
for reproduction

Trajectory level Generalization of
movements

Generic
representation of
motion which

allows encoding of
very different types
of signals/gestures

Does not allow to
reproduce
complicated

high-level skills

Table 1.2: Advantages and drawbacks of representing a skill at a symbolic/trajectory level

1.4 Organization of the Document

This work deals with issues of interaction and collaboration between human

and humanoid robots performing tasks in a collaborative working environment.

The robotic system of the future is expected to be introduce into humans ev-

eryday lives, much in the same way as personal computers are a part of the

present everyday human labor. Therefore the future robots must share the same

workspace as men and it must assist them in performing their typical work,

helping them to fulfil their common needs. All this means that human-robot

teams must be form, working and collaborating to achieve shared goals in an

effective and more productive way. In this work we present a framework for

remote collaboration and learning of skills for human-robot teams working in a

remote collaborative environment.

The general architecture and overview of the propose system is given in

Chapter 2. The robotic platform use during this work is introduce as well as the

other components of the system. Chapter 3 presents the modalities for human-

robot collaborative interaction. Two types of collaboration can be identified,

close collaboration and remote collaboration. The major part of Chapter 3 is

dedicate on the concepts of human-robot remote collaborative work. Also the
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functionalities and use of the HRI employ for human interaction with the robot

HOAP-3 is detailed.

Chapter 4 presents the learning algorithms and techniques implemented for

a human operator to teach a robot new skills. On Chapter 5 the Shared Knowl-

edge Database, developed on this work to provide a robot-robot communication

to transfer the learned skill knowledge, is presented.

In Chapter 6 the experimental set-up and results on the demonstrators of

the propose system for remote collaboration and learning of skills are expose.

Finally conclusions of this work are presented in Chapter 7



Chapter 2
General System Architecture

Chapter 1 presented a general framework for human-humanoid work in collab-

orative environments. It shows general concepts for a functional architecture

for autonomous behaviours in which robots interact with humans in the same

environment and it can move and manipulate objects together with the human

operator. Here a generic framework for a remote collaborative work environ-

ment its introduce.

HMI & Operator

TELEOPERATION

Remote Collaborative Working Environment

Robot performs task
in the  real environment

Human operator
supervise and monitors
robot performance
in remote collaborative
environment

Robot Architecture

+ Comm. Module

+ Vision Module

+ Sensor Module

+ Control Module

+ Learning Module

Human operators 
teleoperates and 
collaborates with 
remote robot

Figure 2.1: Generic framework for human-humanoid remote collaborative work.
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In order to achieve such scenarios, the structure should aim at possessing

five functional parts:

• an autonomous part

• an optional remote brain

• an intelligence shared with other robots so called ambient intelligence

• an interaction with the other services of the information system

• the Internet

In the framework presented in figure 2.1 the human operator would pro-

vide the remote intelligence. While a humanoid robot would perform task au-

tonomously and interact with the environment and the remote human operator.

For a humanoid robot, realizing collaborative work with a human, to have the

capacity to achieve minimal autonomy the architecture must contemplate:

• Perception i.e., vision, sound, force, etc.

• Action, i.e., walk, manipulate, etc.

• Decision Making, i.e., computational services.

A robot-human-robot collaboration architecture was developed for a human

operator and a local robot to interact with a robot located at a remote location to:

• Teleoperate and supervise remote robot performance.

• Collaborate between a robot-human team in execution of tasks.

• Allow a human operator to teach the performance of a task.

• Share skills knowledge between robots.
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Figure 2.2 shows the propose architecture for the remote collaborative work

and transfer of skills learning. A human operator monitors the state of the hu-

manoid robot HOAP-3 in the remote collaborative task. By means of an human

robot interface the human operator will supervise the robot and will send in-

structions for teleoperation to realize the tasks. HOAP-3 software server han-

dles the robot movements and motions and maintains communication with the

operator through the HRI on the completion state of the tasks.

Sensors
Cameras

Actuators

HOAP-3

Human Operator

Network
 Delay

HRI TeleoperationRobot & Software Architecture

Motion Control Server

Vision Server

Command Server

Shared Knowledge DataBase

Operator teaches the
skills to a ’Mirror Robot’
of the remote robot that
would perform the task.

Robot Programing by
Demonstration

Remote Learning
Of New Skills

object(d,r)

move
commands

Uploading
Downloading
of Skills Knowledge

Human Operator monitors remote
 task execution using the  HRI.

video
feedback

Skill
Parameters

And teaches local robot
how to perform unkonw tasks
using learning techniques.

Figure 2.2: The Collaborative Robot-Human-Robot Architecture.

The humanoid robot would perform its requested task in an autonomous

way, however during the execution of the requested task its possible that the

robot encounter situations and objectives that it has not been previously trained

to perform. When such situation arise the human operator will teach a HOAP-3

robot at its work site how to perform the desired task. Once the local robot has

learned the task it will communicate the learned skill to the HOAP-3 robot at

the remote working environment through a shared database. If the operator is

not satisfied with the reproduction of the skill it can retrain the task until it is

done in an appropriated way. The following sections introduce the subsystems

belonging to the Collaborative Robot-Human-Robot Architecture.
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2.1 HOAP-3 Robot

To test the propose systems the HOAP-3 Humanoid Robot was use as a test

platform, Figure 2.3. The small humanoid robot HOAP-3 (Fujitsu: research and

development, 2009) is about 60 cm in height, and weight about 8 kg. HOAP

stands for “Humanoid for Open Architecture Platform” the model use in this

work is an evolution from the previous HOAP and HOAP-2 robot family.

Figure 2.3: The HOAP-3 Humanoid Robot

The control architecture operates on RT-Linux mounted on a embedded PC-

104 computer, Pentium 1.1 GHz processor with 512 Mb of RAM memory and

a Compact Flash drive of 1 Gb capacity. Communications with the robot could

be via a USB interface or with Wi-Fi IEEE802.11g communication. A 24V NiMH

battery can be loaded for a 30 min autonomy operation.
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Figure 2.4: The HOAP-3 Robot dimensions and sensors distribution

HOAP-3 robot has has a total of 28 degrees of freedom, distributed like so:

• 6 DOFs for each robot arm, 4 DOFs for the arm, 2 DOFs for the hand.

• 6 DOFs for each leg.

• 3 DOFs in the head, for the pitch, yaw, and roll

• 1 DOF for the waist

Additionally the robot is equipped with the following sensors:
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• Posture sensors (a gyroscope sensor and acceleration sensor).

• Contact sensors (in every corner of each foot).

• Grip sensor (in the thumb of the hands).

• Two USB cameras in the head

Figure 2.4 showsHOAP-3 Robot structure and sensors distribution. Its struc-

ture and sensor system permit to try different control architecture, thought to be

used in a collaborative system.

2.1.1 HOAP-3 Software Architecture

The HOAP-3 software architecture is composed of three modules: A vision

server for visual perception, a command server to handle the communication

protocol with the HRI and the motion control server to control movements of

the robot.

Figure 2.5: The HOAP-3 Robot Software Architecture

Figure 2.5 presents the HOAP-3 Robot Software Architecture. The function-

alities of three modules are explained in the following sections:
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(a) (b)

Figure 2.6: Example of blob generation (a) and their color segmentation after thresholding (b).

2.1.1.1 Vision Server

The Vision Server module handles the vision services for the HOAP-3 Robot.

A software approach is adopted considering that techniques used should pro-

vide robust results satisfying the real-time restrictions of robotic applications.

The vision module was implemented by D. Herrero-Pérez and is described in

(Herrero-Perez et al., n.d.).

The color segmentation method consists of the selection of a prism for each

channel in theHSV color domain. Instead of selecting all pixel for each channel,

each channel is usually defined by the selection few pixels because other chan-

nel only provide information about saturation and brightness. The complexity

of the Y CbCr-HSV conversion is solved using a look-up table of variable res-

olution. In our application, a resolution of 7 bits is used as trade-off between

memory used and computational cost saved.

When pixels are color labeled, similar regions are groped into blobs. Then,

correspondences between blobs or their combination and possible color coded

objects in the environment should be found. When blobs or their combination

satisfy sanity checks and match with the color properties of some object, they

are considered as the detection of an object. These detections are represented

using bounding boxes around the object in Figure 2.6.
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Figure 2.7: Complete Vision Flowchart.

The typical way for determining the depth using two-cameras vision sys-

tems is by stereopsis. The basis of stereopsis is epipolar geometry, which states

that the line connecting optical centers of both cameras (baseline) intersects the

image planes in the epipoles. A simplified case of stereopsis is the rectified con-

figuration of cameras, which reduces the dimensionality of search space for a

correspondence between perception in both cameras from 2D to 1D. This con-

figuration consider both image planes are parallel, and hence, baseline is also

parallel to image planes. This particular configuration sends the epipoles to

infinity. In addition, epipolar lines of all possible detections coincide with the

image’s rows. Thus, correspondences between detection of both images can be

found by matching pixels linewise (horizontal lines instead of general ones).

The image processing pipeline is shown in Figure 2.7.

2.1.1.2 Motion Control Server

The motion control server is in charge of controlling the joint actuators and of

sending the appropriate commands for the walking, turning and grasping mo-

tions. The motion control server receives orders from the command server of

what movements is require to perform; it also receives distance and orientation

parameters of the tracked object from the vision server.

Once that a command has been received, the robot distinguishes if it is a
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Figure 2.8: Hoap-3 Motion Control Strategy

command for the walking generation or for the arms movement. Figure 2.8

presents the control strategy.

The walking patterns of the robot have been designed base on the theory of

the 3D Linear Inverted PendulumMode presented in (Kajita, Kanehiro, Kaneko,

Yokoi, & Hirukawa, 2001). The posture stability control has not been imple-

mented yet, but several studies are being done in order to accomplish it (Monje,

Pierro, & Balaguer, 2008). The trajectory of the arm is evaluated online through

the algorithm of kinematic inversion presented in (Siciliano, Sciavicco, Villani,

& Oriolo, 2009), once that the vision server provides the distance and the orien-

tation from the object. The orientation reference for the object is calculated with

the support of the unit quaternion presented in (Chiaverini & Siciliano, 1999).

Also the motion control server communicates with the shared knowledge

database to obtain the learned skill parameters necessary for its reproduction.
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2.1.1.3 Command Server

The Command Server handles communications with the HRI. It is in charge of

translating the Robot Command Protocol (RCP), Chapter 3, to forward the in-

structions from the operator back to the other services and gives the adequate

responses to the operator and the HRI. RCP is a text-based protocol which has its

roots in UNIX protocols like SMTP or FTP. Each RCP command is a text string

terminated by a newline character, such as, GOTO OBJECT(<object id>),

GRAB OBJECT(<object id>), etc. And give the adequate responses from

robot execution back to the operator and theHRI, like OK COMMAND <command id>

COMPLETED. The commands server will receive and process all requests that

must be handled by the robot like capture video frames, move or grasp, or use

the learned skill with the shared knowledge database.

2.2 Human Robot Interface

A HRI was developed in the frame of this project to enable a human operator to

control and monitor the Robot. The HRI is user friendly and it gives an intuitive

way for a non expert user to interact with the humanoid robot HOAP-3. Its main

functionalities are:

• Connect to one robot at a time via (Wireless) TCP/IP

• Display streaming video from the robot camera

• Drive robot’s movements and speed

• Move robot’s head (tilt and pan)

• Send high-level commands (tasks) to the robot

A Robot Command Protocol was design to allow the implementation of the

HRI functionalities (Blasi & Stasse, 2008). The HRI will generate commands
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according to this Robot Command Protocol (RCP); these commands would be

interpreted by the HOAP-3 robot command server module into the appropriate

instructions for the robot to perform the requested task.

Figure 2.9: The Human Robot Interface for the teleoperation of the HOAP-3 robot

Figure 2.9 shows the main aspect of the Human Robot Interface. A more

detailed explanation on the characteristics of the HRI and the RCP protocol can

be found on Chapter 3

2.3 Learning Techniques

The skills learning module can be essentially divide in two major parts:

• Acquisition of skills from human teacher demonstrations
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• Reproduction of those skills from learned models by a robot

The skills acquisition part accounts for gathering data demonstrated by a

teacher and for further statistical processing of these data into a model of a skill.

The model of the skill is represented by a set of parameters sufficient to recon-

struct relevant trajectories of the task. After learning, the robot reproduces a

task to obtain a confirmation from a human teacher that training was successful;

once this confirmation is received, the robot submits the learned model to the

shared knowledge database, where the model becomes accessible.

The reproduction part aims at generating motions from the learned tasks

models. Once the operator sends a command to manipulate an object through

the HRI interface, the reproduction algorithm retrieves a relevant model of a

skill, reads position of the object from the vision server and gets motors feed-

back; based on this input information, the reproduction algorithm generates

motions to accomplish the task.

A more detailed explanation on the learning techniques can be found on

Chapter 4

2.4 Shared Knowledge Database

In order for robot systems to communicate with each other to transfer the learned

models of the skills a “Shared Knowledge Database” was implemented. The

shared knowledge database is an interface that allows robot-to-robot interac-

tion, a robot working on the collaborative taskwould be able to access the shared

knowledge database and upload or download the learned skill knowledge for

the reproduction of a task.
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The shared knowledgedatabase communicates with theHOAP-3 server com-

mand server module and motion control server module for the learning of pa-

rameters to reproduce new skills.

The shared knowledge database holds commonly accessible data for that

the Robots could learn and reproduce a skill. The robots can upload or down-

load the learning of the skills when is available. They will also send or receive

acknowledgement signals when new data of the skill is uploaded to the share

database. The Robots communications through the shared knowledge database

will use a TCP/IP private network. A more detailed explanation on the charac-

teristics of Shared Knowledge Database can be found on Chapter 5





Chapter 3
Human Robot Interaction

In Chapter 1 we talk about the human centred and collaborative centred robotics

of the future, where robotics would leave the structured, automated, industrial

environments of the present day vehicle and manufacturing factories and hu-

manoid robots will be deployed in the humans conventional environment, shar-

ing the home and the workspace with human users, helping them to perform

everyday work.

Clearly for this vision to be accomplished a major focus of research is in the

interaction between robots and humans, as this presents one of the main tasks

it has to be achieved if we want a world where humans and robots can work

together.

The optimal ideal for the human-robot interaction is for the human operator

to accept and recognize the robot system just as one more partner in a working

team compose of multiple human and robotic agents. A human-robot team can

present many advantages. Robots can be used in order to cover human limita-

tions or to assist them in numerous tasks.

A robot can be deployed at sites that are too dangerous or inaccessible to

humans, like in a disaster rescue mission or a space environment. Robots can

also be of great assistant for a human worker at a construction scenario, taking
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of most of the workload in a transportation or an assembly task and performing

more risky activities. A robot partner can also perform precise or sensible tasks

in an industrial or factory scenario.

This Chapter focus on the human-robot interaction require to accomplish

collaborative work in remote collaboration environments. It also demonstrate a

conceptual application of a human-robot team performing task collaboratively

in a space scenario.

3.1 Human Robot Collaboration

This work follows on the conceptualizations of collaboration propose by Paolo

Pierro (Pierro, 2009). His work define two kinds of classifications of collabora-

tive working environments, close collaboration and remote collaboration.

3.1.1 Close Collaboration

A close collaboration can be defined as the collaborative working environments

where humans and robots work collaboratively in the same working cluster.

This is the case when robots work in close area with humans, for instance when

a robot-agent is handling the same object together with humans.

As an example of close collaboration task we can consider a coordinating

task between a human and a humanoid robot such as transporting a long or a

heavy object. This kind of collaboration can be applied to a building site scenario

where clear benefits in the use of robots for unpleasant and dangerous work

show the value of this technology (Pierro, 2009).

The human operator would generally be required to act as the master, this

means that he takes the initiative of a task execution. The robot partner must

be equipped with a sensor system, 6-axis force/torque sensors at the wrists and

the feet, that allowed it to process the information of the reaction forces once it

interacts with the human through the object they are carrying. A novel control
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scheme for the collaboration human-robot in manipulation tasks is proposed in

(Pierro, Monje, & Balaguer, 2008) and (Monje et al., 2008).

A second example of close collaboration is a Human operator teaching a

task to a robot by means of kinaesthetic teaching. Here the human operator,

the teacher, would guide the robot arms through the motions that constitute a

learned skill. The process of kinaesthetic teaching would be further detail in

Chapter 4.

3.1.2 Remote Collaboration

Remote collaboration consist of the collaborative working environments where

humans and robots work collaboratively in two separate spaces: a task work-

ing cluster and a supervision, planning working cluster. This case focuses on

monitoring, mission planning and teleworking, for instance a teleoperation or

telepresence task.

As example of remote collaboration we consider a collaboration when the

human operator does not share the environment with the robot and human-

robot interaction occurs through information technologies interfaces. This could

be the case of a collaboration between humanoid robots and humans in order to

achieve tasks in space environments.

The human operator would need to control the robot remotely using a con-

trol interface, also information on the physical situation of the environmentmust

be readily available to provide the operatorwith some situation awareness. Sim-

ilarly the robot must have the capacity to perceive its environment and it should

be able to move along it, detect and interact with objects, etc. The robot would

need to present a sufficient level of autonomy to perform in the environment on

its own with only remote supervision from the human operator.
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HMI & Operator

Remote Collaborative Working Environment

Robot partner

Figure 3.1: Remote Collaboration Modalities.

The following section would expand on the concepts on human-robot re-

mote collaborative work presented here and in Chapter 2. To illustrate the ques-

tions of remote collaboration two examples are presented: teleoperation of a

humanoid robot and remote learning of skills.

3.2 Remote Collaborative Interaction with a Humanoid

Robot

As stated before a human-robot team could present several advantages. For

(Fong, Thorpe, & Baur, 2002) this advantages could be particular beneficial if

we treat a robot as a partner, this, however, need to enable humans and robots

to collaborate, this is, to engage each other in dialogue and to assist each other

to jointly solve problems. In the work of (Fong et al., 2002) a model for collab-

oration is proposed to address this needs. In their model instead of a supervi-

sor dictating to a subordinate, the human and the robot engage in dialogue to

exchange ideas, to ask questions, and to resolve differences. An important con-

sequence of collaborative control is that the robot can decide how to use human
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advice: to follow it when available and relevant; to modify it when inappropri-

ate or unsafe.

Following a similar approach in a previos work (Herrero-Perez et al., n.d.),

a DH↔DR concept is introduced, DH↔DR means, what is Difficult for the Hu-

man will be Done by the Robot and what is Difficult for the Robot will be Done

by the Human. This is advantageous because it works for the strengths of all

partners and allows a human-robot team to be more productive. In the case of

remote collaboration, were the human and the robot does not share the same

space, this DH↔DR collaboration focuses on a human-robot interaction were

the human is not a supervisor but a partner in which the robot can look for as-

sistance in the decision making process. This level of collaboration allow a hu-

man operator to free itself from the high work load of requiring time-critical or

situation-critical response, while the robot is able to performwith greater degree

of autonomy. It also plays on the strength of the human partner in the use of the

more powerful perception and cognition capacities of a human to recognize situ-

ations on the environment, and complement this with the higher computational

capability of a robot processor to determine sizes, distance to object, physical

constraints, etc.

3.2.1 Teleoperation of the Robot

Teleoperation is a problem that have long been a focus of research in the robotic

community. (Chen, Haas, & Barnes, 2007) summarize the most common factors

that can affect the remote perception andmanipulation capacities of the operator

when working with a teleoperation system.

• Limited FOV: The use of cameras to capture the environment in which the

robot is navigating sometimes creates the so-called “keyhole” effect. Im-

portant distance cues may be lost and depth perception may be degraded

when FOV is restricted.
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• Orientation: In order to successfully navigate in the remote environment,

the robotic operator needs to have a good sense of orientation, both glob-

ally and locally. Also the operator needs to be aware of the robot’s attitude.

Both which can be hard to estimate on a mobile platform, and require a lot

of engagement and work load from the operator.

• Degraded Depth Perception: Projecting 3-D depth information onto 2-D

display surface results in compressed depth perception. This is worse with

the ground robots because of their low viewpoints. Degraded depth per-

ception affects the teleoperator’s estimates of distance and size and can

have profound effects on mission effectiveness.

• DegradedVideo Image: Teleoperation is often prone to poor spatial aware-

ness of the remote environment due to the impoverished representations

from video feeds, which could leave out essential cues for building teleop-

erator’s mental models of the environment.

• Time Delay: Refers to the delay between input action and (visible) output

response, and is usually caused by transmitting information across a com-

munications network. Latency over 1s greatly affects the control strategy

that can be use by a teleoperator.

• Motion: Performing computerized tasks or simulated teleoperation tasks

on moving platforms is difficult. Besides perceptual and psycho-motor

aspects, motion also made cognitive tasks more challenging.

Performing tasks as a robot-team in a remote collaborative frame, instead of

a direct teleoperation task, allows to side step and overcome some of the issues

mentioned above. For instance, by giving the remote robot greater autonomy

the operator is free from some of the critical tasks that require of it to navigate

the remote robot system, a problematic like keeping good orientation an altitude

estimates of the robot is not an issue since the robot navigate itself. Also while
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limited FOV, depth perception and degraded video image still negatively impact

the operator capacity to observe and understand the environment. Working as

a team with the remote robot will provide the operator with better information

from the robot computer vision algorithms while preserving the human opera-

tor greater cognitive capacities on the overall goals of the task.

A human-robot team could successfully engage in a remote collaborative

working environment for the accomplishment of various task. A teleoperated

remote collaborative interaction with a Humanoid Robot requires for a human

operator, acting as a partner, with a communications interface that allows it to

communicate with the robot partner, and offer support and assistance in the

decision making process. It also is require for a remote robot to posses a min-

imum degree of autonomy and situation awareness of its environments, visual

and sensory perception. The robot partner must be able on its own to realize a

number of activities with out requiring a direct control operation from the hu-

man partner in order to be ameaningful collaboration. And also must relay back

information to the operator of the remote environment state.

To achieve a functional remote collaboration, the human-robot interaction

is a major aspect of the framework. In order to communicate and engaged in a

productive dialogue it is necessary to develop interfaces with great functionality.

Also a understandable and expandable communication protocol is vital for a

useful human-robot communication. The following sections would deal with

the HRI and the robot command protocol implemented in the framework of this

thesis.

3.2.2 Remote Learning of Skills

As it has been discuss in previous sections, humanoid robots working in col-

laborative environment with human partners must be flexible enough to deal

and solve a great number of tasks and scenarios, most of them who would have
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been difficult to foreseen during development. This presents a significant prob-

lem at the time of programming behaviours and controller for a robotic system

of the characteristics and functionalities discuss here. In order to find a solution

to this problem a series of learning algorithms has been developed within the

robotics community to give a robot the capability to learn to execute new task

and behaviours.

In this workwe utilize learning by imitation techniques, also known as Robot

Programming by Demonstration (Billard et al., 2008), to learned models of the

task motion dynamics that must later be reproduce. To teach this models, the

human operator must present the robot with various demonstration of the task

motion, later the robot would learn a probabilistic model of the demonstrate

models as Gaussian Mixture Models. Chapter 4 deals in more detail with how

to learn and reproduce this models.

An additional problem for a Remote Learning of Skills collaboration presents

in by which means would the knowledge of a task can be transfer remotely to a

robot, that is not working in the same physical location. In this work a “proxy”

robot of the remote robot is used to teach locally the task demonstrations. Once

the local robot has learn the models of the task, and the operator is satisfied with

its performance, the local robot needs to transfer this skills to the local robot. For

transfering this skills knowledge between the robots a Robot-to-Robot collabo-

ration is presented trough the use of a shared interface of skills knowledge, this

interface will de denominate the Shared Knowledge Database and it will be ex-

panded on Chapter 5.

3.3 Human-Robot Interface

In order for a remote operator to control and monitor the robot actions on the

remote collaborative environment the human operator needs to connect to the

environment trough a Human-Robot Interface. The HRI needs to provide the

remote operator with the opportunity to request the robot to perform certain
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actions on the environment, also the HRI needs to present the human operator

with relevant information on the state of the remote collaborative environment,

such as video feedback from the remote environment, state of the robot process

and sensors, etc.

3.3.1 Graphic Interface and Functionalities

During the Robot@CWE project a HRI was design with one of the project part-

ners (Blasi & Stasse, 2008), (Blasi, Weiss, Stasse, & Hernández, 2009). The HRI

user interface is shown in Figure 3.2. Its main functionalities are:

• Connect to one robot at a time via (Wireless) TCP/IP.

• Display streaming video from the robot camera

• Drive robot’s movements and speed

• Body rotation controls

• Move robot’s head (tilt and pan)

• Send high-level commands (tasks) to the robot
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Figure 3.2: HRI Interface and Main Components

Themain functionality in the HRI user interface is the graphical control com-

ponent, shown in the upper right part of the window, which allows the operator

to move the robot in several directions at different speeds, rotate it and stop

it. And the high-level button controls which allows the operator to request the

robot to perform several high-level actions, such as, go to a location and grab,

drop or use an object. Further functionalities of the HRI, not shown in Figure

3.2, are the log window, where all the commands sent to the robot and related

responses can be seen and the configuration window, which allows the specifi-

cation of robot’s IP address and ports, desired streaming speed, video encoding

and network latency.

In the case of spatial applications, several problems have to be addressed.

The main problem is the time delay. For a moon-earth communication the delay

could be around 3 seconds and for mars-earth communication the delay could
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(a) (b)

Figure 3.3: Example of GRAB OBJECT(<object id>) (a) HRI send request. (b) Robot
perform action.

be up to 10 minutes, as the time delay increases with the distance from the earth

(Ferre, Buss, Aracil, Melchiorri, & Balaguer, 2007). In order to simulate the con-

ditions and problems that arise in a real space communications application, a

controllable time delay module has been added to the HRI. This module will

permit to set a variable delay and to test the performance of the proposed tele-

operated system in space environments.

3.3.2 Robot Command Protocol

Along side with the HRI a Robot Command Protocol a was design for the com-

munication between the human an the robot (Blasi & Stasse, 2008), (Blasi et al.,

2009). Design goals for this protocol were: simplicity, generality, flexibility and

expressiveness. A powerful characteristic that leads to both flexibility and ex-

pressiveness can be identified as orthogonality, which can be achieved by clearly

separating disconnected functionalities while at the same time allowing their
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combination without unneeded constraints (Pierro et al., 2009). RCP is a text-

based protocol which has its roots in Unix protocols like SMTP or FTP. Each

RCP command is a text string terminated by a newline character. The RCP pro-

tocol present various attractive characteristics:

• The resulting protocol is simple to understand and implement.

• Support for robot control can also be easily added to programs different

from our HRI.

• The protocol is lightweight; since the robot has limited computational re-

sources that can be dedicated to command parsing, this was an important

design goal.

• The human-readable text commands make debugging easy.

• The protocol is also general in that it has not been designed for a specific

target robot, but for a generic target robot described by a high-level robot

model.

RCPwas originally defined in (Blasi & Stasse, 2008) and can be decomposed

into several sub-protocols, like the RoboLink protocol (AIST presentation at DSIG

Plenary Meeting, 2005) is organized into ”profiles”. Each sub-protocol contains

a set of commands used for a single purpose. The list of RCP sub-protocols is

shown in Table 3.1.

As an example of a command we review the basic movement sub-protocol.

The basic movement sub-protocol defines movements of the body and head for

teleoperation of the robot. A general MOVE command presents the following

structure:

MOVE <movement type> <direction> <count> <unit>

Currently three movement types of the command are supported:
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Name

Connection
Control negotiation
Basic movement
Direct command execution
Configuration
Sensor reading
Positioning
Notification
Goal-setting
Object grabbing
Strategy selection

Table 3.1: RCP Sub-protocols

MOVE WALKING [FORWARD|BACKWARD] <count> STEPS

MOVE TURNING [LEFT|RIGHT] <count> DEGREES

MOVE HEAD [UP|DOWN|LEFT|RIGHT] <count> DEGREES

The MOVE command is a good example of the flexibility of the protocol, in

that its structure allows adding new movement types easily. For example we

could add a new BOWINGmovement. As movements are not an instant action,

the robot can send multiple replies in response to aMOVE command:

OK COMMAND <command id> QUEUED

OK COMMAND <command id> STARTED

OK COMMAND <command id> COMPLETED

The goal-setting sub-protocol presents a more advanced way of controlling

robot’s movements. This sub-protocol allow for higher order request to be send

to the robot with a task goal oriented movement in mind. In order to tell the

robot to go towards, grab or drop an object the user issues the commands:

GRAB OBJECT(<object id>)



40 Human Robot Interaction

GRAB OBJECT(<object id>)

DROP OBJECT(<object id>)

Also the user can send a command to “use” and object, the syntax of this

command is the same as the previous ones,

USE OBJECT(<object id>)

but this would involve some decision on the part of the robot about which

strategy should be used for executing the operation considering the database of

know learn skills of the robot. For this purpose a specific strategy selection sub-

protocol has been defined with which both the robot and the user collaborate

in deciding which strategy to use for the operation at hand. The strategy selec-

tion dialogue is initiated from the robot side with a request listing the possible

strategies:

SELECT STRATEGY FOR <cmd id> [<strategy 1>, <strategy 2>

... <strategy n>]

Then the user chooses a strategy and communicates its decision with the

command:

USE STRATEGY FOR <command id> <strategy>

In this work a subset of the full protocol described above was implemented.

A reference of all the commands currently defined in the RCP protocol is shown

in Table 3.2.

Note from the above lines that IDs are used to refer to commands. Every

command is assigned an ID by its receiver (i.e. the robot or the HRI). Then

the receiver sends the counterpart a reply indicating whether the command has

been accepted or not. Successful replies always start with ”OK”, while unsuc-

cessful ones start with ”KO”.
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Sub-protocol Command

Connection CONNECT <profile>
DISCONNECT

Control negotiation CONTROL BEGIN
CONTROL END

Basic movement MOVE <movement type><direction><count><unit>
STOP

Direct command ex-
ecution

DIRECT <command>

Configuration QUERY PARAM<parameter name>
SET <parameter name> <parameter value>

Sensor reading QUERY SENSOR [<label>,... , <label>]

Positioning QUERY POSITION
POSITION <x > <y > <confidence>

Notification tbd

Goal-setting GOTO OBJECT(<object id>)
GOTO <x> <y>

GRAB OBJECT(<object id>)
USE OBJECT(<object id>)
DROP OBJECT(<object id>)

Strategy selection SELECT STRATEGY FOR <cmd id> [<strategy 1>, ...,
<strategy n>]
USE STRATEGY FOR <cmd id > <strategy>

Table 3.2: RCP commands





Chapter 4
Learning Algorithms

In this work we have presented a framework for human-robot collaborative

work and remote collaboration environments, Chapter 2. As we have stated

before, the humanoid robots must be able to adapt to the human environment,

therefore not only the human appearance is important but the algorithms used

for its control require flexibility and versatility. Robots working alongside hu-

mans means there will be continuously changing environments and a huge vari-

ability of tasks that the robot is expected to perform, thus the robot should have

the ability to continuously learn new skills and adapt the existing skills to new

contexts.

Programming by Demonstration (PbD, has appeared as one way to respond

to this growing need for intuitive controlmethods. PbD formulates user-friendly

methods by which a human user can teach to a robot how to accomplish a given

task, simply by demonstrating this task (Gribovskaya, Zadeh, Mohammad, &

Billard, 2010).
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Kinaesthetic 

Teaching HOAP-3

Robot
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Demonstra�ons Model Reproduc�on

Figure 4.1: Flowchart of the learning and reproduction of the skill process.

The following sections described the methodology employ during this work

for learning and teaching manipulation skills to the robot. This work follows on

the Programming by Demonstration framework developed at the Laboratoire

d’Algorithmes et Systemesd’Apprentissage (LASA) at École polytechnique fédérale

de Lausanne (LASA: Laboratoire d’Algorithmes et Systemes d’Apprentissage, 2010).

4.1 Programming by Demonstration

Robot Programming by Demonstration, also know as Imitation Learning, ap-

peared as a promising route to automate the tedious manual programming of

robots and as way to reduce the costs involved in the development and main-

tenance of robots in a factory. The imitation learning approaches focuses on the

development of algorithms that are generic in their representation of the skills

and in the way they are generated (Billard et al., 2008).

Implementing robot PbD methods offers the possibility of making learning

faster, in contrast to tedious reinforcement learning methods or trials-and-error
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learning. Also, the methods being user-friendly, makes PbD a important tech-

nique to facilitate and enhance the application of robots in human daily environ-

ments. Initial means of providing demonstration of the task to the robot implied

the teleoperation of the end-effectors. Later more user-friendly interfaces were

use, like vision recognition, data gloves, laser range finder or kinaesthetic teach-

ing.

Robot PbD focus on developing algorithms that are generic in their repre-

sentation of the skills and in the way they are generated. To reproduce a skill in

a new situation, the robot can not simply copy an observed behaviour; it must

have the capability to generalize. Current approaches to represent a skill can be

broadly divided between two trends: a symbolic level representation, described

by the sequential or hierarchical organization of a discrete set of primitives that

are predetermined or extracted with predefined rules. Or a trajectory level rep-

resentation, described by temporally continuous signals representing different

configuration properties changing over time (Calinon, 2009).

Observing multiple demonstrations can help at generalizing a skill by ex-

tracting which are the task requisites. One trend of work investigates how sta-

tistical learning techniques deal with the high variability inherent to the demon-

strations. (Calinon, Guenter, & Billard, 2007) used Gaussian Mixture Models

(GMM) to encode a set of trajectories, and Gaussian Mixture Regressions (GMR)

to retrieve a smooth generalized version of these trajectories and associated vari-

abilities.

4.2 Learning of the Skill

In this work we focus on teaching, a humanoid robot, manipulation tasks that

requires both coordinated motion of limbs and accurate positioning of an end-

effector. The robots position and orientation control are learned as multivariate

Dynamical Systems using a PbD framework. Dynamical Systems (DS) offer a

particularly interesting solution to an imitation process aimed at being robust to
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perturbations which is robust to dynamical changes in the environment (Billard

et al., 2008).

We follow a framework presented on (Gribovskaya & Billard, 2009) that al-

lows learning non-linear dynamics of motion in manipulation tasks and gener-

ating dynamical laws for control of position and orientation. The strength of the

method is three-fold: i) it extracts dynamical control laws from demonstrations,

and subsequently provides concurrent smooth control of both position and ori-

entation; ii) it allows to generalize a motion to unseen context; iii) it guarantees

on-line adaptation of the motion in the face of spatial and temporal perturba-

tions.

A motion in a manipulation tasks consists of two parts: a transport phase,

which allows the hand to reach the object, and a grasping phase, which pre-

shape the fingers. The transport phase is described by a translational and an

orientational component. The translational component brings a robot’s hand in

the proximity of a manipulated object and the orientation component aligns the

hand with the object. To successfully accomplish themanipulation task and gen-

erate smooth, natural-looking motions the humanoid robot should reproduce

both of these components simultaneously, in a coordinated manner. Therefore,

the learning and reproduction of the position and orientation motions should be

encoded simultaneously, replicating a coordinated pattern. Figure 4.1 illustrate

the process followed for the learning and reproduction of the task.

4.2.1 Kinaesthetic Teaching

For demonstrating themotions of the task to the robot we use kinaesthetic teach-

ing. The kinesthetic teaching process (Calinon, 2009), consists in using themotor

encoders of the robot to record information while the teacher moves the robot’s

arms.

For demonstrating the task the robot motors are set in passive mode, stand-

ing beside the robot a human demonstrator moves simultaneously the robot
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(a) (b)

Figure 4.2: Kinaesthetic Teaching of the Skill: (a) Teaching of a spoon in the cup task. (b)
Teaching of a grasp task.

arms. The kinematics of each joint motion are recorded at a rate of 1000Hz dur-

ing the demonstrations and were then re-sampled to a fixed number of points.

The robot is provided with motor encoders for every DOF, except for the hands

and the head actuators. The process is illustrate in Figure 4.2 for the teaching of

two task with the humanoid HOAP-3.

4.2.2 Learning the Motion Dynamics

After demonstrations of the task a model of the learn skill must be generated.

A time independent model of the motion is estimate through a set of first order

non-linear multivariate dynamical systems. DS provides an effective mean to

encode trajectories through time-independent functions that define the temporal

evolution of the motions.

We define a variable ξ that unambiguously describe the state of the robot

end-effector. Let us assume that the state of our robotic system ξ can be governed

by an Autonomous Dynamical System, define as the tuple < X, f, T >, with

f : t → f t a continuous map of X onto itself.
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And further assume that the transition map function f : Rn → Rn is a non-

linear, continuous, and continuously differentiable function, with a single equi-

librium point ˙̄ξ = f(ξ̄) = 0.

Let the set M of N-dimensional demonstrate data points {ξi, ξ̇i}
M
i=0

be in-

stances of a global motion governed by a first order autonomous ordinary dif-

ferential equation (ODE):

ξ̇(t)M = f(ξ(t)M ), (4.1)

where ξM ∈ Rn, and its time derivative ξ̇M ∈ Rn are vectors that describe the

robot motion. The problem then consists in building a stable estimate f̂ of f

based on the set of demonstrations. Without loss of generality, we can transfer

the attractor ξ̄ to the origin, ξ̄ = 0, so that f(ξ̄) = f(0) = 0 and by extension

f̂(ξ̄) = f̂(0) = 0.

To build the estimate f̂ from the set of demonstrated data points {ξi, ξ̇i}
M
i=0

we follow a statistical approach and define f̂ through a Gaussian MixtureModel

(Gribovskaya & Billard, 2009).

4.2.2.1 Gaussian Mixture Models

TheGMMs define a probability distribution p(ξi, ξ̇i) of the training set of demon-

strated trajectories as a mixture of the K Gaussian multivariate distributionsNk

p(ξi, ξ̇i) =
1

K

K
∑

k=1

πkNk(ξi, ξ̇i;µk,Σk) (4.2)

Where πk is the prior probability; µk = {µk
ξ ;µ

k

ξ̇
} is the mean value; and

Σk = [
Σk
ξ Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇

] (4.3)

is the covariance matrix of a Gaussian distributionN
k

The probability density function of the modelNk(ξi, ξ̇i;µk,Σk) is then given
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(a) (b)

Figure 4.3: Illustration of the learning process: (a)Training data of the task. (b) GMM of the
learned motion.

by:

Nk(ξi, ξ̇i;µk,Σk) =
1

√

(2π)d|Σk|
exp

−1

2
(([ξi, ξ̇i]− µk)T (Σk)−1([ξi, ξ̇i]− µk))

(4.4)

By considering an adequate number of Guassians, and adjusting their means

and covariances matrix parameters, almost any continuous density can be ap-

proximate to arbitrary accuracy. The form of the Gaussian mixture distribu-

tion is governed by the parameters πk, µk,Σk. The model is initialized using

the k-means clustering algorithm starting from a uniform mesh and is refined

iteratively through Expectation-Maximization (EM) for finding the maximum

likelihood function of equation 4.2.

ln p(ξi, ξ̇i) =
N
∑

n=1

ln{
K
∑

k=1

πkN(ξin, ξ̇
i
n|µ

k,Σk)} (4.5)

The theoretical analysis of GMMs can be found on (Mclachlan & Peel, 2000),

(Vlassis & Likas, 2002), (Dasgupta & Schulman, 2000). Figure 4.3 illustrates the

encoding of a training data set {ξi, ξ̇i}
M
i=0

into a model of mixtures of Guassians.
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To generate a new trajectory from the GMM, one then can sample from the prob-

ability distribution function p(ξi, ξ̇i), this process is called Gaussian Mixture Re-

gression.

4.2.2.2 Gaussian Mixture Regression

The GMM computes a joint probability density function for the input and the

output so that the probability of the output conditioned on the input are a Mix-

ture of Gaussians. So it is possible after training, to recover the expected output

variable ξ̂, given the observed input ξ. Taking the conditional mean estimate of

p(ξ̇|ξ), the estimate of our function ˆ̇
ξ = f̂(ξ) can be expressed as a non-linear

sum of linear dynamical systems, given by:

ˆ̇
ξ =

K
∑

k=1

hk(ξ)(Σ
k

ξ̇ξ
(Σk

ξ )
−1(ξ − µk

ξ ) + µk

ξ̇
) (4.6)

where

hk(ξ) =
p(ξ;µk

ξ ,Σ
k
ξ )

∑K
k=1 P (ξ;µk

ξ ,Σ
k
ξ )
, hk(ξ) 0 (4.7)

and
∑K

k=1 hk(ξ) = 1

This process is called Gaussian Mixture Regression. A review of GMR can

be found in (Sung, 2004). In this work the demonstrated tasks were learned

using an iterative algorithm, BinaryMerging (BM), which guarantees to produce

stable non-linear dynamics (Khansari-Zadeh & Billard, 2010).

Figure 4.4 illustrates the process of GMM encoding of the demonstrations

and GMR reproduction of the learned motions. To learn the model of the tra-

jectories, first several demonstration of the task are presented and them the tra-

jectory is encoded as a mixture of Gaussian distributions. To reproduce the tra-

jectories one sample from the probability distribution of the GMM trough the
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(a) (b)

Figure 4.4: Illustration of the learning process: (a) Learned model of the motion (b) Reproduc-
tion of the GMR.

Gaussian Mixture Regression process. The GMR approximates the dynamical

systems through a non-linear weighted sum of local linear models.

4.2.3 Learning the Position and Orientation Components of the Mo-

tion

The learning algorithm described in this chapter is a generic framework and

makes no assumption on the variable that is used for training. From (Gribovskaya

& Billard, 2009), the task space trajectories of the robot’s end-effector are chosen

to learn control of the position and orientation of the motion. The variables in

the training set were chosen as the translation component of a motion of the

end-effector (a vector of Cartesian coordinates x ∈ R3; and the orientation of

the end-effector (a pair of variables {s, φ} - the axis and the angle of rotation).

According to this representation, the orientation of a moving referential x′y′z′

with respect to a fixed referential xyz is described by the rotational axis s ∈ R3

and the angle φ ∈ [0; 2π].

Therefore, the functions that the robot must learn from the demonstrations

are:

ẋ = f̂x(x), with ξ = x ∈ R3 for the dynamics of the end-effector’s position,
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and [ṡ, φ̇] = f̂o(s, φ), with ξ = [s, φ] for the dynamics of the end-effector orienta-

tion.

4.3 Reproduction of the Skill

For the reproduction of the learned trajectories it could be implemented two

types of controllers. A decoupled controller of the position and orientation and

a coupled controller of position and the orientation components of the motion.

In the decoupled controller, the position and the orientation components of

the motion are learned separately, so we need to learn the following functions:

ẋ = f̂x(x), for the position, with x ∈ R3

ȯ = f̂o(0), for the orientation, with o = [s, φ] and s ∈ R3, φ ∈ [0; 2π]

Then we infer the estimate f̂ for the dynamics through GMR, as follows:

ẋ = f̂x = E[p(ẋ|x)], for the position, and

ȯ = f̂o = E[p(ȯ|o)], for the orientation.

In the fully coupled controller position and the orientation components are

encoded in a single variable ξ, so we need to learn the following function:

ξ̇ = ξ̂, where ξ = [x, s, φ] and x ∈ R3, s ∈ R3, φ ∈ [0; 2π]

Then the estimate f̂ of the dynamics can be inferred through GMR, as fol-

lows:

ξ̇ = f̂ξ = E[p(ξ̇|ξ)]

The process for on-line reproduction of the learned motion dynamics can be

summarize as follows:

1. Learn the estimates, ξ̂ of the dynamics underlying the position and orien-

tation of the end-effector’s motion.
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2. Detect a target position in the global referential {xyz}.

3. Recompute the current position of the end-effector in the target referential

{x′y′z′} : {x0, s0, φ0}.

4. LOOP from t = 0 until the target position is reached:

5. Infer the velocity at the next time step through GMR, equation 4.6.

6. Solve the Inverse Kinematics problem to find θ̇.

7. Send command θ̇t to robot and get motors feedback.

8. Compute the actual position and orientation of the end-effector xt, st, φt.

9. END

Figure 4.5 and 4.6 summarize the results of encoding and reproducing the

two manipulation task presented in Figure 4.2.
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I. Reproduction of the Task.
II. Training Data (time domain).
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III. GMM Encoding and GMR reproduction.
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Figure 4.5: Demonstrations and Reproductions of the spoon in the cup skill. I. Reproduction

of the task, coupled controller (blue), decoupled controller (magenta). II. Training data of the

demonstrated task. III. Encoded model of the task and reproduction trough GMR.
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I. Reproduction of the Task.
II. Training Data (time domain).
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ẏ

t
0 50 100 150

−100

0

100

200

300

400

500

ż
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Figure 4.6: Demonstrations and Reproductions of a grasp skill. I. Reproduction of the task,

coupled controller (blue), decoupled controller (magenta). II. Training data of the demonstrated

task. III. Encoded model of the task and reproduction trough GMR.





Chapter 5
Shared Knowledge Database

In Chapter 3 a Remote Collaboration interaction with the HOAP-3 Humanoid

Robot is presented. In this collaborative interaction is considered a case of trans-

ferring the models of a skill to increase the capabilities of a remote robot by

providing it with the ability to learn new task motions.

Chapter 4 explain the learning algorithm andmethodology implemented for

teaching the robot the motion dynamics of a skill. The learning algorithms mod-

ule can be divide in two parts: acquisition of skills from human teacher demon-

strations and reproduction of those skills from learned models by a robot. The

skills acquisition part accounts for gathering data demonstrated by a teacher

and for further statistical processing of these data into a model of a skill. A

probabilistic encoding of the motion is obtain by means of the Gaussian Mixture

Models. The model of the skill is represented by a set of parameters sufficient to

reconstruct relevant trajectories of the task.

Here we deal with how to transfer the learned models of the skill to a robot

locate at a remote collaboration environment, where a human teacher would be

unavailable to teach the robot. For this purpose a Shared Knowledge Database
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its propose, where the models of the skill task would reside and a remote col-

laborative robot could access and download the necessary learning. This Chap-

ter presents the Robot-Robot interaction for transferring a skill and the Shared

Knowledge Database functionalities and implementation.

5.1 Representation of Skills

All the task contemplated in this work presents a robot performing actions over

an object that is found in the remote environment. Therefore a direct link be-

tween objects and task skills can be intuitively established.

The Shared Knowledge Database would hold common information of the

learned skills models that must be reproduce by the robots. The learn informa-

tion to be shared would primary concern and object and task skills models.

Figure 5.1: Representation of task knowledge

1. Objects: necessary information for the recognition and identification of the

object, and any constraint relate to it. Tag, Color, Size, Shape, etc.

2. Task: necessary information to reconstruct the model of the skill for the

task. Task constraint, generalization of the trajectory, GMM model.

Therefore the elements in the database could be considered, in an analogy to

object-oriented programming, as instances of a class object.
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Object

Task

Characteristics

Figure 5.2: Object instances in the Sharded Knowledge Database: Characteristics attributes

and Task operations

And Object instance in the database would be described by:

• Characteristic attributes, this could be color, shape, AR or RFID tags, size,

and any other intrinsic property of the object that allow for its identifica-

tion.

• Task operations, that act upon the specified object, this would described

the learned models of the skill.

In this way the shared knowledge database would be populate by a series

of known objects that the robot could identified in its environment. Linked to

any instance of an object there could be one, several or no task model operation

associated.
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Shared Knowledge Database

Object 1

+Color

+Size

+Shape

+Skill()

Object 2

+Color

+Size

+Shape

+Skill-1()

+Skill-2()

Object 3

+Color

+Size

+Shape

Figure 5.3: Shared Knowledge Database fill with various object instances.

To illustrate this, lets consider as example the case of a robot working on a

kitchen. During its workday the robot would have to perform various task such

as helping setting up the table, serving food plates, and cleaning the dishes.

Therefore one would have for a single object i.e. a glass, or a plate, different

action task to perform depending on the situation, such as, robot clean plate or

robot serve plate. Mean while for an object, such as, a table, there would be no

task, since there is no manipulation of the table object required.

Furthermore, to expand the functionalities of the Shared KnowledgeDatabase

a “behavioural” instance could be implemented. A behaviour, therefore, would

consist of a list of task actions, with its associated object, that need to be executed

to achieve a goal. Using this behavioural mode would increase the functionality

of the shared knowledge database, this remains as future work that need to be

implemented.
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Shared Knowledge Database

Behaviour2

+Skill-1(object1)

+Skill-1(object2)

+Skill-2(object1)

+Skill-3(object2)

Object 1

+Color

+Size

+Shape

+Skill()

Object 2

+Color

+Size

+Shape

+Skill-1()

+Skill-2()

Object 3

+Color

+Size

+Shape

Behaviour1

+Skill-1(object2)

+Skill-2(object1)

+Skill-3(object2)

Figure 5.4: Shared Knowledge Database fill with various object instances and behaviours.

As example, lets reconsider the kitchen setting, a robot behaviour in this case

could be to set-up the table for lunch. This behaviour would require the robot

to reproduce several tasks, namely placing a plate, glass, and silverware. The

setting the table behaviour would consist them of an sequence of tasks skills the

robot must completed for completion of the behaviour task.

5.2 Robot-Robot Interaction Transfer of a Skill Knowledge

The shared knowledge database holds commonly accessible data for that the

robots could learn and reproduce a skill. The robots can upload or download the

learning of the skills when is available. They will also send or receive acknowl-

edgement signals when new data of the skill is uploaded to the share database.

The Robots communications through the shared knowledge database will use a

TCP/IP private network.

In the scenario presented on Chapter 3 a human operator would collabo-

rate with a robot partner performing several task. During the collaboration
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the human operator can request the robot to USE OBJECT(<object id>), as

established in the robot command protocol. To respond to this command the

robot would look up the shared knowledge database for task associated to ob-

ject <object id>. If no task have been associated with the object a request is

made from the robot to learn a new skill.

Figure 5.5: Robot-Robot Interaction Transfer of a Skill Knowledge

A human operator would demonstrate, by kinaesthetic teaching, the motion

trajectories of the task to a robot agent. Using the algorithms and techniques pre-

sented in Chapter 4 the robot would learn a generalized model of the motions.

This skill model would be associate to the actuated object and the local robot

would upload a new instance to the database for the learning of the new skill.

Them this model of the task would be available for the remote robot to down-

load. Trough the shared knowledge database two robot agents could transfer

the models of a skill.

5.3 Refinement of the Skills Models

In the framework presented in this work the reproduction of the task is executed

by a remote robot. While the teaching of the skill is perform by an operator

demonstrating the task on a local robot. As the teaching environment and the

reproduction environment could potentially be different, this presents certain

issues of adaptation and correspondence.
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To tackled this issues in (Billard et al., 2008) suggest to combining PbDmeth-

ods with other motor learning techniques, to allow a robot to learn how to per-

form a task in new situations. Reinforcement learning (RL), appeared particu-

larly indicated for this type of problem.

Figure 5.6: Interactive refinement

Refinement of the model can be done at two stages:

• By the human operator, when teaching the task to the local robot.

• Or by self exploration, when executing the task by the remote robot.

After refinement the model of the task needs to be update an reloaded on the

shared knowledge database. The process of the remote robot evaluating the per-

formance and refining the learnedmodels of the task has not been implemented.

This remain as a future work for this thesis.





Chapter 6

Experimental Results

To test the proposed systems and algorithms various experimental demonstra-

tions were conducted with the humanoid robot HOAP-3, described in Chapter

2.

Chapter 3 presented the interaction modalities for a Remote Collaboration

environment with the HOAP-3 Robot. For controlling and monitoring robot

activities on a remote site, the propose system require a robot agent deployed at

a remote setting and a human operator that communicates to it by means of a

human-robot interface, the HRI functionalities has been detailed on Chapter 3.

To increase the robot flexibility for performing a task it must have the capacity

to learn new, previously untaught, skills. To teach a robot how to reproduce

new skills remotely, learning algorithms, explained on Chapter 4, and a shared

knowledge database, presented on Chapter 5 was needed.
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Figure 6.1: Deployment Structure of the Experimental Set-Up

Figure 6.1 presents the structure for the Remote Collaboration experimental

set-up. To illustrate the system, experiments were first perform separately on

the human-robot collaborative interaction, and the learning of a skill modali-

ties. Later the experiment of the completed Remote Collaboration and Learning

of Skills scenario is presented. The following section would describe the over-

all set-up for the demonstration of the remote collaborative environment and

learning of skills. Later the evaluation of the experiments is presented.

6.1 Experimental Set-up

At the Robotics Lab on the Universidad Carlos III de Madrid a lunar scenario

was built to simulate the operation of a robotic agent working in collaboration

with a human in a space environment. It consists on a long corridor surrounded
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Figure 6.2: The Space Moon Scenario.

by cliffs where the robot can walk and interact with the environment. The sur-

face of the cliffs has been built with planes of polystyrene where it has been

made holes to simulate craters. The floor of the scenario has been made of hard

cardboard as the robot has to walk on it. To paint it, we have used a uniform

grey to avoid interferences in the vision of the robot.

The overall story is: a Robot at a remote space environment, “the moon”, will

perform autonomously a manipulation task. The robot would not know how

to perform this task at first and it will learn the task with the assistance of a

Human-Robot team at “earth”. An expert operator at a local site will teach a

Robot the task and then this local robot would communicate the learned task to

the remote robot.

There are three agents interacting in this scenario:

• The humanoid Robot HOAP-3 at the Moon (located at the moon scenario

build at our RoboticsLab),

• The human operator, located at a “Earth center of operation”, has two task:

– By means of an HRI interface the operator will send instructions and

monitor the state of the remote HOAP robot.

– By means of the learning techniques the operator will teach a local

robot how to perform the task.
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• The local humanoid Robot HOAP-3 at the “Earth center of operation” will

learn the task and transmit this knowledge to the remote robot HOAP at

“moon” trough a Shared Knowledge Database.

The experimental scenario can be considered as one major task, human col-

laboration and supervision of the robot at remote environment, that latter con-

tains three sub-parts:

• Robot autonomous operation.

• Teaching of the task skills.

• Robot reproduction of learned skills.

There are 4 main components in the system, that have been described in the

previous chapters:

1. HOAP-3 Software Server: The Robot control software system.

2. The Human-Robot Interface (HRI): for the teleoperation of HOAP robot.

3. Learning Algorithms: The Robot learning techniques and algorithms sys-

tem for teaching task to robot HOAP.

4. The Shared Knowledge Database: The Knowledge interface for transfer-

ring the learning of the tasks between the robots.
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Figure 6.3: Overview of the experimental demonstrator for the remote collaboration and skill

learning environment.

The HRI and the HOAP-3 at remote environment are the sole components

involved in all segments of the demonstration. The HOAP-Server is in charge

of realizing the second segment of the demonstration (Robot autonomous op-

eration) after receiving request from the operator to perform. The learning al-

gorithms module is mostly in charge of the fourth segment of the demonstra-

tion (Teaching of the task skills). HOAP-Server and the learning module are the

main components in the fourth segment of the demonstration (Robot reproduc-

tion of learned skills). In the third and fourth segments, The Shared Knowledge

Database is used to communicate and transfer the learning and task information

between the HOAP robots. The overview of the experimental demonstrator can

be seen on Figure 6.3.
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6.2 Evaluation of the Experiments

6.2.1 Robot-Human Collaborative Interaction: Teleoperating a robot

for executing a task

In figure 6.4 shows the global sequence of the teleoperation task scenario in the

robot-human collaborative interaction.

:Human-Robot-Interface:Human_Operator

Human - Robot 
Collaboration

Conect to Robot

Conection ACK

:HOAP-ROBOT

Conection from Operator

Conection Established

Command robot MOVE TO position
Recieve Command GOTO location

I. Autonomous 
Operation

Execute MOVE Command

Completed Execution
GOTO Command Completed

Command robot GRAB object

DO task request

NO TASK FOUND
Need to Learn Task

Computes Distance from Object

Determine Trajectory

Perform Walking Motions

* Time Delay in 
H-R communication

Continous visual feedback

from robot cameras

Continous visual feedback

from robot cameras

Computes Object position

Execute GRAB Command

IK for the arm

Perform Grasp Motions

Figure 6.4: Sequence diagram for the teleoperation scenario

A first teleoperation experiment with the HOAP-3 robot and the HRI was

conducted in the Robot@CWE project for the second year demonstrator. The

experiment consisted on working collaboratively with a robot to perform a task

by the teleoperation of the HOAP-3 robot. The human agent works collabora-

tively with the humanoid robot by supervising, controlling and helping in the

decisions taken by the robot.

The task to be performed consists of teleoperating the HOAP-3 robot, inside

the moon scenario, first walking through an enclosed hall and finding an object,

in this case an “antenna”, then grasping the object and placing it in a different

location (Pierro et al., 2009).
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(a) (b)

Figure 6.6: Teleoperation of the robot: (a) The robot autonomously walks trough the scenario.
(b) Robot grasp the “antenna’, as requested by the operator.

Figure 6.5: Teleoperation of the robot.

This scenario allows the human operator to interact with the robot through

teleoperation by using the Human-Robot interface. First the operator must con-

nect to the robot, and a connection negotiation according to predefined users

and protocols ensue. Once the robot has granted connection to the robot, the

operator would be able to see the remote scenario through the eyes of the robot,

receiving continuous vision feedback from the HOAP-3 robot cameras. Figure

6.5 shows the human operator using the HRI and the HOAP-3 robot at the re-

mote environment.

Whit the HRI the operator can send command request for the HOAP-3 robot

that performs them autonomously. The operator can send walking and turning

movements, grasping motions, or higher order commands. In the scenario, the
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human-robot team are requested to look for an “antenna” and restore commu-

nications. A efficient way to do this is for the operator to request the robot to

walk around the environment until it sees an object, since the human vision ca-

pacities to recognize objects are greater than that can be implemented on a robot

platform, it would be on the operator responsible to look on the video feedback

and tell the robot when it has been found the “antenna”. Once locate the target

object the robot can autonomously walk towards the object to a close enough

distance so that it can grab it when requested by the human operator. Figure 6.6

shows the robot HOAP-3 walking on the remote environment, and grasping an

object when requested.

6.2.2 Learning of a Skill: Teaching a robot manipulation tasks

To test the learning algorithms presented on Chapter 4 a robot HOAP-3 was

taught to perform several manipulation skills.

The robot was taught to perform two manipulation tasks. In all cases the

training datawere provided by a human operator guiding the robot arm through

the tasks, kinaesthetic teaching. Between four to six demonstrations where pro-

vided for each task. The first task was chosen so as to require specific coordina-

tion between the position and orientation for successful task’s accomplishment.

For the other task the coordination between position and orientation component

was not of principal importance.
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Figure 6.7: The HOAP-3 robot is teach to reproduce a “place spoon in a cup” task

Figure 6.8: The HOAP-3 robot is teach to reproduce a “reach and grasp spoon” task
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The first task (place spoon in a cup); see Figure 6.7, consists in putting an

object inside a cup. To accomplish this task, the robot should adapt the orienta-

tion of the end-effector as it approaches to the cup so as not to hit it. The robot

should also simultaneously converge to the demonstrated final position and ori-

entation so to put the object in the container. The second task (reach and grasp

the spoon); see Figure 6.8, consists in reaching and grasping an object. To ac-

complish this task, the robot should reach an object (the spoon), while adapting

the orientation of the end-effector. The position and orientation components are

not expected to be highly correlated.

During the demonstrations the kinematics data from the motors encoders of

each joint are recorded at a rate of 1000Hz. This is then re-sampled to a fixed

number of points and the data is transform from the joint space to the task space

for training the model of the motion. With the GMM and GMR algorithms the

models of the position and orientation dynamics are learned. An iterative al-

gorithm, Binary Merging (BM), which guarantees to produce stable non-linear

dynamics (Khansari-Zadeh & Billard, 2010), was used to learned the models.

Finally the robot is provide with the models of the motion dynamics for its re-

production of the task.

Reproductions experiments on both tasks were conducted under various

spatial and temporal perturbations of the position and orientation component;

and implementing the controllers presented in Chapter 4, decoupled and fully

coupled controllers of the position and the orientation. The results are summa-

rize in the Figures 6.9, 6.10, 6.11, 6.12.
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I. Fully Coupled Controller: (Orientation Component)

Training Data DeCoupled  Controller Target before perturbation Target after perturbationPartial Coupled ControllerCoupled  Controller

Spoon in Cup: Reproductions with perturbation on the position, target move as the robot approaches the cup

II. Partially Coupled & DeCoupled Controller: (Orientation Component)
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Figure 6.9: Reproductions of task “place spoon in cup” with a perturbation on the target position

I. Fully Coupled Controller: (Orientation Component)

Training Data DeCoupled  Controller Target before perturbation Target after perturbationPartial Coupled ControllerCoupled  Controller

Spoon in Cup: Reproductions with perturbation on the orientation

II. Partially Coupled & DeCoupled Controller: (Orientation Component)
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Figure 6.10: Reproductions of task “reach and grasp spoon” with a perturbation on the target

orientation
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I. Fully Coupled Controller: (Position Component)

Training Data DeCoupled  Controller Target before perturbation Target after perturbationPartial Coupled ControllerCoupled  Controller

Reach and Grasp for Spoon: Reproductions with perturbation on the position.

II. Partially Coupled & DeCoupled Controller: (Position Component)
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Figure 6.11: Reproductions of task “reach and grasp spoon” with a perturbation on the target

position

I. Fully Coupled Controller: (Orientation Component)

Training Data DeCoupled  Controller Target before perturbation Target after perturbationPartial Coupled ControllerCoupled  Controller

II. Partially Coupled & DeCoupled Controller: (Orientation Component)
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Figure 6.12: Reproductions of task “reach and grasp spoon” with a perturbation on the target

orientation
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6.2.3 Remote Collaboration: Human-robot collaborative working at a

space scenario

Figure 6.13 shows the global sequence of the remote collaborative working task

scenario.
:Human-Robot-Interface:Human_Operator

Human Teleoperation
of Robot@Moon

:HOAP@LOCALSITE

Conect to Robot

Conection ACK

:HOAP@MOON

Conection from Operator

Conection Established

Command robot MOVE TO position
Recieve Command GOTO location

I. Autonomous Walking Execute MOVE Command

Completed Execution
GOTO Command Completed

Command robot DO task

DO task request

:Shared Knowledge DataBase

When task NOT found
NO TASK FOUND
Need to Learn Task NO TASK FOUND

II. Teaching of the Task
to the HOAP Robot

NO TASK FOUND

RbD Learning 
Algorithms

Kinesthetic
Teaching

HOAP learn task

DownloadLearning Task

New Task Data Uploaded

III. HOAP@Moon
Executes the Task

Upload Learning of Task

Upload Completed ACK

Command robot DO task

Robot Ready to do Task
Task Learned ACK

Computes Disteance from Object

Determine Trajectory

Perform Walking Motions

DO task request

* Time Delay in 
H-R communication

Task found

Updates Shared DataBase
 with reproduction of task

HOAP@LOCAL Reproduces task

to the Operator for

refinement or correction

of the task model

If retrain neccesary
go back to Subtask II

Look for task

in Internal DB

Look for task

in Internal DB

Retrieve HOAP@Moon reproduction of task

Continous visual feedback

from robot cameras

Continous visual feedback

from robot cameras

Continous visual feedback

from robot cameras

Search for Task in

Shared DataBase

Search for Task in

Shared DataBase

Executes

Learn Task

Figure 6.13: Remote Collaboration Scenario Global Sequence Diagram
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Afinal experimental demonstrator combining the subsystems of the two pre-

vious sections is implemented for a remote collaboration and learning of skills,

following the experimental set-up described at the beginning of this Chapter.

The plan for the demonstrator involves three agents, a human operator, and two

humanoid robots HOAP-3. One HOAP-3 robot will be at the remote location,

which in this case represent robot working at a moon space scenario. While the

human operator and the other HOAP-3 robot would be at the same work space.

The human operator has two tasks, using an HRI interface the operator will

send instructions and monitor the state of the remote HOAP-3 robot. The Hu-

manoid Robot and the Human Operator will work collaboratively at the remote

environment achieving the task goals. The Operator will teach a robot the nec-

essary skills needed to complete this task. With the teaching and learning tech-

niques, previously presented, the operator will teach the local HOAP-3 robot,

sharing the same workspace as the operator, how to perform the task. Once

the local robot learns the task it will transmit the knowledge of the task to the

remote HOAP-3 robot at the moon scenario.

The demonstrator would follow the general plan outline in Figure 6.13:

• Human Teleoperation of Robot at moon scenario.

– The human operator connects to remote HOAP-3 through the HRI

after a connection negotiation protocol.

– The operator request the robot to go to a location where it should be

to perform the task.

– The remote robot moves autonomously to the location where the task

must be performed (Start subtask I).

– The human operator and the remote robot work collaboratively to

achieve the task. If a new or unknown request arise the remote robot

ask the operator for the teaching of a skill (Start subtask II).
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(a) (b)

Figure 6.14: Remote Collaboration: subtask I. Robot autonomous operation. (a) The robot
autonomously walks to the object. (b) The human operator request a GOTO OBJECT command.

– The robot reproduce the learning skills to complete the task, with op-

erator supervision (Start subtask III).

The sub-tasks I, II, and III are described hereafter:

I. Subtask I. Robot autonomous operation. The robot starts the first part of

the plan by going to the location specified by the human operator trough a HRI

command:

• The robot calculates the distance to the location. Detects object with vision

and computes the distance from its position.

• It determines the trajectory it must follow.

• It performs the necessary movement to reach the objective.

• Sends acknowledge to Operator that movement command have been exe-

cute in HRI.

II. Subtask II. Teaching of the task skills to the HOAP-3 robot. With the learn-

ing techniques, human operator teaches local robot the task skills:
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Figure 6.15: Remote Collaboration: subtask II. Teaching of the task skills to the HOAP-3 robot.
The human operator teaches a local robot the skills, later both robots interact trough the shared
database to transfer the models of the skill.

• The Operator will teach the local robot to perform the task require by the

remote robot to complete the task goals. Using the learning by imitation

techniques presented in Chapter 4.

• Once the task is learned the local robot uploads the skill knowledge to the

shared knowledge database. Send acknowledgement that the task have

been uploaded.

• The robot at the remote collaborative scenario downloads the skill model.

Send an acknowledgement to Operator that task is ready to be performed.

III. Subtask III. Robot reproduction of learned skills (human operator super-

vision). The robot reproduce the learned models of the skill. The operator check

performance of HOAP-3 robot, see if correction in the demonstrations are re-

quired:

• The remote robot executes the learned task, after confirmation from the

human operator that its right to proceed, the human operator request a

USE OBJECT command, this will trigger a selection of strategydialog with

the robot for selecting the type of task to reproduce with the object.
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(a) (b)

Figure 6.16: Remote Collaboration: subtask III. Robot reproduction of learned skills. (a) The
robot reproduce the learned models of the skill. (b) The human operator request a USE OBJECT
command, this will trigger a selection of strategy dialog with the robot for selecting the type of
task to reproduce with the object.

• Operator monitors execution with vision and state of the robot feedback

trough the HRI.

• If the Operator is not satisfied with the reproduction it will repeat the

teaching subtask with the local robot. If satisfied the demonstrator task

are completed.

The experiment described here was perform as part of a final demonstrator

to the Robot@CWE European project and the CARHU project funded CICYT.





Chapter 7
Conclusions

This work has focus on aspects of human-robot interaction and human-robot

working in collaborative environments. In particular the collaboration between

human and humanoid robots performing tasks in a remote collaborative work-

ing environment is studied.

In this work three forms of interaction where presented, a human-robot re-

mote collaboration interaction where a human operator and a robot at a re-

mote working environment interact through a HRI in achieving collaboratively

a global goal. A close human-robot interaction where a human teacher present

a robot several demonstration of a task for it to learn. And a robot-robot inter-

action for transferring the learned skills models of a task between a local robot,

that is taught by a human operator, and a remote robot performing task au-

tonomously in a remote collaboration environment.

A robot-human-robot collaboration architecture was developed for a human

operator and a local robot to interact with a robot located at a remote location to:

• Teleoperate and supervise remote robot performance.

• Collaborate between a robot-human team in execution of tasks.

• Allow a human operator to teach the performance of a task.
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• Share skills knowledge between robots.

By endowing a humanoid robot partner with sufficient navigation auton-

omy and situation awareness of its environments, visual and sensory percep-

tion. And providing a human-operator with a functional HRI and a versatile

communication protocol. A human-robot team could successfully engage in a

remote collaborative working environment for the accomplishment of various

task.

Alsowe have implemented learning by imitation techniques, to learnedmod-

els of the task motion dynamics with a local robot. The robot is presented

with various demonstrations of the task motion, a model of the motion is es-

timate through a set of first order non-linear multivariate dynamical systems,

to learned the motion dynamics the task are learned in a probabilistic approach

as Gaussian Mixture Models. To reproduce the trajectories one sample from

the GMM model through a Gaussian Mixture Regression. The GMR approxi-

mates the dynamical systems through a non-linear weighted sum of local linear

models. To test the learning algorithms a robot HOAP-3 was taught to perform

several manipulation skills. Controllers for decoupled and fully coupled con-

trollers of the position and the orientation were implemented. Reproductions of

the tasks were conducted under various spatial and temporal perturbations of

the position and orientation component.

To allow robot-robot interaction and the transfer of the skills to a remote

robot a Shared Knowledge Database was developed, where the models of the

skill task would reside and the remote collaborative robot could access and

download the necessary learning. The Shared Knowledge Database hold com-

mon information of the learned skills models, and the objects associated to the

task, that must be reproduce by the robots. To expand the functionalities of the

Shared Knowledge Database a “behavioural” instance could be implemented.

A behaviour, therefore, would consist of a list of task actions, with its associated
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object, that need to be executed to achieve a goal. Also the process of the remote

robot evaluating the performance and refining the learned models of the task

has not been implemented. Both of this remain as a future work for this thesis.

The systemwas tested with a remote collaboration scenario of a robot work-

ing in space. A first demonstration consisted working collaboratively with a

robot to perform a task by the teleoperation of the HOAP-3 robot. The human

agent works collaboratively with the humanoid robot by supervising, control-

ling and helping in the decisions taken by the robot. The human teleoperated

the robot looking for and object in its environment. After the object is locate the

robot approach to it autonomously and grasp it.

A final demonstrator test was conducted, it illustrates the two examples of

human-robot interaction presented in this work. One of remote control and col-

laboration. And other of cognitive interaction in which a human expert teaches

a robot to accomplish parts of a global unknown task with the use of program-

ming by demonstration and learning algorithms. The plan for the demonstrator

involves three agents, a human operator, and two humanoid robots HOAP-3.

One HOAP-3 robot will be at the remote moon space scenario. While the hu-

man operator and the other HOAP-3 robot would be at the same work space.

In the demonstrator the human operator connects to remoteHOAP-3 through

the HRI. The remote robot moves and performs autonomously according to the

requested instructions by the operator with the HRI. When new or unknown

request arise the remote robot ask the operator for the teaching of the skill. The

human teaches the local robot, and a robot-robot interaction ensue to transfer the

learned models of the task. The robot reproduce the learned skills to complete

the task, with operator supervision.

The experiment results presented on this work has been implemented as part

of a final demonstrator to the Robot@CWE European project and the CARHU

project funded CICYT.
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