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ABSTRACT
A major goal in robotis researh is to develop human-like roboti systems apa-ble of interating and ollaborating with humans. The ultimate goal is for a robotiplatform apable of performing, autonomously, in the unstrutured senario of hu-man's natural environment. Humanoid robots must arry out any number of taskswhih their human operators ould reasonably expet from them during the normaldevelopment of a typial working day. Working alongside humans means dealingwith ontinuously hanging environments and a huge variety of tasks, thus the robotsshould have the ability to ontinuously learn new skills and adapt their existing skillsto new ontexts. Therefore, humanoid robots need to display intelligent behaviour.Key attributes required to onsider the behaviour of an agent as intelligent are theabilities to learn and aquire knowledge based on its experiene, the apaity to un-derstand or omprehend urrent relevant features in the environment, the apaityfor reasoning and, also the ability to adapt.A framework for humanoid robots needs to provide a minimum degree of intelli-gene, that is, the ability to sense the environment, learn and, adapt its ations toperform suessfully under a given set of irumstanes. Humanoids must be pro-vided with systems that allow them to ontinuously learn new skills, represent theirskill's knowledge, and adapt their existing skills to new ontexts, as well as robustlyreproduing new behaviours in a dynami environment in order to ope with workingin ontinuously hanging environments and performing a huge variety of tasks.In our ontext a skill is de�ned as a motor trajetory motion learned by theagent, an aquired ability for the exeution of a task. A robot skill is a omplexation movement, reproduible when appropriate, and generalize to di�erent ontexts.Learning systems are required to aquire skills and develop task knowledge of howto at. Algorithms for learning and extrating important features of task ationsare fundamental in order to build intelligent behaviours. The Imitation Learningapproah formulates user-friendly methods by whih a human user an teah a robothow to aomplish a given task, and generalize the demonstrated movements arossa set of demonstrations. To learn the skills motion, a time independent model ofthe motion dynamis is estimated through a set of �rst order non-linear multivariatedynamial systems. We employ SEDS algorithm to learn a global dynamial estimateof the motion, through a set of �rst order non-linear multivariate dynamial systemsin a statistial approah, as movement primitives.Despite the Imitation Learning approahe's lear advantages, it would still beimpratial for the human operator to teah the robot the skills for every needed task



xand for every foreseen situation, sine the number of demonstrations the human mustprovide to the robot to generate a new model of a skill ould turn it into a tiresome andtime-onsuming proess; furthermore, it wouldn't be possible to over every requiredtask and every situation. Therefore, it is neessary to extend the lassial ImitationLearning approah to learning a skill model in a way that allows the adaptation of arobot previously learned motion skills to new unseen ontexts. The models of a skillare adapted to generate a new task by a merger, transition, ombination or updateoperation over the given robot skill models.To reprodue a task adapted for an unseen ontext the robot must be given knowl-edge of the state of the environment and the onstraints of the task. Using both, thealready learned model of a skill, and the extrated onstraints information of the ur-rent task, the model of the skill an be adapted to reprodue the task. The robotisystems must be able to store and later retrieve and use their knowledge of learnedskills. The aim would be to have a knowledge base of the robot available skills forreprodution. The knowledge base needs to hold all neessary information for repro-dution of the skills in the environment. Knowledge of the task would be distributedamong the representation of objets, ations and events of the task and the state ofthe world.This work is entred on the major idea of future roboti systems, more spei�-ally humanoid robots, that are apable of interating with humans in their homes,workplaes, and ommunities, providing support in several areas, and ollaboratingwith humans in the same unstrutured working environments. The aspiration is tohave humanoid robots ating as robot ompanions and o-workers sharing the samespae, tools, and ativities.Our fous is on topis onerning the learning, representation, generation andadaptation, and reprodution of robot skills. In this work a framework is proposedfor the learning, generation and adaptation of robot skill models for omplying withtask onstraints. The proposed framework is meant to allow: an operator to teahand demonstrate to the robot the motion of a task skill it must reprodue; to builda knowledge base of the learned skills, allowing for their storage, lassi�ation andretrieval; to adapt and generate learned models of a skill, to new ontexts, for om-pliane with the urrent task onstraints.



RESUMEN
Uno de los objetivos prinipales en la investigaión en robótia es el desarrollode sistemas robótios humanoides apaes de interatuar y olaborar on humanos.La meta �nal es desarrollar una plataforma robótia apaz de trabajar, de formaautónoma, en el entorno no estruturado del día a día de los humanos. Los robotshumanoides deben realizar un sinfín de tareas, que su operador humano pueda re-querir, durante el desarrollo normal de un día de trabajo. Trabajar junto a loshumanos signi�a haer frente a ambios ontinuos en el entorno y una gran variedadde trabajos, por lo tanto los robots deben tener la apaidad para aprender nuevashabilidades onstantemente y para adaptar las habilidades ya aprendidas a nuevosontextos. Por ellos, los robots humanoides neesitan presentar un omportamientointeligente. Atributos lave para onsiderar el omportamiento de un agente omointeligente son la apaidad para aprender y adquirir onoimientos basado en la expe-rienia, la apaidad para entender y omprender araterístias relevantes presentesen el entorno, la apaidad para razonar, y también la apaidad para adaptarse.Un sistema para robots humanoides debe proporionar un mínimo nivel de in-teligenia, i.e., la apaidad de peribir el entorno, aprender, y adaptar sus aionespara desempeñarse exitosamente bajo un onjunto de irunstanias. Robots hu-manoides, para poder afrontar los desafíos de trabajar en entornos ambiantes real-izando una gran variedad de tareas, deben estar provistos de sistemas que les permitanaprender nuevas habilidades, representar el onoimiento de sus habilidades, y adap-tar sus habilidades a nuevos ontextos, así omo también reproduir robustamentenuevos omportamientos en un entorno dinámio.Una habilidad en nuestro ontexto se de�ne omo una trayetoria motora apren-dida por el agente, una apaidad adquirida para la ejeuión de una tarea. Unahabilidad robot es un movimiento de aión omplejo reproduible uando sea nee-sario, y generalizada para diferentes ontextos. Sistemas de aprendizaje son neesariospara adquirir habilidades y generar el onoimiento de la tarea sobre ómo atuar. Al-goritmos de aprendizaje, y de extraión de araterístias importantes de una tareason fundamentales on el �n de onstruir omportamientos inteligentes. El Apren-dizaje por Imitaión formula métodos mediantes los uales un usuario humano puedeenseñar a un robot omo ejeutar una tarea, y generalizar los movimientos a par-tir de demonstraiones. Para aprender los movimientos de una habilidad un modeloindependiente del tiempo de la dinámia del movimiento se estima mediante un on-junto de sistemas dinámios de primer orden multi-variable. El algoritmo SEDS seemplea para aprender una estimaión dinámia global del movimiento, en un enfoque



xiiestadístio, omo una primitiva de movimiento.A pesar de las laras ventajas del Aprendizaje por Imitaión, resulta de todasformas poo prátio para un operador humano enseñar al robot las habilidades re-queridas para ualquier tarea y para toda situaión previsible, ya que por el númerode demonstraiones que el humano debe dar al robot para generar un nuevo modelose onvertiría en un proeso ostosos y tedioso. Por lo tanto es neesario extender elmodelo lásio de Aprendizaje por Imitaión para aprender un modelo de la habili-dad de forma tal que permita la adaptaión de los modelos previamente aprendidospor el robot a nuevos ontextos. Los modelos de una habilidad son adaptados paragenerar una nueva tarea por una operaión de fusión, de transiión, ombinaión oatualizaión sobre los modelos de habilidad robot dados.Para reproduir una tarea adaptada a un nuevo ontexto el robot neesita teneronoimiento sobre el estado del entorno y las restriiones de la tarea. Utilizandotanto el modelo de una habilidad ya aprendido omo las restriiones de la tareaextraídas del entorno, el modelo de una habilidad robot puede ser adaptado pararealizar la tarea. Es neesario que el sistema robótio permita guardar, y luegoreuperar, y usar el onoimiento de las habilidades aprendidas. El objetivo seríatener una base de onoimientos de las habilidades del robot disponibles para lareproduión. La base de onoimientos debe ontener toda la informaión neesariapara la reproduión de las habilidades en el entorno. El onoimiento de la tarea sedistribuye entre la representaión de los objetos, aiones y eventos de la tarea y elestado del entorno.Este trabajo se entra alrededor de la idea global de los sistemas robótios delfuturo, en partiular de los robots humanoides, que deben ser apaes de interatuaron los humanos en sus hogares, lugares de trabajo y omunidades, prestando apoyoen varias áreas y olaborando on los seres humanos en su entorno de trabajo. Laaspiraión es tener robots humanoides atuando omo ompañeros de trabajo queompartiendo el mismo espaio, herramientas y atividades que los humanos.Nuestra atenión se entra en temas relaionados on el aprendizaje, la repre-sentaión, la generaión y la adaptaión, y la reproduión de habilidades robot. Eneste trabajo se propone un sistema para el aprendizaje, la generaión y adaptaiónde modelos de habilidad del robot para umplir on las restriiones de la tarea.El sistema propuesto permite: enseñar y demostrar al robot el movimiento de unahabilidad que debe reproduirse; onstruir una base de onoimientos de las habil-idades aprendidas lo que permite su almaenamiento, lasi�aión y reuperaión;generar y adaptar modelos de habilidades ya aprendidos a un nuevo ontexto para elumplimiento de las restriiones de la tarea atual.
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1. INTRODUCTIONWork on this thesis fouses on the development and implementation of tehniquesthat allow humanoid robots the ability to ontinuously learn new skills and adapttheirs existing skills to new ontexts. For this goal it is proposed to follow a frameworkthat allows, i) for an operator to teah and demonstrate to the robot the motions ofa skill it must reprodue; ii) to build a knowledge base representation of the learnedskills allowing for its storage, lassi�ation and retrieval; iii) generate and adaptlearned models of a skill, to new ontexts, for ompliane with the urrent taskonstraints.Long before the work of Karel Capek gave us the wordRobot , whih �rst appearedin �R.U.R. (Rossum's Universal Robots)� in 1920, the idea of automated mahinery,apable of performing a variety of funtions and tasks, and of working and servinghumans, has been a part of the olletive imagination of mankind. Various examplesof attempts to build suh automatons an be found, from the earlier endeavours of theanient Greeks and Arab ivilizations, to the work of in�uential thinkers like Leonardoda Vini's robot, . 1495, et. The urrent vision of robotis in soiety stems fromtelevision, �lms and siene �tion; however, tehnologial advanes throughout the20th entury have allowed for the development of roboti solutions, in industrial andmanufaturing appliations, to beome a reality. It is the author's vision, that inperhaps a not too distant future, there will be a world in whih humanoid robotsand humans will work and interat side by side, sharing the same spae, tools, andativities.This hapter lays out the motives and goals for our researh and presents thebakground of the topi as a basis for the remainder of the doument. Setion 1.1presents the issues and motivations that inspired the work on this thesis. Setion1.2 presents the aim and objetives pursued in this work. Setion 1.3 presents theontributions of this thesis. In Setion 1.4 the outline for the remainder of this workis desribed.1.1 MotivationsSine the 1980s, robots have been progressively introdued in the industry for theautomation of manufaturing proesses performing preise and repetitive tasks, han-dling deliate or dangerous substanes, lifting heavy objets, et. Roboti systemshave enjoyed wide appliations in several areas suh as the automotive, hemial,eletronis and food industries. As tehnologial developments in robotis sienehave advaned, the range of roboti appliations has expanded from its initial dom-inant industrial settings into more day to day aspets of the human world. The



2 1. Introdutionnext generations of robots will need to be able to interat with humans at homes,in the workplae, and in the ommunity, providing support in several areas, suhas, servies, entertainment, eduation, healthare, manufaturing, and assistane[Siiliano and Khatib, 2008℄.One major goal in robotis researh is to develop human-like roboti systems apa-ble of interating and ollaborating with humans in the same unstrutured workingenvironments. Humanoid robots are partiularly suitable for these duties beausethey are able to interat with the environment using the same tools designed forhumans, and an ollaborate with humans in several ways [Ambrose et al., 2000℄,[Monje et al., 2008℄. Also, it is believed [MaDorman and Cowley, 2006℄, that themost human-like of robots will be best equipped for reiproal relationships with hu-man beings. Sine humanoid robots are designed to resemble a human shape andto possess human apabilities, they would be ideally suited for performing tasks andto safely share the same spae and ativities with people without the need to adaptthe environments and with a higher level of aeptane and a more intuitive way forinteration between human operators and the roboti agents. We envision a worldwhere humanoid robots and humans would work, ollaborate and interat together,sharing the same spae, tools, and ativities.From the �rst full-saled humanoid robot, WABOT-1 developed by Waseda Uni-versity [Sugano and Kato, 1987℄, and the series of roboti prototypes from Honda, E-series 1986-1993, P-series 1993-1997 [Hirai et al., 1998℄, steady progress an be seenin the development of humanoid robots. Reent years have seen an inrease in re-searh of humanoid robots suh as the WABIAN-2 from the University of Waseda[Ogura et al., 2006℄, ASIMO of Honda [Sakagami et al., 2002℄, the HRP-2 from theNational Institute of Advaned Industrial Siene and Tehnology of Japan (AIST)[Kaneko et al., 2004a℄, the development of the iCub robot [Tsagarakis et al., 2007℄,for researh into human ognition and arti�ial intelligene at the Italian Instituteof Tehnology, the Robonaut projet at NASA's JSC [Ambrose et al., 2000℄, Robo-naut 2 was moving aboard the International Spae Station on Otober 2011, the �rsthumanoid robot in spae [Diftler et al., 2011℄, Boston Dynamis PETMAN anthro-pomorphi robot whih an move dynamially like a real person [Raibert, 2010℄, theHOAP robot series of Fujitsu [Riezenman, 2002℄ or the RH series of humanoid robots[Arbulú et al., 2009℄, [Martinez et al., 2012℄, designed at the Universidad Carlos IIIde Madrid.Figure 1.1, presents some of the most relevant developments in humanoid robotisresearh. The �eld of humanoid robots has presented important advanes over theyears. Yet many hallenges still remain before robots an be fully integrated as partof everyday human ativities, espeially when thinking about humanoid robots, whihmust naturally be expeted to deal with a wide range of movements and tasks; theinherent omplexities assoiated with the need to operate in the real world mustalso be taken into onsideration. In order to overome some of these hallenges,humanoid robots must be provided with the apabilities to interat autonomouslyand intelligently with humans and the environment. They must also be able to learnand adapt their behaviour to ahieve goals and reat to hanges in a omplex andevolving range of di�erent situations.
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Fig. 1.1: Historial developments in the �eld of humanoid robotis.Top row (left to right): WABOT-1 of Waseda University (1973), ASIMOof Honda (2000), NASA Robonaut-2 (2010).Middle row (left to right): WABIAN-2 Waseda University (2006), HRP-2from AIST (2002), iCub from IIT (2004).Bottom row (left to right): PETMAN of Boston Dynamis (2010), TEOfrom Universidad Carlos III de Madrid (2012), HOAP-3 of fujitsu (2005).



4 1. IntrodutionA humanoid robot needs to be provided with intelligene, that is, the ability tosense the environment, make deisions and take ations, to reognize objets andevents, represent knowledge, reason and plan for the future and to at suessfullyunder a large variety of irumstanes. Key attributes required to onsider the be-haviour of an agent as intelligent are the abilities to learn and aquire knowledgebased on its experiene, the apaity to understand or omprehend urrent relevantfeatures in the environment, the apaity for reasoning, and also the ability to adapt.In order to have humanoid robots ating �uently in the world, interating with dif-ferent objets and people, they must be able to adapt their motor ontrol to dynamihanges in their interation with the world. Robot systems must be ontinuouslyself-adapting [Brooks, 1996℄. An intelligent agent is one that is �exible to hang-ing environments and hanging goals, learns from experiene, and makes appropriatehoies given pereptual limitations and �nite omputation [Poole et al., 1998℄. Intel-ligene requires an interonneting system that enables the various system elementsto interat and ommuniate with eah other, integrating pereption, reason, learn-ing and behaviour generation [Albus, 1991℄. [Langley et al., 2009℄ identi�ed, froma roboti systems point of view, the di�erent funtions of ognition as pereption,learning, motor ontrol, reasoning, problem solving, goal orientation, knowledge rep-resentation and ommuniation. Control arhitetures for intelligent humanoid robotsneed to onsider these systems. A framework for humanoid robots needs to provide aminimum degree of intelligent behaviour, that is, the ability to sense the environment,learn, and adapt its ations to perform suessfully under a given set of irumstanes.Learning systems are required to aquire skills and develop task knowledge of howto at. Algorithms for learning, and extrating important features of task ations,and exhibiting altered behaviour beause of what has been learned, are fundamentalin order to build intelligent behaviours. For humanoid robots to work with humans inunstrutured environments, the robot must be able to perform dynamially hangingtasks that require great adaptations to reat to new onstraints. The programming ofspeialized ontrollers for every single task and situation that ould be enounteredwould not be a pratial approah. To develop the apaities expeted from futurehumanoid robots, �exible and generi ontrol methods that an adapt to varioustasks and robot's onstraints are neessary. Robot Programming by Demonstration(RPbD) [Billard et al., 2008℄, also known as Imitation Learning or Learning fromDemonstrations (LfD) [Argall et al., 2009℄, has appeared as one way to respond tothis growing need for intuitive ontrol methods.The Imitation Learning approahes fous on the development of algorithms thatare generi in their representation of the skills and in the way they are generated. Im-plementing LfD methods o�ers the possibility of making learning faster, in ontrastto tedious reinforement learning methods or trial-and-error learning. LfD formulatesuser-friendly methods by whih a human user an teah to a robot how to aom-plish a given task, simply by demonstrating this task [Gribovskaya et al., 2010℄, andgeneralizing the demonstrated movements aross a set of demonstrations. LfD fo-uses on three important issues: e�ient motor learning; the onnetion betweenation and pereption; and modular motor ontrol in the form of movement primi-tives [Shaal, 1999℄. To reprodue a skill in a new situation, the robot annot simply
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Demonstrations Model of the skill ReproductionFig. 1.2: Generalization of a skill in Robot PbD by extrating the statistial modelaross multiple observations. Adapted from [Billard et al., 2008℄

opy an observed behaviour; it must have the apability to generalize. In LfD, oneommon approah for generalizing a skill onsist in reating a model of the skill basedon several demonstrations, performed in slightly di�erent onditions [Calinon, 2009℄.The goal is on exploiting the variability inherent to the various demonstrations andto extrat the essential omponents of the task. Figure 1.2 illustrate this proess.Observing multiple demonstrations an help to generalize a skill by extratingthe task requisites. Current approahes to generalizing skills an be broadly di-vided between two trends. Firstly, symboli level representation, desribed by thesequential or hierarhial organization of a disrete set of primitives that are prede-termined or extrated with prede�ned rules. Seondly, trajetory level representation,desribed by temporally ontinuous signals representing di�erent on�guration prop-erties hanging over time [Calinon, 2009℄. One trend of researh followed in thiswork investigates how statistial learning tehniques deal with the high variabilityinherent to the demonstrations [Calinon et al., 2007℄, using Gaussian Mixture Models(GMM) to enode a set of trajetories, and Gaussian Mixture Regressions (GMR)to retrieve a smooth generalized version of these trajetories and assoiated variabil-ities, allowing learning non-linear dynamis of the motions as movement primitives[Gribovskaya et al., 2010℄.The Learning from Demonstration (LfD) approahes o�er natural, fast and im-pliit means of teahing a robot new skills. But even then, the number of demonstra-tions the human must provide the robot with, in order to generate a new model ofa skill ould turn it into a tiresome and time-onsuming proess; and it would alsobeome impratial for the human operator to teah the robot every neessary taskand every foreseeable situation. Hene, it will be important to enrih this approahwith the apaity to generate new skill models. Also, though LfD o�ers the apabilityto generalize a learned model, this generalization is somewhat limited to hanges ininitial onditions or to relatively small perturbations during the exeution. Therefore,it is neessary to extend the lassial LfD approah of learning a skill model in a waythat allows the adaptation of a robot previously learned motion skills to new unseenontexts. Some very important questions need solving in this �eld: Is there a basiset of primitives? How an new primitives be learned, and old primitives be ombinedto form higher level movement primitives? How an sequening and reognition ofsequenes of movement primitives be aomplished? [Shaal, 1999℄.
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InputFig. 1.3: Propose framework for the generation and adaptation of learned models ofa skill for omplying with task onstraints. A knowledge base of skills mod-els, learned through demonstration, is built. From the pereption of theworld state the onstraints of a requested task are extrated. A skill modelis retrieve from the knowledge base a new adapted task model is generatedfor reprodution using the urrent task onstraints and the models of askill in the knowledge base.1.2 Aim of this ThesisFor robots, working alongside humans means dealing with ontinuously hangingenvironments and a huge variety of tasks whih they are expeted to perform. Thushumanoid robots should have the ability to ontinuously learn new skills and adaptthe existing skills to new ontexts. As stated in the previous setion, for futurehumanoid robots the ultimate goal is for a roboti platform apable of performing,autonomously, in the unstrutured senario of humans natural environment, be thisby itself or sharing the workspae with a human. Humanoid robots must realizeany number of task whih ould be reasonably expeted from them by their humanoperators during the normal development of a typial working day.It is neessary for humanoid robots to display a su�ient level of intelligent be-haviour; this must inlude the apaity to pereive and understand, to hoose wisely,and to at suessfully under a large variety of irumstanes [Albus, 1991℄. Hu-manoid robots, in order to ope with working in ontinuously hanging environmentsand performing a huge variability of tasks, must be provided with systems that allowthem to ontinuously learn new skills and adapt their existing skills to new ontexts,as well as to robustly reprodue new behaviours in a dynami environment.To advane in the ahievement of this vision, though still a long way from theultimate goals of a perfet humanoid, we propose to follow a framework that allows:
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ξ
2

ξ1Fig. 1.4: Robot skill modelled with a mixture of Gaussian funtions. The robotskill trajetory in the bottom �gure is modelled by 4 Gaussian funtionsdrawn with the 3-sigma ellipses with their entres at their respetive means
µ, the magnitude and diretion of the ellipses are given by the eigenve-tors and eigenvalues of the ovariane matrix Σ modelled in the learningproess to follow the shape of the skill trajetory. The top �gure showsthe orresponding Gaussian distributions of the 4 Gaussian omponents inthe robot skill model. The �gure is shown in a two dimensional plane forarbitrary state variables ξ1, and ξ2.

• An operator to teah, and demonstrate, to the robot the motion of a task skillit must reprodue.
• To build a knowledge base of the learned skill models allowing for their storage,lassi�ation and retrieval.
• To adapt and generate learned models of a skill, to new ontext, for omplianewith the urrent task onstraints.Our propose framework is illustrated in Figure 1.3.A Skill in our ontext is de�ned as a motor trajetory motion learned by theagent, an aquired ability for the exeution of a task. A robot skill is a omplex ationmovement reproduible when appropriate, and generalized to di�erent ontexts.To learn the skills motions, a time independent model of the motion dynamisis estimated through a set of �rst order non-linear multivariate dynamial systems.[Ijspeert et al., 2002℄ propose an approah to Imitation Learning, and on-line tra-jetory modi�ation, by representing movement plans based on a set of non-lineardi�erential equations with well-de�ned attrator dynamis. We follow a framework



8 1. Introdutionpresented on [Gribovskaya and Billard, 2009℄, that allows learning of non-linear dy-namis of motion in manipulation tasks and generating dynamial laws for ontrolof position and orientation, and employed [Khansari-Zadeh and Billard, 2011℄ algo-rithm to learn global dynamial estimate of the motions through a set of �rst ordernon-linear multivariate dynamial systems in a statistial approah.We build a model estimate of our robot skill, M̄, from a set D of N-dimensionaldemonstrated data points, {ξi, ξ̇i}Di=0, where ξ is a state variable desribing the state ofthe robot system. The motion is governed by a �rst order autonomous ordinary di�er-ential equation, ξ̇ = f(ξ, θ). Following a statistial approah an estimate f̂ is de�nedthrough a Gaussian Mixture Model (GMM). The robot skill is modelled by the pa-rameters θ of f̂ determined by f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, where θi = {π, µ,Σ}of the N i Gaussian de�ne the prior, mean and ovariane matrix, parameters of the iGaussian omponent, and K is the total number of Gaussian funtions required to es-timate the motions dynamis. After training, to reover the expeted output variable
ξ̂ a Gaussian Mixture Regression (GMR) proess is used [Gribovskaya et al., 2010℄.Figure 1.4 illustrates the enoding the dynamis of a motion with a mixture of Gaus-sian funtions.In order for the robot to be able to perform various di�erent ations a repositoryof the available skills is neessary. The aim is to populate a knowledge base of therobot learned skills for reprodution. The knowledge base needs to hold all neessaryinformation for reprodution of the skills. The tasks the robot is requested to arryout are onsidered to be of the form 〈 robot pik blue ball 〉, 〈 robot plae up on plate
〉, and so on. in whih a Task is desribed requesting an operation upon an objetfor the exeution of a goal oriented skill ation. Complex sets of behaviours an bebuilt by a planned sequening of tasks.One intuitive way in whih to represent elements in the knowledge base is over twoprinipal diretions of objets and ations. However, objets and ations alone do notprovide su�ient and omplete information for a robot situated in its environmentto be apable of performing its task adequately. For instane, for a single behaviourthere ould be more than one available pairing of 〈 objet, skill model 〉, leading toambiguities. At least one more diretion for representations would seem neessary,suh as a desription of the state of the environment. To resolve this problems it issuggested to onsider two more representational diretives, one for the task goal, andone for the on�guration of the urrent state of the world, mainly objets positionand relationships between themselves, the robot and a human operator.In this way, a Task ould be represented by the phrase �Do an Ation (A),To an Objet (O), For ahieving Goal (G), When State of the World is(W)� . Therefore, the tuple formed by 〈 Do = Ation(A), To = Objet(O), For =Goal(G), When = World State(W) 〉 holds all neessary information for the robotreprodution of a task. The framework in Figure 1.3 would allow the robot to extratthe knowledge about objets, goals, and the urrent state of its working environmentfrom the reeived pereptual input. The roboti system would be able to retrieve anappropriate Skill from the knowledge base by �nding the answer to the phrase �DoAtion (A) ... � for its urrent onstraints when being presented with the triple
〈Objet, Goal, World State〉.
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Fig. 1.5: Representation of the skills in the knowledge base. Example of a robotskill model, represented by a Cartesian trajetory, being seleted from theurrent onstraints of the task given by the objet, goal and world state.As an example let us onsider a simple ase in whih a humanoid robot is requestedto plae a spoon inside a up, and plae the up on top of a sauer plate, as if itwould be serving a up of tea or o�ee. Therefore to omplete this request the robotwould be required to perform several tasks, suh as grasping the up and plaingthe up on top of the sauer plate. Eah of these tasks has an Objet 〈Spoon, Cup,Plate〉, a Goal 〈Grasp, Pik, Plae〉, and World State in whih the task must beperformed. The robot knowledge base would have di�erent models of skills allowingit to perform di�erent ations whih may permit the robot to ful�l various tasks indi�erent situations. To suessfully omplete the given tasks a �tting Ation must beexeuted by the robot retrieving from its knowledge an appropriate model of a skillfor the onstraints given by the Tasks 〈Objet, Goal, World State〉.Imagine for instane the exeution of the 〈 robot plae spoon inside up 〉 tasks.To perform the task it is assumed that the spoon objet has already been piked bythe robot and is in one of its hands, so the target objet for the task is the up 〈Objet: up〉. The goal of the task is to attain a state in whih the spoon has been plaedinside the up, so 〈Goal : plae spoon〉. To omplete the task goal the robot ouldhave learned and stored di�erent skill models in its knowledge base, eah appropriateto suessfully exeuting the task in di�erent states. Therefore the state of the worldmust be evaluated next, let's assume it ould be one of two states; 〈Ws1 〉 in whihthe up is on the table inside the robot's arms workspae, and a 〈Ws2 〉 in whih theup is grasped in the robot's other hand. And that for the urrent exeution of the
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skills must be adaptable to onditions of its operating environment, they must alsobe updatable when given new information. Additionally, new skills must be generateby merging two or more simpler skills into a new skill or by ombining models togenerate new models. Also, working with a set of basi or primitives skills must givethe ability to reate sequenes and transitions between robot skill models to generateomplex behaviours.Joining multiple models an provide improvements in performane, di�erent meth-ods an be found for the ombination of models in the �eld of mahine learning andpattern reognition [Bishop, 2006℄. Methods inlude using the average preditionsmade by di�erent learned models, seleting one model out of several, to make thepredition as a funtion of the input variables. In this way, di�erent models beomeresponsible for making preditions in di�erent regions. Also, probabilisti methodsknown as mixtures of experts, the models an be viewed as mixture distributionsonditioned by the input variables, the idea behind this is that di�erent omponentsof the learned models of skills an model the new skill distribution in di�erent re-gions of input spae, and will also look to determine the funtions that deide whihomponents are dominant in whih region. Figure 1.7 illustrates the proess.



12 1. Introdution1.3 ContributionsThe work that lead to this thesis entred around the major idea of future robotisystems, more spei�ally humanoid robots, that are apable of interating with hu-mans in their homes, workplaes, and ommunities, providing support in several areas,and ollaborating with humans in the same unstrutured working environments. Theaspiration is to have humanoid robots ating as robot ompanions and o-workerssharing the same spae, tools, and ativities.Work on this thesis fouses on topis onerning the learning, representation,generation and adaptation, and reprodution of robot skills. The main ontributionspresented in this thesis are:1. The proposition of a framework for the learning, generation and adaptation ofskill models to omply with task onstraints, Figure 1.3. The goal of the devel-oped framework is to provide a minimum degree of intelligene for humanoidrobots to allow them to work and ollaborate with humans. The framework pro-vides humanoid robots with systems allowing them to ontinuously learn newskills, represent skill's knowledge, and adapt existing skills to new ontexts, aswell as to robustly reprodue new behaviours in a dynamial environment.2. The appliation and evaluation of di�erent Learning from Demonstration algo-rithms and modalities. Through the work on this thesis, a number of ImitationLearning tehniques have been studied and implemented in teahing and learn-ing with the robot, the di�erent sets of skills employed in the rest of the frame-work. Methodologies used for the reprodution of the learned motion dynamisof the robot skills were reviewed, omparing the performane of the methodspresented through this work.3. The development and implementation of a knowledge base. The knowledgebase represents knowledge of objets, ations, world state and task goals. Ourrepresentations inludes information about objets and ations, the world andsituations, events and goals, for e�etive situated performane. A method forthe representation of the knowledge of the skills and task onstraints needed forreprodution has been developed.4. The development and implementation of modalities that allows for the adapta-tion and generation of new skill models. The development of humanoid robotisystems requires that models of the skill an be operated upon to generatenew behaviours of inreasing levels of omplexity. Di�erent modes were devel-oped and implemented that allow for the adaptation and generation of new skillmodels based on the already learned models of skills.5. The evaluation of di�erent senarios to test the performane of the variousmodules implemented in our framework and to provide separate validation forthe operation of the system. The proposed framework was demonstrated witha humanoid robot HOAP-3.



1.4. Outline 131.4 OutlineThis doument is divided into 5 hapters, in addition to this introdutory one,and a �nal hapter of disussion and onlusion bringing the total to 7 hapters. Thehapters, and the topis they address, are organized as follows:Chapter 2 In this hapter a state of the art review is presented on the hallengesof intelligent humanoid robots and on di�erent proposals for robot arhitetures, inplanner based, behaviour based and ognitive exeution arhitetures. At the end, ageneral desription of the framework proposed in this thesis is also given.Chapter 3 This hapter disusses the learning by demonstration framework usein this thesis. A review of the LfD algorithms employed for learning the skills models,as well as the state of the art on the �eld is given.Chapter 4 This hapter disusses the representation of skills knowledge. Themethod developed for the representation, storage, lassi�ation and retrieval of skillsknowledge from the knowledge base is desribed throughout every setion of thishapter. The struture and the organization of the knowledge base is developed.Chapter 5 This hapter disusses the proess for the adaptation and generationof skills models. The proess for adapting a learned robot skill to the task onstraintsis desribed. The algorithms developed for generating and adapting a skill are de-tailed throughout the hapter.Chapter 6 This hapter disusses the reprodution of skills in the proposed frame-work. A detailed desription of the implementation proess of the framework is given.The experimental study and validation of the framework showing the adaptation oflearned models of a skill, to omply with a urrent task onstraint, is presented.Chapter 7 The last hapter, disusses the ontributions of this thesis and de-sribes urrent and future work.
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2. INTELLIGENT ARCHITECTURESFOR HUMANOID ROBOTS2.1 Outline of the ChapterThis Chapter presents a review of developments, open issues and hallenges inthe �eld of humanoid robotis. It also fouses on di�erent proposals for intelligentagent arhitetures for roboti systems. As outlined in the introdution, one majorgoal in robotis researh is the development of human-like robot systems apable ofinterating and ollaborating with humans in the same unstrutured working envi-ronments. These humanoid robot systems would need to interat autonomously andintelligently with humans and the environment, they must also be able to learn andadapt their behaviour to ahieve goals and to reat to hanges in a omplex andevolving range of di�erent situations. Intelligent humanoid roboti systems need topresent suitable motor skills; the apaity to sense and pereive their environment;the natural means for human-robot interation and a high level of autonomy andintelligent behaviour. This presents many hallenges that need to be overome. Areview of di�erent approahes and arhiteture proposals aimed at takling this issuesand developing intelligent roboti systems is presented. From deliberative planningarhitetures to behaviour-based and hybrid approahes and ognitive arhitetures.Finally, a general desription of a framework for a ognitive model for the generationand adaptation of learned models of robot skills, whih an be used to omply withtask onstraints presented in this thesis is also given. The organization of this hapteris as follows:
• Setion 2.2 disuss the hallenges of developing intelligent humanoid robot sys-tems. Future human-like robot systems need to perform dynamially hangingtasks and be able to operate in the real world. Several issues emerge for motorontrol, pereption, interation and intelligent behaviour.
• Setion 2.3 presents a review of approahes to robot planner-based arhitetures.Deliberative or hierarhial planning arhitetures follow the Sense-Plan-Atyle from lassial AI approahes. Intelligene resides on a entral planner,with world models and system goals that produe appropriate plans of ationfor robot reprodution.
• Setion 2.4 presents a review of approahes to robot behaviour-based arhite-tures. Behaviour-based arhitetures present diret oupling between perep-



16 2. Intelligent Arhitetures for Humanoid Robotstion and ation with no need for internal models. Intelligene emerges as aresult of an embodied agent interation with the environment.
• Setion 2.5 presents a review of approahes to robot hybrid deliberative/rea-tive arhitetures. Hybrid arhitetures advoate the use of the advantageousaspets of both the behaviour-based and the planner-based approahes om-bining them to produe a new arhiteture that an deal with more omplexsenarios.
• Setion 2.6 presents a review of approahes to robot ognitive arhitetures.Many attempts at developing arhitetures to provide ognitive proess arepresented.
• Setion 2.7 presents the proposed framework followed in the rest of this work toallow the generation and adaptation of learned models of a skill for omplyingwith urrent task onstraints.2.2 Challenges in Humanoid Robot DevelopmentThe idea of automata moving mahines in general, and human-like in partiular,whih are apable of performing a variety of funtions and tasks, and of workingand serving humans, have been a part of the olletive imagination of mankind forenturies.The drive to developed human-like robots is supported by three basi ideas: 1)Sine humanoid robots are designed to resemble a human shape and to possess hu-man apabilities, they would be ideally suited to performing tasks and to safely sharethe same spae and ativities with people without the need to adapt the environ-ments. Designing general purpose humanoid robots would make them more �exiblein handling a wide range of hore; and less expensive and e�ient than developingspeialized robots for every task. 2) A humanoid robot would allow for more naturalmeans of interation, sharing a similar embodiment would give for humans an easierway to teah a robot and to understand its movements and intentions. Also, the nat-ural human tendeny of anthropomorphizing objets would be bene�ial in reatinghuman-humanoid robot partnerships. 3) It is expeted that human-like robots wouldbe more friendly and aeptable for reiproal relationships with human beings. Arobot system with a human-like shape and behaviour would be more aeptable toregular itizens and non-roboti experts as a household servant and ompanion or asa o-worker and partner to perform everyday tasks.Historial Developments in Humanoid RobotisMany projets and researh laboratories have put their e�orts into designing,building and testing humanoid roboti systems. Over the years great progress hasbeen made in this �eld, and urrently humanoid robots that an walk, limb stairs,arry objets, perform omplex ativities like dane routines and interations with



2.2. Challenges in Humanoid Robot Development 17people are available. These advanes are very enouraging and foreast the majorprogress to ome. Roboti researhers envision a world, sooner rather than later,where humanoid robots and humans would work, ollaborate and interat togethersharing the same spae, tools, and ativities.Sine the �rst full-sale humanoid robot, WABOT-1, developed by Waseda Univer-sity [Sugano and Kato, 1987℄, great advanes have been made in humanoid robotisresearh, espeially during the last two deades. Detailing the advanes and researhe�orts in the �eld during this time would be too extensive. Table 2.1 summarizes themajor historial developments in humanoid robotis researh. Currently there arerobots that walk, run or limb stairs; robots that an handle and manipulate objets,or arry heavy loads; robots that interat and play games with people and hildrenand robots for entertainment that have taken part in shows and demonstrations,daning or performing omplex horeographies. However, all these robots exist in thesope of researh departments of universities or tehnology ompanies, there are noommerially available humanoid robots for general publi use as of today. Despiteall the advanes, the ultimate goal of an intelligent and autonomous humanoid robotompanion is still far from reah.Date Name (Researh Center) Development1921 R.U.R. (Rossum's UniversalRobots) Karel Capek introdued the word �robot� in his playR.U.R.1961 Unimate (Unimation) The �rst digitally operated and programmable indus-trial robot, the Unimate reated by George Devol, isinstalled on a General Motors assembly line.1973 WABOT-1 (Waseda Univer-sity) WABOT-1, the �rst humanoid robot, onsisted of alimb-ontrol system, a vision system and a onversationsystem, it was able to walk.1984 WABOT-2 (Waseda Univer-sity) WABOT-2 was reated as a �speialist robot�, a musi-ian humanoid robot able to ommuniate with a per-son.1986 E-series (HONDA) Honda researh and development projet was initiatedwith the E-series of walking biped robots, E0-E6 from1986 to 1993.1990s Cog (MIT) Cog was an upper-torso humanoid robot build as a gen-eral purpose �exible and dexterous autonomous robotwith the sienti� goal of understanding human ogni-tion.1993 P-series (HONDA) Development of the P-series of manlike models with up-per limbs and body, P1-P3 from 1993 to 1997.1995 WABIAN (Waseda Univer-sity) WABIAN humanoid robot was developed, is a robotwith a omplete human on�guration that is apable ofwalking on two legs, and it is apable of arrying things.1998 HERMES (Bundeswehr Uni-versity Munih) Servie robot HERMES presented for the �rst time atHannover Fair, an experimental robot of anthropomor-phi size and shape.2000 ASIMO (HONDA) HONDA introdued the �rst version of ASIMO, it anrun, walk on uneven slopes and surfaes, turn smoothly,limb stairs, and reah for and grasp objets.Tab. 2.1: Historial developments e�orts in the �eld of humanoidrobotis



18 2. Intelligent Arhitetures for Humanoid RobotsContinued from previous page.Date Name (Researh Center) Development2000 ARMAR (KIT) The Karlsruhe Institute of Tehnology built the hu-manoid robot ARMAR, with a mobile wheel-drivenplatform, two anthropomorphi redundant arms, twosimple gripper and a head.2001 QRIO (Sony) Sony unveiled the Sony Dream Robot, later namedQRIO, a new line of humanoid robots for entertainmentrobots.2001 HOAP-1 (Fujitsu) Fujitsu produe its �rst ommerial humanoid robotnamed HOAP-1.2001 KHR-0 (KAIST) Korea Advaned Institute of Siene and Tehnologybegan developing humanoid robots, starting with KHR-0 whih has 2 legs without the upper body.2001 Leroy (UC3M) Universidad Carlos III de Madrid began e�orts re-searhing humanoid robots with the development of the7 DOF bipedal robot Leroy.2002 HRP-2 (AIST) Developed under the HRP projet. Biped walking robotHRP-2 is 154 m in height with a mass of 58 kg, inlud-ing batteries.2002 ARMAR-II (KIT) The seond version of the ARMAR series, the anthro-pomorphi body of the robot was plaed on a mobileplatform, it was able to bend forward, bakward andsidewards.2002 Robonaut (NASA) Developed by NASA and DARPA, with a human formand sale, Robonaut was design to use many astronauttools and work in the same tight orridors as astronauts.2002 RH-0 (UC3M) Developed at Universidad Carlos III de Madrid, RH-0was a full-size humanoid robot, with 21 DOF.2003 HOAP-2 (Fujitsu) HOAP robots were designed for broad range applia-tions for Researh and Development of robot tehnolo-gies.2004 KHR-2 (KAIST) KHR-2 was built as a omplete humanoid with 41 DOFand featured improved sensoring with the addition ofCCD ameras, inertial sensors, and tilt sensors.2004 iCUB (IIT) Italian Institute of Tehnology began developing theiCub humanoid robot, its aim repliating the physialand ognitive abilities of a 3 year old baby.2005 HRP-3 (AIST) The humanoid robot HRP-3 was presented as the su-ession of humanoid HRP-2, it presented improving a-pabilities of manipulation and handling.2005 KHR-3 HUBO (KAIST) Continued KASIT KHR series, HUBO design aimedto have as many DOF as possible, long working time,ompat appearanes, low development osts, minimummaintenane.2005 HOAP-3 (Fujitsu) Continued the HOAP series, HOAP-3 added movableaxis for the head and hands, CCD ameras, a miro-phone, a speaker and LEDs to show expression.2005 RH-1 (UC3M) Continued UC3M RH-1 series, RH-1 humanoid robothave 21 DOF, 150 m height, 50 kg weight, main obje-tives were stability ontrol and gait generation.Tab. 2.1: Historial developments e�orts in the �eld of humanoidrobotis



2.2. Challenges in Humanoid Robot Development 19Continued from previous page.Date Name (Researh Center) Development2006 NAO (Aldebaran Robotis) Aldebaran robotis presented is �rst humanoid robotNAO, is a small biped robot, fully artiulated, easilyprogrammable and low ost.2006 LOLA (TUM) Development of LOLA at Tehnial University of Mu-nih. LOLA is 180 m and 55 kg, build for fast, human-like, autonomous walking.2006 ARMAR-III (KIT) ARMAR-III was presented to the publi at CEBIT inspring 2006 in Hannover, ARMAR-III hopes to loselymimi the sensory-motor apabilities of humans.2006 Justin (DLR) Justin developed at DLR, the two-arm system Justin isa powerful upper body humanoid robot that is able tolift weights up to 20 kg.2008 RH-2 TEO (UC3M) Development started for the humanoid robot RH-2, re-named TEO, It has 26 DOF, a wider workspae andhigher manipulability in the di�erent on�gurations.2009 HRP-4C (AIST) AIST presented HRP-4C, it has the appearane andshape of a human being and an walk and move like one,and interats with humans using speeh reognition.2009 PETMAN (Boston Dynam-is) Boston Dynamis began developing PETMAN, the �rstanthropomorphi robot that moves dynamially like areal person.2010 Robonaut2 (NASA) NASA developed the seond generation Robonaut, up-grades inluded inreased fore sensing, greater rangeof motion, higher bandwidth, and improved dexterity.2011 ASIMO (HONDA) Honda unveiled its seond generation ASIMO Robot.The new ASIMO is the �rst version of the robot withsemi-autonomous apabilities.2011 Robonaut 2 (NASA) Robonaut 2 is the �rst humanoid robot sent into spae,arriving at the International Spae Station in early2011.2012 COMAN (IIT) IIT released the Compliant huManoid robot, CoMan,designed for robust dynami walking and balaning inrough terrain.2013 ATLAS (Boston Dynamis) Boston Dynamis presented ATLAS for the DARPARobotis Challenge.Tab. 2.1: Historial developments in the �eld of humanoid robotisImportant hallenges remain to be solved or addressed. Funtional humanoidrobots would need to exeute a wide range of movements, with high e�ieny interms of energy and performane, and in a natural human-like manner. They wouldalso need to proess information from multiple sensors into a reliable representationof the world in order to understand and reat to their environment. Humanoid robotswould need to provide means for a meaningful interation with their human partners;they must be engaging and responsive. And they must present intelligent, natural,preditable and reasonable behaviours. Muh work remains to be done in order toimprove the apabilities of humanoid robots for loomotion, pereption, interation,ognitive behaviour and ompetene at performing tasks.



20 2. Intelligent Arhitetures for Humanoid Robots2.2.1 Motion ControlA major issue for robotis in general, and more so when dealing with humanoidrobots, is motion ontrol. Unlike industrial robots, whih are limited to a well knownset of movements, and whih in general are stationary or need many displaementsaross established rails inside a room, the appeal and interest in developing humanoidrobots is that they are general and �exible in the range of tasks they an perform,as are humans, and that they would be able to move around the whole environmentas it is, instead of needing the environment to be adapted in order to allow them tonavigate it. Furthermore, sine humanoid robots are thought to work, ollaborate andinterat in proximity to people, unlike industrial robots that perform on their own aspart of automated prodution lines, humanoid robots movements must be ompliantand safe for human-robot interation. In addition to being safe, physially, humanoidrobots must at in human-like form and their movements must seem natural andpreditable in order to failitate their aeptane and the omfort of their humanompanions. All these speial needs and demands present great hallenges in thedevelopment and implementation of omplex ontrol systems, as well as the buildingand designing of humanoid robots in terms of materials, power supplies, atuators,motors, sensors, et.Building humanoid robots requires omplex mehanial designs in order to repro-due and mimi the features of human motions. A typial human being possessesseveral joints DOF. A human leg, onsidered with rigid toes, would have 3 DOF inthe hip, 1 DOF in the knee, and a 2 DOF ankle, in total, eah leg has 6 DOF of angu-lar motion [Herman, 2007℄. For eah arm, onsidering all �ngers rigid, the shoulderhas 3 DOF, the elbow is a hinge of 1 DOF, the wrist 2 DOF, and a additional 1DOF, a pivot motion of the radius rolling on the ulna, for a total of 7 DOF in thearm [Herman, 2007℄. With 6 DOF for every leg and 7 DOF in eah arm, in additionto 3 DOF for the head and waist, a typial human person would have in exess of 30DOF. This does not take into onsideration the DOF in the human hand, whih has4 DOF for eah �nger plus 5 DOF for the thumb and its over 20 DOF in total. Typ-ial humanoid robots have in exess of 20 DOF to over 40 DOF [HONDA, 2012℄,[Kaneko et al., 2002℄, [Kim et al., 2005℄, [Asfour et al., 2006℄, [Vernon et al., 2007℄,[Martinez et al., 2012℄. Most of these humanoid robots do not have fully artiulatedhands. The Shadow hand, one of the most advaned, o�ers 24 DOF, position sensingon every joint and pressure sensing on every musle [Company, 2012℄.Key designing deisions in humanoid robots are whih materials and atuatorsto employ, as this would determine the weights and loads of the robots, and limitsome apaities of the robot, suh as speed and strength, maximum arrying pay-loads, and omplexity of the low-level ontrol. Most humanoid robots have employedDC motors, either brushed or brushless, but some examples an be found that imple-ments hydrauli atuators, as Saros, or pneumati atuators, as Luy [Behnke, 2008℄.DC servo motors with harmoni drive and redution gear systems are employed forthe ASIMO [Hirai et al., 1998℄, HRP [Akahi et al., 2005℄, KHR [Park et al., 2004℄,ARMAR [Albers et al., 2006℄ and TEO [Monje et al., 2011℄ humanoid robots. Fu-ture tehnologial advanes will allow the development of smaller, more powerful,



2.2. Challenges in Humanoid Robot Development 21more e�ient and less expensive atuators. Sine the role of humanoid robots is oneloser to humans than that of industrial robots, preision, fore and speed are notas important; however while the requirement for safety and ompliane take pree-dene. Reent approahes aim at developing humanoid robots safe for human-robotinteration exploring the use of ontrollable sti�ness atuators like arti�ial musles[Sugisaka, 2009℄ or series elasti atuator, used by Robonaut2 [Diftler et al., 2011℄.Suh ompliant atuators will signi�antly ontribute to the safe operation of robotsin the lose viinity of humans [Behnke, 2008℄.Another issue, that remains to be solved, is the development of adequate powersupplies. Powering a humanoid robot requires big and heavy battery pakages orother power supplies. Currently battery powered humanoid robots an provide nomore than 30 minutes of autonomy [Hirai et al., 1998℄, [Martinez et al., 2012℄. Re-searh into better and more e�ient tehnologies for power supplies is fundamental[Monje et al., 2011℄. For funtional humanoid robots the life and energy apaitiesof their batteries, or any future power supply, must be greatly improved, in terms ofduration, e�ieny, weight and spae, heat dissipation, reharging, et.Humanoid robots' movements need to be done in the most natural and human-like way possible. Primary for full-body humanoid robots is the ability for bipedloomotion. Motions like walking, running, going up or down stairs, whih seemsintuitive and simple for humans, are very omplex and di�ult to imitate in humanoidrobots, and though great advanes have been made it is a problem that is not yetfully solved due to the omplexity of the non-linear dynamis that must be resolved.Most humanoid robot approahes to biped walking are based on the theory of ZeroMoment Point (ZMP) [Vukobratovi and Borova, 2004℄. ZMP de�nes the point onthe ground about whih the sum of the moments of all the ative fores equals zero.The bipedal robot is dynamially stable if it an guarantee that the ZMP would fallwithin the support polygon of all the ontat points between the feet and the groundduring the loomotion. Prominent humanoid robots, relying on ZMP-based ontrol,inlude Honda ASIMO, whih is apable of running at a pae of 6km/h. However, itsgait with bent knees does not look human-like and it requires the ground to be �at andstable for walking [Behnke, 2008℄. A di�erent strategy onsists of the simpli�ation ofthe omplex dynamis of the robot by limiting the model of the robot to a simpli�edform. [Kajita et al., 2001a℄ introdued a 3D linear inverted pendulum to model therobot dynamis of the enter of mass. The other well know model for the dynami ofa biped robot is the art-tabled model [Kajita et al., 2003℄. Other approahes followbiologial inspired ontrols and rely on entral pattern generators involving non-linearosillators [Tsuhiya et al., 2003℄, [Righetti and Ijspeert, 2006℄. Another approah isto utilize the passive dynamis of the robot to take advantage of the swinging limbmomentum for greater e�ieny. It has been proved that planar walking down a slopeis possible without atuators and ontrol. These mahines are able to walk on levelground. However, they annot stand still not they an start or stop walking and arenot able to hange speed or diretion [Behnke, 2008℄. The development of balaneontrol algorithms is fundamental for humanoid robots if they are to be as funtionalas humans, moving over di�erent types of terrains and, slopes and, avoiding obstales,et.



22 2. Intelligent Arhitetures for Humanoid RobotsThe ability to handle and manipulate tools is also essential for humanoid robotsto ahieve their full potential and exploit their adaptability. Dexterous manipulationwould not only require apable hands, but also hand-arm oordination and the o-ordination of two hands and the vision system [Behnke, 2008℄. As mentioned above,the human hand possesses a high number of DOF, is very �exible and strong andwith a high level of sensibility whih makes repliating its funtionalities a very hal-lenging researh goal. Researhers are working on various dexterous tasks rangingfrom juggling and athing balls, to performing telesurgery or pouring o�ee andhopping vegetables [Pradesh, 2006℄. Robonaut2 [Diftler et al., 2011℄, ARMAR-III[Asfour et al., 2006℄, and Justin [Ott et al., 2006℄, are among the most advaned hu-manoid robots in manipulation, though none of them has legs, while the performaneof these robots is impressive, it stills presents limitations, like, for example, their notbeing able to grasp and manipulate unknown objets [Behnke, 2008℄.Humanoid robots need to inorporate ontrol systems that an deal with a broadrepertoire of motions, variable speeds and onstraints, and most importantly, uner-tainty in the real-world environment in a fast, reative manner [Peters et al., 2003℄.To allow humanoids to move in omplex environments, planning and ontrol mustfous on self-ollision detetion, path planning, obstale avoidane and reation toperturbations. Some approahes have relied on teleoperation ontrol of the humanoidrobots. A teleoperation system for ontrolling a humanoid robot an present advan-tages; the teleoperated humanoid robot an be more versatile in dealing with varioustasks and environments. However the harateristis of humanoid robots presentmore di�ulties for ontrolling the whole body motion of the humanoid robot fromteleoperated ommands. Challenges arise from the ontrol of the many DOF of hu-manoid robots, satisfying severe balane onstraints and the geometrial and dy-namial di�erenes between humanoid robots and humans [Hasunuma et al., 2006℄.Teleoperation systems for ontrolling humanoid robots an be employed for vari-ous interesting senarios, ating as proxies for humans in hazardous or dangeroustasks, the teleoperation of humanoid robots for spae operations ould be an impor-tant appliation [Pierro et al., 2009℄. [Glassmire et al., 2004℄ presents NASA e�ortsat developing teleoperation systems for the Robonaut astronaut humanoid robot. In[Neo et al., 2007℄ a teleoperation system for whole-body motion generation, using joy-stiks to ontrol a humanoid robot performing a variable set of tasks is introdued.[Stilman et al., 2008℄ presents the manipulation of objets with varying loads with ateleoperated system. In [Evrard et al., 2009℄ a teleoperation ontrol is used for in-terontinental, multimodal, wide-range teleooperation. As useful as teleoperationontrol an be for ertain humanoid robot missions, in order to bene�t from the fullpotential of humanoid robots. ontrol arhitetures annot rely on teleoperation sinehumanoid robots are expeted to perform their tasks in an autonomous way. E�ortsin teleopration ontrol look for ways of providing robots with inreasing levels of au-tonomy, going from the fully teleoperated robots towards shared ontrol ollaborativerobots [Pierro et al., 2012b℄, [Stilman et al., 2008℄.Planning ontrol of motions and tasks is the foal point of humanoid robots on-trol arhitetures. The ontrol of humanoid robots is most often distributed in ahierarhial manner and omprises of several layers from lower joint motor ontrol



2.2. Challenges in Humanoid Robot Development 23to higher modules for path planning, ollision, obstale avoidane and stabilizationontrol. The main task for the motion ontrol is the generation of stable bipedloomotion gaits or full-body trajetories for the humanoid in its environment. Ap-propriate joint motor ontrol is essential for humanoid robots; the joint motor ontrolproblem in humanoid robots is more omplex beause of the high number of DOFand the possible disturbanes from high vibration and external fores that an ourduring robot loomotion [Kaynov et al., 2007℄. Due to the omplex dynamis of themehanial struture involved in the performane of bipedal translational motions ofthe humanoid robots, even if eah joint follows a orret and well ontrolled motionpattern this does not guarantee stable biped loomotions; the implementation of ad-ditional ontrols for stabilization are needed. A stabilization ontroller is proposed in[Kaynov et al., 2009℄ for joint-position ontrol stabilization with a general, pratialand open strategy.At higher levels of humanoid robot motion ontrol researhers fous on the plan-ning of safe motions, ollision and obstale avoidane. [Harada et al., 2007a℄ presentsa real-time gait planning of humanoid robot for fore-ontrolled manipulation. In[Yoshida et al., 2008℄ a planning framework is presented for generating 3-D ollision-free motions that take omplex robot dynamis into aount. An iterative algorithmis introdued in [Lengagne et al., 2011℄ for the replanning of safe motions, ensuringsafety, balane and integrity of humanoid robots over the duration of the motions. Aollision avoidane methods is desribed in [Ohashi et al., 2007℄. [Guan et al., 2006℄addresses the problem of humanoid robots stepping over obstales, foussing on theplanning and the feasibility analysis of motions. [Stasse et al., 2009℄ presents strate-gies for dynamially walking over large obstales. This is only a small list sine almostevery work on humanoid robot ontrol o�ers modules for takling these issues.The majority of these approahes generates the humanoid robot planned trajeto-ries o�ine, thus making it impossible or hallenging to respond to unforeseen events.Sine replanning of new motions is a omputationally heavy and time onsumingproess, it is therefore neessary to have ontrol algorithms that are apable of re-ating to perturbations and online adaptation. Mahine learning tehniques are seenas the best alternatives to o�er fast, safe, adaptable ontrol for humanoid robots.[Shaal et al., 2000℄ o�ers several loally weighted learning algorithms that have beentested suessfully in real-time learning of omplex robot tasks. [Atkeson et al., 2000℄explores easier ways of programming behaviours in a humanoid robot employing learn-ing from demonstration algorithms. Learning from demonstration has appeared asone way to respond to the need for intuitive ontrol methods [Calinon et al., 2007℄presents a demonstration framework for generally extrating the features of a taskand generalizing the skills in a di�erent ontext. [Tani et al., 2008℄ presents a hu-manoid robot learning to manipulate objets with a reurrent neural network thathas a hierarhial struture. [Hwang et al., 2006℄ fouses on determination of opti-mal on�guration posture for a pushing task of the humanoid robot employing simplegeneti algorithm. [Kamio and Iba, 2005℄ has proposed an integrated tehnique ofgeneti programming (GP) and reinforement learning (RL) to enable a real robotto adapt its ations to a real environment. Reinforement learning o�ers a generalframework to o�er robotis true autonomy and versatility. However, applying RL to



24 2. Intelligent Arhitetures for Humanoid Robotshumanoid robots systems, with its high dimensionality, remains an unsolved prob-lem. [Peters et al., 2003℄ disusses di�erent approahes of reinforement learning fortheir appliability in humanoid robotis. [Stulp et al., 2010℄ presents a probabilistireinforement learning approah, derived from the framework of stohasti optimalontrol and path integrals, demonstrated to be able to e�iently learn humanoidmotor skills whih require full-body motion.2.2.2 Sensory PereptionSensory pereption is one prominent topi of researh for robotis, and one ofmajor importane for humanoid robots. It is quite lear that, just like humans, hu-manoid robots need to pereive their own state and their environment for them toperform suessfully. One hurdle in sensory pereption would be the integration ofthe large set of multiple sensor modalities and the proessing of this information intoa reliable input to the rest of the ontrol arhiteture. There is a large range ofsensors that ould be implemented in humanoid robots to measure many kinds ofenvironmental variables, yet visual and auditory pereption remain the most impor-tant modalities for sensory pereption, together with the neessary proprioeption forself-estimation. Providing humanoid robots with tatile sensors seems like a naturalapproah given the importane that the sense of touh has for humans. There havealso been attempts to give robots the sense of smell.For proprioeption, most robot motors are equipped with enoders, relative orabsolute, to measure their own joint positions; others ould employ fore sensors, orpotentiometers. Most humanoid robots are also equipped with some type of inertialsensors to estimate the robot attitude; either aelerometers, gyrosopes, magnetome-ters or ombinations of all three. Fore-torque sensors at the wrist and ankles arealso used in many humanoid robots for sensing ground reation fores or fores atgrasping and manipulating objets with the hands.For humans, the sense of vision is the most important and versatile of all, usedto quikly pereive the environment and generate funtional representation of work.Providing robots with vision apabilities by means of omputer vision is therefore oneof the great hallenges in roboti researh. Great advanes have been made over theyears, yet omputer vision is still not lose to repliating the apaities and abilitiesof the human eye. In general, humanoid robots are equipped with two ameras intheir heads, to simulate human eyes, and provide the robots with stereo vision. Theseameras are used as ative vision systems, allowing the robots to fous their attentiontowards relevant objets in their environment. Most humanoid robots are equippedwith on-board omputers for image interpretation. Interpreting real-world imagesequenes is not a solved problem, and many humanoid vision systems only workwell in a simpli�ed environment [Behnke, 2008℄. Reent developments on RGB-Dameras ould greatly inrease humanoid robot apaities for depth pereption and3D interpretation of their world.Providing humanoid robots with auditory pereption is an important researhobjetive, partiularly for human-robot interation where they would be expetedto understand the human natural language. Auditory pereption is provided by a



2.2. Challenges in Humanoid Robot Development 25mirophone or an array of mirophones. In addition to failitate hearing, an ar-ray of mirophones an provide the apability of also identifying the soure of thesound, this however an inrease the di�ulty of interpreting the audio signal. Onemajor problem is the separation of the sound soure of interest from other soundsoures and noise. Turning the mirophones towards the soure of interest and beamforming in mirophone arrays are means of ative hearing [Behnke, 2008℄. Thoughmany speeh reognition systems exist, very few are openly available. CMU Sphinx[Huggins-Daines et al., 2006℄, is one of the leading open soure toolkits available forspeeh reognition. Speeh reognition systems performane has been ontinuouslygetting better, even if substantial word error rates remains.Researh e�orts are also made in providing humanoid robots with a sense oftouh. An idea is to over the robot with a fore-sensitive skin; these robot skinsare omposed of a large number of spatially distributed tatile elements organizedin pathes, whih are surfae ompliant strutures overing large parts of a robotbody [Baglini et al., 2010℄. Some attempts an be found in this area. The iCubrobot, for instane, is being �tted with a apaitive skin system in the �ngertipsand palms that enables measurement of ontat [Consortium, 2012℄. The sense ofsmell is also important for humans. A robot working ollaboratively with a humanthat an't alert the presene of a smell relevant to the task would lak an importantfuntionality,[Coradeshi et al., 2006℄. For Ishida, the ability to reognize smells willbring robots loser to humans and provide new ways of direting navigation of au-tonomous robots [Ishida et al., 2005℄. The �rst researh on an arti�ial sensing systemable to disriminate di�erent odours was published in 1982. Sine then, researhershave done extensive researh on developing eletroni noses [Coradeshi et al., 2006℄.An eletroni nose onsists of an array of hemial sensors with partial spei�ity anda pattern-reognition system. The major problem in the development of arti�ialolfation is that no sensor as versatile as odour reeptor ells exists.A key aspet for robot pereption is the proessing, �ltering and representation ofthe information gathered by the multi-sensory system into manageable strutures forthe robot interpretation of its state and that of the environment. To provide robotswith sene understanding and proper situation awareness the robots would need tobuild adequate representations of the environment base on the signals reeived formthe various sensors. This is not a trivial task, and muh work in this area remains tobe done.2.2.3 Human-Robot InterationHumanoids robots are one of the main topis in servie robots investigation. Hu-manoid robots have many features that make them a very suitable partner in ollabo-rative working environments. Therefore, a major fous of researh is in the interationbetween robots and humans, as this presents one of the main tasks whih has to beahieved if we want a world where humans and robots an work together. One impor-tant motivation is the idea that the e�ient tehniques whih evolved in our ulturefor human-human ommuniation an work also for intuitive human-mahine om-muniation, sine they are designed to have a similar or idential embodiment. This



26 2. Intelligent Arhitetures for Humanoid Robotsinludes multiple modalities like speeh, faial expressions, gaze and body language[Behnke, 2008℄.Muh work in this area is foused on oding or training mehanisms that al-low robots to pik up visual ues suh as gestures and faial expressions that guideinteration. One important example of a robot built for studying interation andsoializing with humans is the robot Kismet. Kismet is designed to pereive a varietyof natural soial ues from visual and auditory hannels, and to deliver soial signalsto the human aregiver through gaze diretion, faial expression, body posture, andvoalizations [Breazeal, 2001℄. Movable eyes, head, and hest ommuniate wherethe robot fouses its attention. When the robot looks at the interation partner, thepartner feels addressed.Robots present di�erent models of interation, from diret ontrol or teleoper-ation of the robot, to robots with an autonomous and independent behaviour andambient intelligene. The optimal ideal for the human-robot interation is for thehuman operator to aept and reognize the robot system, just as one more partnerin a working team omposed of multiple human and roboti agents. A human-robotteam an present many advantages. Robots an be used in order to over humanlimitations or to assist them in numerous tasks. Human-Robot Collaboration is animportant topi of researh in this area. Sine robots are expeted to live with usand share our environment, studying the possible means of ollaboration is of majorinterest. One example of a humanoid robot working in ollaboration with humansis NASA JSC's Robonaut [Johnston and Rabe, 2006℄. Another important platformin the �eld of the human-robot ollaboration is the HRP-2 robot from Kawada in-dustries [Kaneko et al., 2004b℄. This robot is able to manipulate objets under theorders of a human [Neo et al., 2008℄ and also to assemble a panel by ooperating witha human [Harada et al., 2007b℄. Robots an also be of great assistane for a humanworker at a onstrution senario, taking most of the workload in a transportationor an assembly task and performing more risky ativities. A robot partner an alsoperform preise or sensitive tasks in an industrial or fatory senario.Humanoid robots that allow the users to perform tasks in the real world by swith-ing between ontinuous teleoperation and autonomous operation have been proposedby Yokoi in [Yokoi et al., 2008℄. In order for ollaboration to be meaningful, it isimportant for the human operator to see the robot as not just a tool but as a ol-league in a team [Siino et al., 2008℄. In the work of [Fong et al., 2002℄ a model forollaboration is proposed in whih, instead of a supervisor ditating to a subordinate,the human and the robot engage in dialogue to exhange ideas, to ask questions, andto resolve di�erenes. In [Pierro et al., 2012b℄ a shared ontrol onept is proposed,the ollaboration fouses on a human-robot interation were the human is not just asupervisor direting the robot, but a partner in whih the robot an look for assis-tane. By sharing ontrol aording to eah one best apabilities the advantages of ahuman-humanoid partnership an be exploited.Another issue to take into aount for the design and development of humanoidrobots is the phenomenon known as the �unanny valley�. In 1970 Professor Moriintrodued the term �unanny valley� to explain the hypothesized eerie response aperson would have at enountering a robot trying to resemble a human shape but



2.2. Challenges in Humanoid Robot Development 27failing to repliate a lifelike appearane [Mori et al., 2012℄. The �unanny valley� de-sribes the relation between human likeness of a mahine and a�nity towards it, therelationship behaves as a monotonially inreasing funtion until a point in whih, afailure in orrespondene between the human-like appearanes and its arti�ial per-formane beomes unsettling and produes a steep drop in the a�nity reating theloal minimum named the �unanny valley� [Gee et al., 2005℄. When motion is on-sidered, the e�et of unsettling eeriness is heightened. Even though the extent ofProfessor Mori's hypothesis has not been fully validated, the onept of the �unannyvalley� is generally aepted and applied in areas like omputer-graphis, animation,�lms and robotis. For humanoid robots researh, where it is expeted for humansand robots to generate lose relationships and interat and ollaborate together, it isvery important to onsider the level of aeptane the humanoid robots would haveby the general population. Humanoid robots design must take into onsideration the�unanny valley�, and try its best to prevent it or overome it. This requires designguidelines for both the appearane and the motion performane of robots. Disussionon the �unanny valley� often fouses mainly on the appearane dimensionality, for-getting the problem of repliating human-like motion and aiming to ahieve a lessersimilarity in physial appearane. Even Professor Mori reommends taking the �rstpeak as the goal, aiming at a moderate human likeness with a onsiderable sense ofa�nity [Mori et al., 2012℄. This, however, omits an important part of the problem asboth aspets are relevant to humanoid robotis and neessary for human-robot inter-ation. Consisteny between appearane and motion play a large part in aeptanewhen they annot be reviewed independently [Gee et al., 2005℄. The ontinuous de-velopments in robotis should move forward both dimensions, appearane and motionperformane, retaining the aeptane. It is, therefore, neessary that developmentsin humanoid robots go hand in hand with appearane and performane to generatebetter human-robot interations. Humanoid robots must not only simulate our em-bodiment and try to mimi our physial appearane they must also repliate humansmotions and try to resemble our behaviour.Human-robot interation is an open and very ative �eld, involving several disi-plines and a large set of topis. Important progress has been made in this �eld, andseveral working roboti systems an be found allowing for multimodal human-robotinteration [Stiefelhagen et al., 2007℄, [Gorostiza et al., 2006℄, providing robots withspeeh reognition [Gomez et al., 2012b℄, objet attention loalization and identi�a-tion [Haash et al., 2005℄, gesture reognition interfaes [Bertsh and Hafner, 2009℄,[Stiefelhagen et al., 2004℄, fae detetion [Bueno et al., 2012℄, teahing and learninginterations [Shmidt-Rohr et al., 2010℄, [Kronander and Billard, 2012℄, natural dia-logue proessing [Alonso-Martin and Salihs, 2011℄, user interfaes [Chen et al., 2007℄,et. Still, the most relevant topis in human-robot interation an be onsidered un-resolved. Major work on human-robot interation fouses on assistive and healthare robots, lifelike robots, remote robots, robot ompanions, long term interation,multi-modal interation, awareness and monitoring, robot-team learning and ollab-oration, software arhitetures for HRI, user studies and experiments on interation,ollaboration and aeptane.



28 2. Intelligent Arhitetures for Humanoid Robots2.2.4 Intelligent BehaviourIn addition to robust and e�ient motor ontrols, for allowing humanoid robotsto generate smooth, natural human-like motions, omprehensive multi-sensory per-eptual systems and appropriate strategies for meaningful and engaging human-robotinterations, humanoid robots need to present behaviours with a minimum level ofautonomy and intelligene. Development of intelligent systems is a long term goal inthe �elds of robotis researh, arti�ial intelligene and ognitive siene. To trulyexploit humanoid robots full potential it would be neessary to provide them with anintelligene that is similar to that of humans. This presents an even greater hallengethan endowing humanoids with the ability to repliate human-like motions or simu-late human interations. Partiularly sine the proess of human intelligene is onethat is not fully understood, in whih many ompeting ideas an be found and whereno generally aepted theory of intelligene exists that satis�es every group.The study of intelligene is a relevant topi of researh in many �elds, suh aspsyhology, philosophy, neurobiology, eduation, ognitive siene, and arti�ial in-telligene, eah one with its own views on what onstitutes intelligent agents andintelligent behaviours. Despite all this debate, whih has enompassed many yearsand a wide �eld of researh, no one single standard de�nition of intelligene hasemerged. However, from the many de�nitions that have been proposed, it is nothard to �nd some strong similarities and a ommon ground between them on whihbehaviours are to be expeted from an agent in order to be onsidered intelligent.Reviewing the various de�nitions, as the basis of intelligene the abilities to learnand aquire knowledge, to make judgements and deisions based on reason, to ef-fetively adapt to the environment, to sueed in solving problems and ahievinggoals an all be found. Intelligene is de�ned in [Amerian-Heritage, 2006℄ as theability to aquire, understand and use knowledge. Seeing it from the view point ofpsyhology [Gardner, 1993℄, intelligene is the ability to solve problems, or to reateproduts, that are valued within one or more ultural settings. Also [Anastasi, 1992℄intelligene is a omposite of several funtions, a ombination of abilities required forsurvival and advanement within a partiular ulture. In [Albus, 1991℄ intelligene isde�ned as the ability of a system to at appropriately in an unertain environment,where appropriate ation is understood as that whih inreases the hanes of suessfor the behavioural goal and subgoals. In a more omputational intelligene frame, for[Poole et al., 1998℄ an intelligent agent is one that is �exible to hanging environmentsand hanging goals, learns from experiene, and makes appropriate hoies given per-eptual limitations and �nite omputation. For [Legg and Hutter, 2006℄ intelligenemeasures an agent ability to ahieve goals in a wide range of environments.A survey of de�nitions of intelligene olleted in [Legg and Hutter, 2007℄, leadsthem to onstrue intelligene as a property of agents in their interation with theenvironment, that are related to the agent ability to sueed in respet to some goal,depending on the agent apaity to adapt to di�erent objetives and environments.As a summary from the various views of intelligene it is possible now for an iden-ti�ation of the key attributes required for onsidering the behaviour of an agent asintelligent. An intelligent agent an be thought of as one that features the abilities to



2.2. Challenges in Humanoid Robot Development 29learn and aquire knowledge based on its experiene, the apaity to understand oromprehend urrent relevant features in the environment, to exhibit situation aware-ness, the apaity for reasoning, to ompute or dedue the ourse of ations to follow,the forming of onlusions and value judgements. Also, the ability to adapt, be itof itself, its objetives or its environment, aording to every situation and obje-tive. Finally, a fundamental ability to sueed, i.e., to survive, in the wider possiblerange of environments, to e�iently aomplish one's goals. In order to onsider thatan agent has displayed intelligent behaviour, it must be required that it presenteda suessful performane, that is, it has ahieved its goal and objetives e�etively,regardless of any form of unplanned disturbane that ould have been enounteredin the environment. An environment, that ould be arbitrarily omplex in natureand that ould be dynamially hanging and unpreditable, from whih the agentdoes not neessarily have any prior knowledge. Finally, the agent behaviour must berepliable over time and aross di�erent situations.For humanoid robots to beome intelligent agents, and present intelligent be-haviours it is neessary to have repliable models of intelligene. [Sternberg, 2000℄disusses some relevant, ontemporary, models of human intelligene. In the triarhitheory of intelligene there are three interating fators of intelligene: an internalaspet, onsisting of information proessing skills guiding intelligent behaviour; anexternal aspet, the pratial ability to adapt a partiular environment to math oneown skills; and an experimental fator, involving the ability to apitalize on experi-enes in proessing novel or unfamiliar information [Sternberg, 2000℄. The theory ofmultiple intelligenes of Gardner fouses on domains of intelligene. There are eightfairly independent, equally important types of intelligene, whih are based on abilitiesvalued within di�erent ultures. The intelligenes desribed are, visual-spatial, verbal-linguisti, bodily-kinaestheti, logial-mathematial, interpersonal, musial, intraper-sonal and naturalisti intelligene. The models reviewed above present ontrastingdi�erenes, however, one ommon aspet between them is that they all value adapt-ability of ognitive proessing as an important aspet of intelligene.[Albus, 1991℄ has proposed a model that integrates knowledge from researh inboth natural and arti�ial systems. The model onsists of a hierarhial system ar-hiteture. Di�erent levels of intelligene in the hierarhy an be ahieved, dependingon the omputational power of the system and the sophistiation of its proessingalgorithms for various funtionalities, suh as, world modelling, behaviour genera-tion, value judgement, and global ommuniation, and the information and valuesthe system has stored in its memory. A minimal level of intelligent requires at leastthe ability to sense the environment, make deisions and take ations. Higher levelsof intelligene may inlude the ability to reognize objets and events, to representknowledge in a world model and to reason about and plan for the future. More ele-vated forms of intelligene provide the apaity to pereive and understand, to hoosewisely, and to at suessfully under a large variety of irumstanes [Albus, 1991℄.The urrent humanoid robots may only be around the minimum and mid-levels ofintelligene. As developments of systems, arhitetures and algorithms ontinue to ad-vane the intelligent apabilities of humanoid robots will inrease. Humanoid robotsneed to reah a funtional level of intelligene that allows them to funtion properly



30 2. Intelligent Arhitetures for Humanoid Robotsinterating with humans and the environment, even if perhaps the ultimate levels ofintelligene ould turn out to be out of reah, and reating robots that repliate thetotal sope of human intelligene may prove impossible. Humanoid robots need toahieve a su�iently high level in the hierarhy in order to be onsidered by theirhuman partners as intelligent, namely, a sensing, ating system that pereives, learns,plans, and sueeds in ahieving its goals in the world. This is a major hallenge inhumanoid robot researh.As a minimal requirement, an intelligent robot system or agent needs to be thoughtof as pereiving its environment through sensors and ating upon that environmentthrough atuators [Russell and Norvig, 2010℄. Sensors and atuators represent theinputs and outputs from intelligent systems. Its ability to rationalize and make de-isions in the middle of the pereption-ation determines its level of intelligene. Toahieve a higher level it is needed to integrate pereption, reason, knowledge, emo-tion, and behaviour. The model in [Albus, 1991℄, identi�es four elemental systemsof intelligene: sensory proessing, world modelling, behaviour generation, and valuejudgement. Similarly, from the �eld of ognitive siene and intelligent agents, theimportane of the di�erent funtions of ognition were identi�ed in a roboti sys-tem point of view as pereption, learning, motor ontrol, reasoning, problem solving,goal orientation, knowledge representation and ommuniation [Langley et al., 2009℄.The phenomena of intelligene, however, require more than a set of disonneted ele-ments. Intelligene requires an interonneting system arhiteture that enables thevarious system elements to interat and ommuniate with eah other in intimate andsophistiated ways [Albus, 1991℄.Figure 2.1 illustrates a model of an arhiteture for an intelligent agent basedon the general priniples stated above. For an intelligent agent, with the needs of ahumanoid robot, it is neessary to have systems for pereption, ation, interation,reasoning, world knowledge and learning. The pereption, interation and ation sys-tems are the outward omponents of the arhiteture, in harge of dealing with, anda�eting the environment. Pereption systems proess sensor information to aquireand maintain internal models of the world. World knowledge systems store and main-tain memory data gathered and proessed from the reasoning and learning systems.Learning systems must learn appropriate behaviours from the pereption and the in-teration data, and also store them in memory. The reasoning system interats withthe ation system so as to pursue behavioural goals, it also may interat with thepereption, world knowledge and learning system to reason about the environmentand the task, the spae, time, geometry, et., and to formulate or selet ation plans.Pereption establishes and maintains orrespondene between the internal modeland the external real world. Sensory proessing is the mehanism for pereption. Thesensory input data form multiple ranges of sensors are proessed and integrated into aonsistent uni�ed pereption of the state of the world. Sensory proessing algorithmsompute distane, shape, orientation, surfae harateristis, physial and dynamialattributes of objets and regions of spae.Ation is a proess of the systems atuators that move, exert fores, move manip-ulators and, handle tools. It represents the means by whih the agent produes ane�et on the world, interating and altering its environment in order to ahieve its
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32 2. Intelligent Arhitetures for Humanoid Robotsaltered behaviour beause of what was remembered.For humanoid robot systems to present the intelligent behaviours that would beexpeted from them, from the ability to sense the environment, make deisions andtake ations, to reognize objets and events, represent knowledge, reason and plan forthe future, and at suessfully under a large variety of irumstanes, the intelligentrobot arhitetures developed to ontrol humanoid robots must implement, all or asubset of, these systems.2.3 Robot Planner-Based ArhiteturesAs stated throughout this hapter, for the development of funtional humanoidrobots, that work together with humans, helping them in ahieving everyday tasks,roboti agents need to beome intelligent, they need to be endowed with ontrolmehanism that enables them to produe intelligent behaviours. That is, they mustbe apable of performing suessfully omplex tasks in a dynami environment. Au-tonomous roboti systems need to be able to perform a wide range of funtions,in order to work in omplex evolving environments, seeking for the suessful a-omplishment of their goals. Robots would need to present many di�erent skills,and implement several ompeting behaviours. Among the desirable abilities that au-tonomous robots should present is the ability to pereive and understand, the abilityto at and interat, the ability to learn, the ability to reason and aquire knowledge,the ability to plan ations and goals, and make deisions, the ability to adapt to tasksand/or environmental hanges, et. All these funtionalities present many hallengesthat the ontrol system arhitetures of autonomous robots need to address.Intelligent agents, at their most basi de�nition, an be thought of as somethingthat pereives and ats in an environment [Russell and Norvig, 2010℄, one in whihations are well thought of, logially inferred, and reasoned from the information,gathered and proessed, from the environment. In this simpli�ed onstrue for anintelligent agent, it is easy to identify three basi building bloks for a ontrol systemsarhiteture: a pereption module, that senses the external world; a reasoning module,that proesses the olleted information from the environment and reasons about theplans of ations to aomplish goals; and an ation module that translates the plannedommands into physial ations in the world. Other modules ould be thought ofsuh as a learning module, or a memory module, a knowledge module, an adaptationmodule, et. However when onsidering the basi de�nition of agents, as systemsthat sense and at in an environment, in pursuit of their own objetives and goals,in order to build intelligent robot systems, e�orts ould well be �rst onentrated onthe fundamental modules for pereption, reason, and ation. Front this point of view,the lassial approah from AI emerged, fousing on deomposing the ontrol systemsfor autonomous robots into the three funtional elements forming the sense-plan-atyle. The sensing system's funtion is to translate raw sensor input into a worldmodel. The planning system's work is to take the goals and the world model andgenerate plans that ahieve these goals. The exeution system's job is to generate theations presribed by the plan [Gat, 1997℄.
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Fig. 2.2: Hierarhial planning or deliberative arhitetures follows the Sense-Plan-At yle from lassial AI approahes. These arhitetures are form bythree omponents. Information �ows unidiretionally from sensors to per-eption, to planning, to motor ontrol, to atuators. The system intelli-genes resides on the planner, with world model and system goals, produesappropriate plans of ation for the robot.Classial approahes from the �eld of AI fous their e�ort on building intelligentsystems on the symboli representation of physial world entities, whih ould beombined, omputed or operated upon. And in the belief that intelligent agents ouldbe formulated as information proessing systems, taking a representation of the worldas input and outputting appropriate sets of ations. The development of planning ordeliberative strategies that generate the sequenes of tasks to aomplish robot goalsis the entral aspet of the lassial AI ontrol arhitetures. Figure 2.2 presentsthe general planning or deliberative arhitetures. The arhitetures are formed bythree omponents, from the sense-plan-at hierarhial problem solving paradigm: apereption omponent for sensing the environment; a plan omponent, with worldmodel and system goals, for produing a plan of ation; a motor ontrol omponentfor translating the planned ations to proper motor ommands. The ontrol shemeof information �ows unidiretionally and linearly from sensors to pereption, to theworld model, to planning, to motor ontrol, to atuators.Hierarhial planning or deliberative arhitetures use a high level strutured ap-proah, relying on a traditional top-down strategy entred on planning for deompos-ing the robot goal tasks, having an expliit symboli model of the world, and in whihdeisions are made via logial reasoning [Wooldridge and Jennings, 1995℄. Work onhierarhial planner-based or deliberative arhitetures has foused on the planningof long-term ations for ahieving a set of basi goals. The intelligene of the systemarhiteture, is said to live, in the planner or the programmer, not the exeutionmehanism [Gat, 1997℄. As represented in Figure 2.2, the robot arhiteture followsa strit sequene of distint stages during exeution: �rst the robot senses the world,



34 2. Intelligent Arhitetures for Humanoid Robotsthen plans the next move and ats aordingly. In the sense stage of pereption, therobot would aquire information about its environment from its available sensors.The world model data struture is reated using this information. The world modelare symboli desriptions, omprising priori information of the environment, with theinformation olleted from the robot sensors and any other ognitive knowledge thatthe spei�ed task ould need to assist the robot [Murphy, 2000℄. The planning stagetakes a symboli desription of both the world and goal states, it then attempts to�nd a sequene of ations that will ahieve the goal [Wooldridge and Jennings, 1995℄,several di�erent automated planning algorithms ould be employed. When the �nalgoal omprised of omplex situations and world states, the planner breaks the goalinto sub goals and aount for eah one in turn to ahieve the �nal goal. The atstage represents the exeution of atuator ommands that are generated aordingto the sequene orders from the planning stage. After the robot's atuators �nish o�the planned task, the yle begins again and ontinues until the goal is reahed.The most representative methodology that has been built, based on the planner-based paradigm, was STRIPS [Fikes and Nilsson, 1971℄. The STRIPS method takesa symboli desription of both the initial state and a desired goal state, and a set ofation onditions and operations, whih haraterise the pre and post-onditions thatare assoiated with the various ations. Construting the world model was impera-tive and the ation to be hosen at a ertain point was seleted from a desriptivetable alled the di�erene table. For the planning stage of eah yle a di�erene-evaluator would measure the di�erene between the goal state and the urrent state,enabling the planner to hoose the best orresponding ommands from the di�erenetable, that would minimize the di�erene, and pass them on to the atuators. TheSTRIPS method was used for the robot Shakey by the Stanford Researh Institute[Nilsson, 1984℄. The STRIPS planning algorithm was very simple, and proved to beine�etive on problems of even moderate omplexity. Hierarhial and non-linearplanning were proposed in e�orts to raise the e�ieny of the planner, but remainedsomewhat weak while working in a system with time onstraints [Nilsson, 2007℄.In spite of these di�ulties, various attempts to onstrut an agent planner ompo-nent an be found: the Integrated Planning, Exeution and Monitoring (IPEM) sys-tem is based on a sophistiated non-linear planner [Ambros-Ingerson and Steel, 1988℄.The AUTODRIVE system has planning agents operating in a highly dynami envi-ronment [Wood, 1993℄. The PHOENIX system inludes planner-based agents thatoperate in the domain of simulated forest �re management [Cohen et al., 1989℄. TheBelief-Desired-Intention model has also been of relevane for deliberative planner ar-hitetures, the model all for a rational agent must allow for means-end reasoning,for the weighing of ompeting alternatives, and for interations between these twoforms of reasoning. One example is the Intelligent Resoure-bounded Mahine Ar-hiteture (IRMA) [Bratman et al., 1988℄. It presents a high-level spei�ation ofthe pratial-reasoning omponent of an arhiteture for a resoure-bounded ratio-nal agent. This arhiteture has four key symboli data strutures: a plan library,and expliit representations of beliefs, desires, and intentions. Another examples isGRATE* [Jennings, 1993℄, a layered arhiteture in whih the mental attitudes ofbeliefs, desires, intentions and joint intentions, guide the behaviour of an agent.



2.3. Robot Planner-Based Arhitetures 35Numerous examples of hierarhial ontrol systems an be found [Arkin, 1989b℄addresses the task of navigational path-planning, whih provides the robot with apath guaranteed to be free of ollisions with any modelled obstales. [Albus, 1997℄,[Meystel, 1988℄, promote the idea of top-down, hierarhial ontrollers, eah exeut-ing a sense-plan-at feedbak loop. The NASREM arhiteture [Albus et al., 1987℄,is a strit hierarhial framework for task deomposition, pereption and world mod-elling. [Meystel, 1986℄ proposed a theory for a nested hierarhial ontroller (NHC),enhaning the planner by deomposing it into three distint omponents, namely,the mission planner, navigator and the pilot. NHC looks to give a more reeptiveresponse to hanges in the environment by having the sensors ontinuously updatingthe world model even while the atuators were arrying out the ommands.The symboli approahes to intelligent agents, embodied by the planner-basedor deliberative arhitetures presented numerous shortomings. Among the biggestissues that hinder the hierarhial planner-based paradigm with time were the trans-dution problem, translating the real world into an aurate, adequate symboli de-sription, the lose world assumption, and the representation or frame problem, ofhow to symbolially represent information about omplex real-world entities in timefor the results to be useful [Wooldridge and Jennings, 1995℄. The required assump-tion for the lose world model, that the robot obtains all the information from theenvironment that it needs, presents signi�ant problems sine the planner annotkeep trak of all the hanges in the environment in a ontinuous manner. The frameproblem refers to the inability to represent all the world information that was neededby the robot in a omputationally viable method. Consequently, addressing uner-tainty in the event of a bigger problem was too tedious and was not worth the e�ort[De Silva and Ekanayake, 2008℄.Planning and world modelling turned out to be very di�ult problems, and open-loop plan exeution was learly inadequate in the fae of environmental unertaintyand unpreditability [Gat, 1997℄. Unertainty in sensing and ation, and hangesin the environment, an require frequent replanning, the ost of whih may be pro-hibitive for omplex systems [Matari, 1997℄. The planner-based or deliberative ar-hiteture has presented its strengths and its weakness: they an handle omplextasks by breaking them into more manageable sub tasks, speifying the urrent andfuture ativities and onstraints [Simmons, 1994℄. They allow for expliitly formulat-ing task and goals of the system and estimating the quality of the agent's performane[Matari, 1997℄. And they an produe optimal, domain-independent solutions. How-ever, they generally fail to address unertainty, and are therefore un�t to operate inhanging environments, sine they are unable to re-plan their ations quikly enough.Planner-based approahes have high omputational osts, making their performanepoor when there is a need for frequent replanning.Researhes in the 80s began to feel unsatis�ed with the poor results obtained fromplanning-based arhitetures and started to look for other alternative tehniques.The problems of the planner-based or deliberative arhitetures led to questioningthe viability of the whole paradigm, and to the development of what are generallyknown as reative arhitetures [Wooldridge and Jennings, 1995℄. Many researhersbegin a shift of viewpoints away from the traditional AI symboli representation,



36 2. Intelligent Arhitetures for Humanoid Robotsabandoning the requirement for a entral world model, and the idea that intelligeneis a omputational proess that takes an input and produes an output [Brooks, 1996℄.2.4 Robot Behaviour-Based ArhiteturesEarlier attempts to develop intelligent agents, following the lassi AI approahesfor symboli reasoning, failed to produe adequate levels of intelligent behavioursfor robots. Although the deliberative thinking approah proved suessful for er-tain tasks, for planning operations, by real autonomous agents in omplex dynamienvironments, the obtained results have been poor [Maes, 1991b℄. Therefore, manyresearhers saw the need for developing di�erent types of arhitetures and meha-nism for repliating intelligene. Attention turned away from the symboli and AIand attempts to model behaviour through expliit representations and abstrat rea-soning. Instead, the ideas that real intelligene is situated in the world, and thatintelligene behaviours an only emerge as a result of an embodied agent interationwith the environment, gained preferene.This novel AI approah was based on the hypothesis that to build intelligentsystems it is neessary to have their representations grounded in the physial world[Brooks, 1990℄. Instead of fousing on the design of systems apable of intelligentthinking, the emphasis hanged to reating agents that ould at intelligently. Re-searhers took inspiration from biologial and ethologial advanes, studying animalbehaviour and oordination. Approahes entred on the re�exive behaviours of an-imals as stimulus-response mappings, responses to a partiular sensory input arediretly wired with an ation response whih is arried out without any higher og-nitive involvement [De Silva and Ekanayake, 2008℄. The behaviour-based or reativeparadigm is founded on the building of behaviours, diret ouplings of sensory inputsto a pattern of ations that in turn arries out a spei� task [Murphy, 2000℄.Central to the de�nition of a reative arhiteture is that it does not inlude anykind of entral symboli world model, and does not use omplex symboli reasoning[Wooldridge and Jennings, 1995℄. Deisions are based on real-time information fromsensors, and the global system behaviour emerges from the interations of loal be-haviours with the environment. Behaviour-based or reative arhitetures implemen-tations are founded on the onstant-time run-time diret enodings of the appropriateations for eah input state, these mappings rely on a diret oupling between sens-ing and ation, and fast feedbak from the environment [Matari, 1997℄. This allowsreative autonomous agents to respond faster, and in a somewhat more natural man-ner, and for ahieving real-time performanes. Reative systems maintain no internalmodels and perform no searh. A generally simple funtional mapping between stim-uli and appropriate responses is employed, usually in the form of a look-up, this beingon a table, a set of ation rules, a simple iruit, a vetor �eld, or a onnetionistnetwork [Matari, 1997℄.Figure 2.3 shows a generi representation for a reative behaviour-based arhite-ture. The behaviour-based paradigm presents a diret oupling between pereptionand ation. A olletion of preprogrammed ondition-ation pairs is embedded into
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38 2. Intelligent Arhitetures for Humanoid Robotsarhiteture does not ome without its shortomings: inluding the ompetenies oflower layers into higher levels leads to a waste of resoures; the subsumption arhi-teture preludes the layers from passing information between themselves, and failsto take into aount any advantage a planning module an introdue to the system[De Silva and Ekanayake, 2008℄.[Chapman and Agre, 1987℄ also began to explore alternatives to the AI planningparadigm proposing that an e�ient agent arhiteture ould be based on the ideaof `running arguments'. The idea is that as most deisions are routine, tasks, onelearned, an be aomplished in a routine way, they an be enoded into a low-levelstruture, whih only needs periodi updating. The approah was illustrated by thePENGI system [Agre and Chapman, 1987℄. PENGI is a simulated omputer game,with the entral harater ontrolled using a sheme suh as that outlined above.[Maes, 1991a℄ developed an agent arhiteture in whih an agent is de�ned asa set of ompetene modules loosely resembling the behaviours of the subsumptionarhiteture. Eah module is spei�ed in terms of pre and post-onditions and anativation level. The higher the ativation level of a module, the higher the proba-bility that this module will in�uene the agents behaviour. One spei�ed, a set ofompetene modules is ompiled into a spreading ativation network, in whih themodules pre- and post-onditions de�ne the ways they are linked to one another.Similarities between the agent network arhiteture and neural network arhiteturesexist. Perhaps the key di�erene is in the di�ulty of saying what the meaning of anode in the net is. In a neural net it only has a meaning in the ontext of the netitself. Sine the ompetene modules are de�ned in delarative terms, it is very muheasier to say what their meaning is [Wooldridge and Jennings, 1995℄.[Matari, 1992℄ implemented an arhiteture that integrates a map representationinto a reative, subsumption-based mobile robot. It presented a fully integrated rea-tive system removing the distintion between the ontrol program and the map. Pro-grammed with a olletion of simple, inrementally designed behaviours, the robotperforms ollision-free navigation, dynami landmark detetion, map onstrutionand maintenane, and path planning. [Niolesu and Matari, 2002℄ presents an ap-proah for implementing hierarhial task representations onepts into behaviour-based systems. It desribes a Hierarhial Abstrat Behaviour Arhiteture thatallows for the representation and exeution of omplex, sequential, hierarhiallystrutured tasks within a behaviour-based framework. The arhiteture introduesthe notion of abstrat behaviours and enables the re-usability of behaviours arossdi�erent tasks. [Niolesu and Matari, 2003℄ uses a behaviour-based approah asan underlying ontrol arhiteture in whih time-extended ations that ahieve ormaintain a partiular goal are grouped for representing robot skills behaviours. Thebehaviours are built from two omponents: one related to pereption (Abstrat be-haviour), the other to ations (Primitive behaviour). This arhiteture provides asimple and natural way of representing robot tasks in the form of behaviour networks[Niolesu and Matari, 2002℄. The arhiteture is used to endow the robots with theability to onvey their intentions by ating upon their environment and to learningomplex tasks from observing a demonstration by a teaher [Niolesu and Matari, 2003℄.[Lenser et al., 2001℄ desribes a highly modular hierarhial behaviour-based on-



2.4. Robot Behaviour-Based Arhitetures 39trol system for robots. The arhiteture is designed to present features for easyaddition and removal of behaviours, easy to program hierarhial struture, abil-ity to exeute non-on�iting behaviours in parallel, a unique reward based om-binator to arbitrate amongst ompeting behaviours suh as to maximize reward.[Balh and Arkin, 1998℄ presents and evaluates reative behaviours implementing for-mations in multirobot teams. The formation behaviours are integrated with othernavigational behaviours to enable a roboti team to reah navigational goals, avoidhazards and simultaneously remain in formation. Another approah in the reativeparadigm is the methodology known as the Potential Fields Methodology (PFM).In PFMs eah behaviour is represented as a vetor, thus this methodology is inher-ently regarded to be on�ned to the navigational robots. Behaviours are ombinedin vetor summation to produe the emergent behaviour. These behaviours are as-sumed to exert on the robot in the form of fore �elds, the robot is assumed to bea partile entering into the fore �eld and the behaviour of the robot is the pathit takes as a result of the multiple potential �elds [De Silva and Ekanayake, 2008℄.Many other navigational systems using reative ontrol have been developed. Theseinlude Paytons re�exive behaviours [Payton, 1986℄, Kadono�s arbitration strategies[Morave et al., 1986℄, Arkins motor shemas [Arkin, 1989a℄.The behaviour-based or reative arhitetures lead to a signi�ant advane inthe development of autonomous robots, although not everything was positive. Thebehaviour-based approahes presented greatly improved performanes in robot nav-igation and obstale avoidane. Reative arhitetures showed great �exibility andadaptability, and were ideally suited to performing in dynami and unpreditable envi-ronments. Also, these approahes were robust, simple and omputationally tratable.However, they also have some drawbaks: behaviours-based or reative arhiteturesdo not inlude expliitly the ahievement of a goal in their behaviour desription;plans and goals are to emerge from the robot interation with the environment; theapproahes only inlude `loal' information, olleted from the environment; theypresent a short-term view, with no long-term planning apabilities, and o�ered lim-ited appliability. One of the most important harateristis of the behaviour-basedparadigm is their abandonment of the abstrat symboli representation, this pre-sented their advantages but also limits the possibility to employ them at higher levelstask. The purely reative approahes ahieved great e�ieny at run-time, but theirlimited representational power results in a lak of run-time �exibility [Matari, 1997℄.Another shortoming of the reative behaviour-based paradigm is in the omplex-ity of the interation dynamis between the behaviours and the environment, andbetween the behaviours themselves. This hampers the debugging and understandingof the robots emerging behaviour, it also hinders the development and implementationof a large number of behaviours. Also, the behaviour-based arhiteture prevents theautomati reusability of behaviours aross di�erent tasks and thus, the automati gen-eration of behaviours. Even though the behaviours themselves are usually reused andaumulated into behaviour libraries, the behaviour-based systems are to be manuallyprogrammed, involving the ustomized redesign of behaviours in aordane with thespei�s of any new task [Niolesu and Matari, 2002℄.The reative behaviour-based paradigm emerged as a response to the problems



40 2. Intelligent Arhitetures for Humanoid Robotspresented in the planner-based arhitetures. The reative approahes o�ered a solu-tion for the rigidities enountered within the hierarhial paradigm, and their limita-tions in performing in dynami environments. The behaviour-based paradigm provedto be more than satisfatory in robots exeuting simple tasks, and performs remark-ably well and fast in ollision free navigation tasks, and in working within the envi-ronment. However, a need for planning and higher representations emerged in orderto deal with more omplex tasks. Many robotiists turned to new ways of om-bining the planning proess with the reative behaviour of robots and new breedof arhitetures under the name Hybrid Deliberative/Reative paradigm was born[De Silva and Ekanayake, 2008℄.2.5 Robot Hybrid ArhiteturesFor some time researhers trying to develop intelligent roboti agents exploredtheir implementations in two ompeting paradigms, the deliberative planner-basedarhiteture, entred on lassial AI approahes in the symboli representation of theworld and the deliberative planning of robots' ations, and the reative behaviour-based arhiteture, that foused on alternative approahes generating appropriatebehaviours to reat to real-time robot interations with their environments. Both thereative and deliberative based arhitetures had their advantages and presented earlysatisfatory results. Nevertheless, eah approah displayed various shortomings.The deliberative planner-based approahes, dominant through the �rst deades ofAI, tried to build intelligent agents by means of symboli reasoning and representa-tions of the world that were apable of generating deliberative plans of ations, afterreasoning in relation their goals in the world. However, these approahes proved un-suessful in dealing with dynami hanging environments, where the omputationalspeed for planning was slower than the environment rate of hange. Two major prob-lems hindered the progress of the deliberative planner-based arhitetures. First, asmentioned, the world may hange during omputation of the planning phase in a waythat invalidates the resulting plan. Seond, unexpeted outomes or errors duringthe exeution of the planned steps an ause the subsequent steps in the plan to beexeuted in an inappropriate ontext [Gat, 1997℄.The reative behaviour-based approahes appear as a reation to the failures oflassial AI approahes. An attempt was made at building intelligent agents thatould perform in real-time, situated in the real world. The idea of symboli reasoningand of maintaining a world model was abandoned in favour of a diret oupling be-tween the sensing and the ation, extrating information diretly from the world, asits best model [Brooks, 1990℄. Though the approah ahieved dramati early suess,its limitations and drawbaks were quikly apparent. Behaviour-based approahes of-fered limited appliability, often on�ned to low-level tasks. One signi�ant problemwas the lak of modularity: upper layers interfere with the lower layers' funtion-alities so that they annot be designed independently. Also, the omplexity of theinteration dynamis between the behaviours and the environment, and between thebehaviours themselves, in ases where a large number of behaviours are implemented,



2.5. Robot Hybrid Arhitetures 41makes the understanding of the robot's emerging behaviour quite di�ult to pre-dit and design, therefore hindering their development and implementation. Also, byeliminating internal state representations, the reative approah avoided the problemof maintaining that state, but ran headlong into the problem of extrating reliableinformation about the world through sensors [Gat, 1997℄.Intelligent robot agents, in order to be suessfully employed, working alongsidehuman partners, need to address three main hallenges: adapt quikly to hanges inthe environment; understand high level human ommands; be engaging for people[Stoythev and Arkin, 2001℄. Traditionally, the �rst hallenge has been adequatelyaddressed by the behaviour-based reative ontrollers. The seond hallenge an wellbe addressed by using a deliberative planner-based approah. The hybrid deliber-ative/reative arhitetures naturally emerged as attempts to bridge these two ap-proahes and use the strengths of eah other in reduing their respetive shortomings.The hybrid deliberative/reative paradigm advoates for the use of the advantageousaspets of both the behaviour-based and the planner-based approahes, ombiningthem to produe a new arhiteture that an deal with more omplex senarios. Inpratie, this means the integration of the planning aspet of the hierarhial de-liberative paradigm with the rapid exeution apabilities of the reative paradigm[De Silva and Ekanayake, 2008℄.The hybrid arhitetures idea was to attempt a ompromise between the purelyreative and deliberative approahes and integrate both of them as subsystems ofthe arhiteture. Generally, the reative system, apable of performing behaviours atfaster speeds, is given preedene over the deliberative system. The hybrid deliber-ative/reative arhitetures usually adopt a reative system at the low-level ontrol,where modules are loser to sensors and atuators, and a planner-based approah atthe high-level, for higher deision making [Matari, 1997℄. Therefore, the motion on-trol loops are losed at the lower levels produing di�erent behaviours. At the sametime, deisions based on internal models and plans an be reahed, modifying lowerbehaviours variables. The reative behaviour system makes short term deisions inloal areas, and the deliberative planning system makes mid and long term deisionsin global areas. This type of struture leads naturally to the idea of a layered ar-hiteture. The arhiteture is arranged into a hierarhy of ontrol subsystems, withthe lower levels loser to the physial world, sensors and atuators, and in whih thehigher levels deal with information at inreasing levels of abstration.In general, hybrid deliberative/reative arhitetures usually divide the ontrolsystem into a layered struture. This arhiteture struture to ontrol intelligentrobots needs the integration of three separate omponents: a reative feedbak meh-anism for ontrolling low level primitive ativities; a deliberative planning systemfor deision-making omputations; and a sequening system that ontrols the inter-ations between the other two omponents. This three layered struture, or similaron�gurations, an be found in the majority of hybrid arhiteture approahes, suhas the ATLANTIS arhiteture [Gat, 1992℄, the SSS arhiteture [Connell, 1992℄, andthe 3T arhiteture [Bonasso et al., 1995℄.Figure 2.4 represents a general hybrid arhiteture divided into three funtionallayers: a behaviour ontrol layer, for reative feedbak ontrol of the robot low-level
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Fig. 2.4: Hybrid deliberative/reative arhitetures usually divide the ontrol sys-tem into layered strutures with three main omponents: a behaviour on-trol layer, for reative feedbak low level ontrol; a sequene exeutionlayer, for ontrolling the exeution of behaviours in a planned sequene;and a planning layer for time-onsuming deliberative omputations, plan-ning high level goals and maintaining the world model.behaviours; a sequene exeution layer, whose tasks are the ativation and inhibitionof the other layers and the ontrol of the exeution of behaviours in a sequene orderto arry out their task; and a planning layer for performing time-onsuming delib-erative omputations, planning high level goals and maintaining the world model.These omponents run as separate asynhronous omputational proesses. Usually,algorithms in the three-layer arhitetures are organized aording to the role of theirinternal state representation. Sensor-based algorithms, that ontain no state repre-sentation, inhabit the ontrol behaviour layer omponent. Algorithms that maintainmemory of the past inhabit the sequener layer. Algorithms that make preditionsabout the future inhabit the planner deliberator layer [Gat, 1997℄.In the ATLANTIS arhiteture [Gat, 1992℄, these layers are alled the ontroller,the sequener, and the deliberator. For the 3T arhiteture [Bonasso, 1991℄, theomponents are alled the skill layer, the sequening layer, and the planning layer,respetively. The behaviour ontrol layer is responsible for the ontrol of primitiveativities, that is, simple reative sensorimotor proesses. Usually it ontains librariesof primitive behaviours or skills, the ativation of whih is determined by an externalinput to the ontrol layer, the sequener or ertain sensory inputs. The algorithmsthat go into the behaviour ontrol layer need to follow some important onstraints[Gat, 1997℄. The omputing yles must be of onstant-bounded time and spae om-plexity, small enough to a�ord stable losed loop ontrol for the desired behaviour.The algorithms should detet failure to perform the adequate funtions, allowinghigher omponents of the system to take orretive ations for failure reovery. In-ternal states in the ontroller should have limited time life, and should not introdue



2.5. Robot Hybrid Arhitetures 43disontinuities. It is the responsibility of the sequener to manage transitions betweenregimes of ontinuous operation.The sequene exeution layer is responsible for ontrolling the sequenes of prim-itive behaviours and deliberative omputations. The job of the sequener is seletingwhih primitive behaviour the behaviour ontrol layer should be ativated at a giventime, and to supply parameters for the behaviours. By ontrolling the ativationand deativation of behaviours at appropriate moments the robot an be made toperform useful tasks. The sequene exeution layer initiates and terminates primitivebehaviours by ativating and deativating sets of modules in the behaviour ontrollayer. In addition, it an send parameters to the behaviour ontrol layer, and mon-itor the progress of the ative behaviours [Gat, 1992℄. The ontrol of sequenes isrequired to handle several di�ult situations. The sequener must be able to deale�etively with unexpeted failures. Also, if behaviours must be interrupted, thenthe sequener must ensure that the interrupted ativity is properly terminated, andthe system must ensure that two ativities whih interfere with eah other are notenabled simultaneously.The planning layer is responsible for the performane of time-onsuming ompu-tational tasks suh as deision making, planning generation and maintaining worldmodels. The planning layer performs under the ontrol of the sequener whih ini-tiates and terminates its proesses. The planning layer often runs as a onurrentlyomputational proess in one or more separate ontrol threads. Several behaviourtransitions ould our between the time a deliberative algorithm is invoked and thetime it produes a result, with no restritions on the omputational struture exeptthe sequener's ability to initiate and terminate its funtions. The planning layerinteration with the rest of the system usually follows one of three broad methods[De Silva and Ekanayake, 2008℄. The planning layer provides lower layers diretlywith the information on whih to at. It an produe plans for the sequener toexeute, or it an respond to spei� queries from the sequener. The planning layerworks prior to or jointly with the behaviour layer, updating the robots behaviouralparameters or hanging the world state. Coupled planning and behavioural layersour onurrently making plans and reative exeution.Many examples of implementations of hybrid arhitetures an be found. TheAutonomous Robot Arhiteture, AuRA [Arkin and Makenzie, 1994℄, is one of theearliest approahes attempting the integration of hierarhial planning and reativebehaviours mehanisms. In AuRa two major planning and exeution omponentsare present: a behaviour reative omponent, shema ontroller, oupled with a hi-erarhial planning omponent system that is formed by a mission planner, at thehighest level of the arhiteture, onerned with establishing high level goals, a spa-tial reasoner, that onstrut sequenes of paths using stored knowledge, and a plansequener, that translates eah path generated by the spatial reasoner into a set ofmotor behaviours for exeution [Arkin and Balh, 1997℄.Under the hybrid paradigm the most popular hybrid deliberative/reative arhi-tetures are the three-layered arhitetures. [Gat, 1992℄ introdued the ATLANTISarhiteture as an early example, it was �rst implemented on robot Robby in 1990.ATLANTIS is a heterogeneous asynhronous arhiteture for ontrollingmobile robots



44 2. Intelligent Arhitetures for Humanoid Robotsbased on the ativity model of ation. It has three layers, namely the ontroller, thesequener, and the deliberator. The ontroller is a reative ontrol of primitive a-tivities with no deision-making omputations. The sequener is a speial-purposesystem whih ontrols initiation and termination of the primitive ativities, and thetime-onsuming deliberative omputations, performed in the deliberator, like plan-ning and world modelling [Gat, 1992℄.Another arhiteture, similar in struture to ATLANTIS is SSS, Servo-Subsumption-Symboli, whih ombines a servo-ontrol layer, a �subsumption� layer, and a symbolilayer. Unlike ATLANTIS in the SSS arhiteture the middle layer is based on thesubsumption arhiteture [Brooks, 1986℄, and the symboli layer is inside the ontrolloop. The 3T arhiteture [Bonasso et al., 1995℄, separates the general robot intel-ligene problem into three interating tiers or layers. First, a skill layer where adynamially reprogrammable set of behaviour reative skills is oordinated by theskill manager. A sequening layer, that ativates and deativates the sets of skillsto aomplish spei� tasks, this use the Reative Ation Pakages (RAPs) system.And the planning layer with deliberative planning apabilities that reason about thegoals, resoures and time onstraints.[Ferguson, 1991℄ developed the TOURINGMACHINES hybrid agent arhiteture.It onsists of omponents for pereption and ation in diret interation with the envi-ronment, and three independent ontrol layers onurrently exeuting proess undera ontrol framework. The reative layer, implemented in the style of the subsump-tion arhiteture [Brooks, 1986℄, as a set of situation-ation rules, generates oursesof ation in response to quik hanging events. The planning layer onstruts plansand selets ations to exeute in order to ahieve the agents goals. The modellinglayer ontains symboli representations of the ognitive state of other entities orre-sponding to the environment. The three layers are embedded in a ontrol frameworkthat mediates between the layers, and deals with on�iting ation proposals fromthe di�erent layers.INTERRAP [Müller and Pishel, 1994℄, is a layered arhiteture, with eah su-essive layer representing a higher level of abstration. The INTERRAP arhiteturefurther subdivides these layers into two vertial ones: the �rst ontaining layers ofknowledge bases and, the other ontaining ontrol omponents. The lower-layer is aworld interfae ontrol omponent that manages the interfae between the agent andits environment, and thus , deals with ating, ommuniating, and pereption as anabstration layer for the rest of the struture. The next layer is the behaviour-basedomponent that implements and ontrols the basi reative apability of the agent.Above the behaviour-based omponent is the plan-based omponent layer whih on-tains a planner that is able to generate single-agent plans in response to requests fromthe behaviour-based layer. The knowledge omponent at this layer ontains a set ofplans, inluding a plan library. The highest layer for the INTERRAP arhitetureis the ooperation layer, whih is able to generate joint plans that satisfy the goalsof a number of agents. These plans are generated in response to requests from theplan-based omponent. The knowledge omponent at this layer ontains a soial planlibrary, from whih the ooperation layer an selet plans for elaboration.The Task Control Arhiteture (TCA) [Simmons, 1994℄, provides an integrated



2.5. Robot Hybrid Arhitetures 45set of ontrol onstruts for implementing deliberative and reative robot behaviours.The ontrol onstruts mean to failitate the development of modular and evolution-ary systems, they are used to integrate and oordinate planning, pereption, andexeution, and to inrementally improve the e�ieny and robustness of the robotsystems. The TCA ontrol onstruts inlude support for distributed inter-proessommuniation, task deomposition, management and alloation of resoures, exep-tion handling and exeution monitoring. A TCA robot system onsists of a number ofrobot-spei� modules, and a entral ontrol module, whih is ommon to all systemsthat use TCA. The modules ommuniate by passing oarse-grained messages to theentral ontrol, whih then routes messages to the appropriate modules that wouldhandle them. In this strutured ontrol approah, the deliberative omponents han-dle normal situations and the reative behaviours, whih are expliitly onstrainedas to when and how they are ativated, handle exeptional situations. The TCAarhiteture has been used in over a half-dozen robot systems, inluding a six-leggedrobot that autonomously walks over rugged terrain [Simmons, 1994℄.The Ation-Deliberative (AD) arhiteture [Malfaz et al., 2011℄, was designed try-ing to avoid rigidity in the planning-sequening-ating paradigm that an be found inthe three layer arhitetures. It is omposed of only two levels: one for deliberativeativities and a seond one for automati ativities. The sequening proesses aredistributed between the deliberative and automati levels, providing more �exibilityto the hybrid arhiteture. The AD arhiteture has been further enhaned by alsoadding a biologially inspired deision making system [Malfaz et al., 2011℄.The hybrid deliberative/reative arhitetures present some advantages over bothpurely deliberative and purely reative arhitetures, mostly in shortening their re-spetive drawbaks. Hybrid deliberative/reative arhitetures ombine the rapidreal-time responses and ability to adapt to quikly hanging environments providedby behaviour-based systems with the higher level reasoning, planning and deisionmaking apabilities of planner-based approahes, enabling them to perform in a bet-ter wider range of tasks, oupling the strengths of both paradigms, providing moresuessfully ating intelligent agents. However, these types of arhitetures are notdevoid of problems and ritis. Hybrid deliberative/reative arhitetures tend mostlyto be very spei�, appliation dependent, and laking general design guiding method-ologies. A potential di�ulty with hybrid arhitetures is that while their struturesare well-motivated from a design point of view, it is not lear that they are motivatedby any deep theory [Wooldridge and Jennings, 1995℄. The lak of good theoretialmodels for agent arhitetures prevents the true understanding of the mehanismfrom whih the systems works, di�ulting the generalization and reprodution oftheir results for varying domains. However, psyhologial and neurophysiologial ev-idene an be found for the o-existene of two distint planning systems in humans[Norman et al., 1980℄, supporting this approah as a potentially e�etive methodol-ogy for roboti systems.



46 2. Intelligent Arhitetures for Humanoid Robots2.6 Robot Cognitive ArhiteturesWhen developing robot systems with human like embodiments and funtional a-paities and behaviours that are similar to that of humans, suh as those neededfor the humanoid robots that have been disussed in the above setions, it beomeslear that di�erent mehanisms are neessary to repliate the omplex level of skillsand operations presented by humans than those employed to simulate simpler be-haviours. In order to deal with the riher set of intriate abilities that are expetedfrom humanoid agents, the intelligent arhitetures need to provide new struturesand models. The deliberative planning and behaviour-based approahes on their ownseem to be insu�ient to deal with the inherent omplexities related to represen-tation and modelling of reasoning in the human mind. In [Brooks, 1996℄, a neededshift in viewpoint is disussed for ases when the fous of researh goes to buildinghumanoid robots, designed to present a full human level intelligene, that must beapable of operating and interating in the world in muh the same way a humanagent would. Here, approahes are led to di�erent arhitetural deompositions fromthose onsidered from both the traditional AI planning approahes and the behaviour-based approahes, largely implemented for mobile robots. These deompositions aremotivated by fundamentally di�erent onerns at many di�erent levels of analysis,requiring to deal with a number of important issues, suh as, bodily form, motivation,oherene, self adaptation, inspiration from the brain, et.In dealing with these onerns, whih arise when thinking about building robotswith human level intelligene and funtionality, the agents' arhiteture struturalparadigm shifts from the prodution and emergene of intelligent behaviours as asystem output towards a viewpoint whose main pursuit is in the development of in-telligene thinking at the system internal proessing. These approahes are entredon the mehanism that allows for the generation of thought and the interior work-ings of ognition. This alls for an organization of intelligene in terms of ognitivemodels. Dealing with these issues, and the organization and interation of ognitiveomponents, is one important aspet for the development of ognitive arhiteturesand ognitive robotis.The deliberative planning approahes, while appliable for state-spae searh andsheduling systems, proved to be un�t to operate in hanging environments whihwould be required of humanoid robots. The reative and behaviour-based approahespresented great performanes in robot navigation and obstale avoidane, and indynami and unpreditable environments, yet their true appliability is limited tolow level behaviours and they would not be suited to dealing with the omplexitiesof behaviours present in humanoid robots. The hybrid approahes have attemptedto ombine the strengths of deliberative and reative approahes and an be readilyemployed as the system arhiteture for several roboti platforms. However, theyignore issues of pereption, learning, world model, and di�erent mehanisms thatwould be neessary to repliate the omplex level of skills and operations presentedby humans and lak of good theoretial models. Researh in ognitive arhiteturesonstitute a solid basis for building intelligent systemdeompositionss entred on theon�guration and interation of ognitive modules dealing with the various mehanism



2.6. Robot Cognitive Arhitetures 47and abilities that onstitute the various proess of human intelligene.The study of the mind, intelligene, and the working proesses of intelligentthought are the ompetenies of ognitive siene. Researh in ognitive sienestands at the intersetion of various �elds, embraing philosophy, psyhology, arti�-ial intelligene, neurosiene, linguistis, and anthropology. A entral point for thedevelopment of ognitive theories lies in studying the nature of knowledge. The mostagreed view by ognitive sientists is that knowledge in the mind onsists of mentalrepresentations, and that intelligent behaviour and thought are the resultant prod-uts of manipulating, reasoning and operating upon these internal representations.Muh debate in the �eld is foused on the lass and nature of these knowledge rep-resentations, on the representational mehanisms for aquisition, organization, andutilization of knowledge, and on whether the internal representations are even neededat all or whether or not another paradigm is required.The entral task of a knowledge representation is apturing the omplexity ofthe real world [Davis et al., 1993℄. Representations thus perform as funtional ab-strations of the pereived environment, enoding an agents' knowledge of its world,objets, ations, events, et., into manageable internal strutures. An agent system,having useful representations, an therefore operate on them by abstrating itselfbeyond the world. The knowledge representation onstitutes an important propertyfor the design of a ognitive agent arhiteture, along with the organization and useof the represented knowledge, and the mehanism supported for the aquisition andrevision of the knowledge in the representation [Langley et al., 2009℄.The dominant analogy in ognitive sienes has been to ompare the mind, andthe brain, to omputers, where thinking an be understood as omputational proe-dures. The metaphor assumes that the mind has mental representations analogousto data strutures in a omputer program, and omputational proedures similar toprogrammed algorithms [Thagard, 2005℄. The omputational hypothesis has beenthe most expanded and dominant theoretial and experimental theory of mind de-veloped so far. Other theories have also arisen to hallenge the major premises ofthe omputational-representational understanding of mind (CRUM) thesis as themost suitable one for ognition. Connetionist models have proposed novel ideasexpanding theoretial frame of ognitive siene about representation and ompu-tation that uses neurons and their onnetions. The onnetionist analogy is thatmental phenomena an be desribed by interonneted networks of simple and oftenuniform units, where neuron patterns and network onnetions an be ompared todata strutures, and neuron �ring and spread ativation is analogous for algorithms[Thagard, 2005℄. More reent approahes in ognitive siene have taken a growinginterest in dynamial systems. The dynamial systems metaphor promotes thinkingabout the underlying fores, vetor �elds, from whih observed patterns of behavioursemerge [Shöner, 2008℄. In this view, the brain is thought of as a dynami physialsystem and the proesses in the mind an be desribed by di�erenes and di�erentialequations. The driving idea motivating the dynamial systems approah is that og-nitive proesses, ontrary to the omputational hypothesis of disrete representationaloperations, must unfold ontinuously and simultaneously in real time. Therefore, aognitive system would not be a sequential manipulation of disrete stati representa-



48 2. Intelligent Arhitetures for Humanoid Robotstional strutures, but rather, a struture of mutually and simultaneously in�ueninghange [van Gelder and Port, 1995℄.The traditional ommitment of ognitive sienes to a omputational-representationalview of the mind, where intelligene is a problem of symbol manipulation, has faedinreasing hallenges and septiism over the years, in whih, the very entral notionof internal representation has been questioned. This hallenges have been expliitlystated by [van Gelder, 1995℄, and are also present in works by [Thelen and Smith, 2007℄,[Wheeler et al., 1994℄, [Haselager et al., 2003℄, et. The representational approah,aording to this hypothesis, is viewed as inapable of produing timely suitable og-nitive responses, and as detrimental and ounterprodutive for developing intelligentphysial agents. The ritial distintion is not between representational and non-representational solutions but among an ation-neutral form of internal representa-tion, requiring disembodied symboli omputational proessing, and ation-orientedforms, in whih a behavioural response is embedded into the representation itself[Clark, 2004℄. A neessary emphasis is plaed on the lose link of ognition with thesensory and motor proesses and the environments in whih these are immersed. Mod-els of ognition must be embodied proesses that apture the unfolding of ognitionin time and the assoiated sensory and motor surfaes embedded in the environmentin whih ognitive phenomena takes plae [Shöner, 2008℄. The embodied ognitionview maintains that there is more to ognition than just mental representations.Humans' problem solving ability involves �intensive ooperation� between internalrepresentation, omputations and interations with the environment. The laim isnot an outright rejetion of the legitimay of representations, however in order tobe valid, for embedded ognition, the representations are to be limited, physiallygrounded to the environment and oriented toward the spei� needs of the givenagent [Anderson, 2003℄. Development of ognitive robotis will relied on o�-linedmodelling and operation on internal representations, and emulation mehanism forenvironmentally oupled responses [Clark and Grush, 1999℄.The ideas of knowledge representation and reasoning are entral for high level og-nitive roboti ontrol [Levesque and Lakemeyer, 2008℄. The development of robot sys-tems endowed with a human like embodiment, funtional apaities and behaviours,apable of repliating the omplex level of skills and operations presented by humans,would require omplex ontrol arhitetures, whih allowed them to display ognitiveabilities. Cognitive arhitetures spei�es the underlying infrastruture for an intel-ligent system. The representational formalisms by whih an agent would enode itsknowledge are a entral aspet of a ognitive arhiteture [Langley et al., 2009℄. As ade�nition, let's take the one provided by [Albus and Barbera, 2005℄: a ognitive ar-hiteture is an organizational struture, of knowledge representations and funtionalstrutures, set for enabling the modelling of ognitive phenomena. A ognitive arhi-teture would attempt to provide the basi primitive omputational resoures neededfor developing intelligent systems. Among their basi properties are those related tomemory, representation, proessing, organization, performane, interation, reason-ing, and learning. Researh on ognitive arhitetures is a very important topi sineit supports a entral goal of arti�ial intelligene, ognitive siene, and robotis, thereation and understanding of agents built for supporting the same apabilities as
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KnowledgeFig. 2.5: A Robot Cognitive Arhiteture must support several apabilities. Per-eption and motor abilities must be present for a ognitive robot agentating in an environment. The apaity for modelling and haraterizingthe environment is entral to the performane of all other ognitive fun-tions. Memory storage is also fundamental for a ognitive robot agent.The ability for learning, adapting and improving the agent skills is vitalfor the performane of a ognitive agent over time. Reasoning and deisionmaking abilities guide agent ation, hoosing, from the pereived, stored,and learned knowledge, appropriate set of skills and proper behaviours toexeute.humans [Langley et al., 2009℄.The Cognitive arhiteture funtion is to provide a omprehensive initial frame-work for the modelling and understanding of ognitive phenomena, in a variety oftask domains, [Sun, 2009℄. The arhiteture design must speify overall strutures,essential divisions of modules and their interrelationships, basi representations, es-sential algorithms and a variety of other aspets. The various attempts at developingognitive arhitetures an di�er in the assumptions they make, and the design de-isions they take about how to manage these aspets. A ognitive arhiteture ansupport several apabilities, and an di�er variedly in their set of abilities. Pereptionand reognition, deision making, memory, and learning are the most entral abilitiesan arhiteture must support to over the range of human-level intelligene. Otherrelevant abilities are those of problem solving and planning, predition, reasoning,ommuniation and ation exeution [Langley et al., 2009℄.Figure 2.5 represents a general model for a robot ognitive arhiteture. Here var-ious interlinked models are present for supporting pereption, motor ontrol, world



50 2. Intelligent Arhitetures for Humanoid Robotsmodelling, memory, reasoning, and learning abilities. A ognitive robot agent, em-bedded in an environment requires modules for pereption and motor ontrol of itsations with the world. A omprehensive model of the agents environment, allowingfor the agent situatedness and understanding of the urrent state of the world is aneessary prerequisite for pratially every other ognitive faulty the agent ould dis-play. A memory module for knowledge storage is of entral importane for a ognitive,adaptive, intelligent agent. Stored knowledge ould be of delarative or proeduralnature. Modules for reasoning or deision making guide all motor ativity, based onthe pereive, store, and learned knowledge of the agent. The module for reasoningwould hoose appropriate sets of ations and proper behaviours to exeute. Sup-porting modules for learning, and improving, the agents skill set, is a vital part of aognitive arhiteture in order to guarantee an agents' suess over time.An intelligent agent exists inside an external environment that it must sense, per-eive, and interpret. Multiple sensor modalities ould be implemented by the agent.Pereption involves integrating results from the di�erent modalities into a model ofthe environment whih ould be used by other ognitive proesses. The pereptionmust go beyond pereiving isolated objets or events to interpret the broader envi-ronmental situation, and ompose a large model of the urrent environment.Intelligent agents require the ability to reognize situations as instanes of knownor familiar patterns, and ategorize suh objets, situations, or events to known on-epts. To support reognition and ategorization, a ognitive arhiteture must pro-vide some way to represent patterns and situations in memory [Langley et al., 2009℄.Deision making abilities to selet from alternatives is an important ability re-quired for an intelligent agent. A ognitive arhiteture, in order to support deisionmaking, must possess a way to represent alternative hoies or ations, and also o�era proess of seletion between these alternatives.A ognitive arhiteture requires mehanisms that draw inferenes using its knowl-edge strutures. Reasoning lets an agent augment its knowledge state, drawing on-lusions from beliefs and assumptions that the agent already holds. The ognitiveagent an engage in various forms of reasoning suh as, dedutive reasoning, indutivereasoning, addutive inferene, as well as the arhitetures a�orded by it. Cognitivearhitetures are essentially models of human reasoning [Russell and Norvig, 2010℄.Storing, and retrieving, an agent ognitive proess in memory is an importantability that rosses all other ognitive apaities of the agent. In order to `remember'an agent ognitive ativity, the arhiteture must enode and store the ognitivestrutures that are generated during the agent's ativity. Memory must store andindex this knowledge, and be able to retrieve it when needed. Cognitive arhiteturesmost often distinguish between a short-term memory, holding information relevantto urrent environment models, and long-term memory storing knowledge apture bythe agent over periods of its ations.Cognitive arhitetures must inorporate some way from whih to learn, and im-prove, their ognitive apaities. Learning involves proessing, and generalizing, mem-ory ognitive strutures to improve the apabilities of the agent, beyond spei� beliefsand events. The data on whih learning operates may ome from all soures sup-ported by the arhiteture, inluding observation of another agent, problem-solving



2.6. Robot Cognitive Arhitetures 51behaviour, pereption and ategorization, predition, reasoning, skills and exeutionpoliies. A ognitive arhiteture should also be able to learn from instrution andexperiene.Problem solving and planning abilities are neessary in order to generate plansand ahieve an agents goals in several situations. Intelligent agents operating indynami environments must often modify existing plans in response to unantiipatedhanges [Langley et al., 2009℄. To support these abilities, the ognitive arhiteturemust be apable of representing the planned ations, as ordered set of ativities,and expeted results. It should also be able to generate plans and solution fromomponents available from its memory, or learning.Cognitive agents an bene�t from the ability to predit future situations. Thisrequires the arhiteture to provide mehanisms apable of prediting future situationsusing present knowledge strutures. Predition requires a model of the environmentand of the e�ets an ation has on it [Langley et al., 2009℄.Communiation is another important ability for ognitive arhitetures to supportsine a ognitive agent interats with other agents and the transfer of knowledgefrom one agent to another is a possible ourrene. Cognitive arhitetures shouldsupport mehanisms for transforming knowledge into the form and medium throughwhih it will be ommuniated [Langley et al., 2009℄. Agents an ommuniate aboutpereptions and ations, plans, inferenes, deisions made, preditions and anomalies,et. Building ognitive arhitetures failitates the interation between humans andintelligent systems beause of similarities in ognitive abilities [Sun, 2009℄. Inreasingthe ognitive apaities of a roboti system is an important task in order to ahievea meaningful and natural interation and ollaboration in a human-robot team.The ognitive arhitetures must allow for the exeution of skills and ations in theenvironment. The arhiteture must be able to represent and store motor skills thatenable the agents ativity. Cognitive arhitetures should present the �exibility tosupport a behavioural range, as an humans, from autonomous open-loop behaviours,to reative losed-loop behaviours.In the �eld of Arti�ial Intelligene and Cognitive Systems there are variousworks on the development of ognitive arhitetures to model ognitive proessesand funtionalities of humans. Among the better known arhitetures there is Soar[Laird et al., 1987℄, ACT-R [Anderson et al., 2004℄, PRODIGY [Veloso et al., 1995℄,EPIC [Kieras and Meyer, 1997℄, ICARUS [Langley and Cummings, 2004℄, CLARION[Sun et al., 2001℄, et.The Soar (State Operator And Result) [Laird et al., 1987℄, ognitive arhiteturehas been under ontinuous development sine the early 1980s. The arhiteture isbased on the theoretial framework of knowledge-based systems seen as an approxi-mation to physial symbol systems [Duh et al., 2008℄. Soar stores its knowledge inthe form of prodution rules, whih are in turn organized in terms of operators thatat in the problem spae. The basi deliberative ats of the system are performedby the operators, with knowledge used to dynamially determine their seletion andappliation [Langley et al., 2009℄. In Soar, tasks are formulated as goal ahievingattempts. The primary learning mehanism in Soar is hunking. Chunking ourswhen one or more results are produed in a subgoal. The hunk ations are based on



52 2. Intelligent Arhitetures for Humanoid Robotsthe result, and theirs onditions are based on the relevant aspets of the goal abovethe subgoal. Soar has multiple learning mehanisms: hunking and reinforementlearning aquire proedural knowledge, whereas episodi and semanti learning a-quire their own orresponding types of delarative knowledge [Langley et al., 2009℄.Researhers have used Soar arhiteture to develop a variety of sophistiated agentsthat have demonstrated several high-level ognitive funtions [Duh et al., 2008℄.ACT-R (Adaptive Control of Thought-Rational) [Anderson et al., 2004℄, arhite-ture is primarily onerned with modelling human behaviour. The aim is to buildsystems that perform the whole spae of humans ognitive tasks and desribe meh-anisms' underlying pereption, thinking and ation [Duh et al., 2008℄. The ACT-Rarhiteture is organized into a set of modules, inluding sensory modules for visualproessing, motor modules for ation, an intentional module for goals, and a delar-ative module for long-term delarative knowledge. Eah module proesses di�erenttypes of information and has its own assoiated bu�er to hold hunks of delarativestrutures, taken together these bu�ers omprise the arhiteture short-term memory[Langley et al., 2009℄. ACT-R employs a top-down learning approah to adapt to thestruture of the environment [Duh et al., 2008℄. Produtions or hunks are mathedto pereptions and fats, mediated by ativation levels of objets. There exeutionis made to a�et the environment or alter delarative memory. The arhiteture op-erates by mathing produtions on pereptions and fats, mediated by the real-valueativation levels of objets, and exeuting them to a�et the environment or alterdelarative memory. Learning in ACT-R involves reating new fats and produtions,as well as updating base ativations and utilities assoiated with these strutures. TheACT-R arhiteture has been applied in intelligent tutoring systems, psyhologialstudies, inluding aspets of memory, attention, reasoning, problem solving, et., andto ontrol mobile robots that interat with humans [Langley et al., 2009℄.ICARUS [Langley and Cummings, 2004℄, de�nes an integrated ognitive arhite-ture for physial agents where two distint forms of knowledge are stored. Conepts,ontaining knowledge of general lasses of objets and relationships, and skills spe-ifying knowledge about ways of doing things. The arhiteture inludes a numberof modules: a pereptual system, a planning system, an exeution system, and sev-eral memory systems [Duh et al., 2008℄. The ICARUS interpreter operates on areognize-at yle. Coneptual memory direts bottom-up, perept-driven inferenewith the proess ontinuing until ICARUS infers all dedutively implied beliefs. Skillmemory ontrols top-down, goal-driven seletion of ations, starting from a top-levelgoal: it �nds a path downward through the skill hierarhy when a path terminatesin a primitive skill with exeutable ations; the arhiteture applies these ationsto a�et the environment [Langley et al., 2009℄. ICARUS is able to learn new on-epts inrementally, in an e�ient way, by onstruting feature trees that the systeman omprehend [Duh et al., 2008℄. ICARUS arhiteture has been used to developagents for a number of domains involving a ombination of inferene, exeution, prob-lem solving, and learning. Ongoing work aims to link ICARUS to physial robots thatarry out joint ativities with humans [Langley et al., 2009℄.PRODIGY [Veloso et al., 1995℄, inorporates two kinds of knowledge strutures,domain rules, whih enode the onditions under whih ations have ertain e�ets



2.6. Robot Cognitive Arhitetures 53and ontrol rules, whih speify the onditions under whih the arhiteture shouldselet, rejet, or prefer a given operator. PRODIGY performs searhes through aproblem spae to ahieve one or more goals, relying on means-ends analysis, selet-ing an operator that redues di�erenes between the urrent state and the goal. Ifontrol knowledge is absent, the arhiteture makes a hoie at random and pursuesa depth-�rst means-ends searh with baktraking [Langley et al., 2009℄. Researhin PRODIGY framework has fouses mainly on problem solving and planning is-sues. However, PRODIGY has also formed the basis for a mobile robot with in-terleaved planning and exeution and aepted asynhronous requests from users[Langley et al., 2009℄.CLARION (Connetionist Learning with Adaptive Rule Indution ON-line), isan integrative arhiteture [Sun et al., 2001℄, it onsists of four distint subsystems:ation-entered subsystem (ACS), non-ation-entered subsystem (NCS), motivationalsubsystem (MS), and metaognitive subsystem (MCS). Eah of these interating sub-systems onsists of two levels of representation. CLARION arhiteture inorporatesa distintion between expliit (symboli) and impliit (sub-symboli) proesses andaptures the interations between the two [Duh et al., 2008℄. In general, for eahsubsystem, the top level enodes expliit knowledge and the bottom level enodesimpliit knowledge [Sun, 2009℄. The role of the ACS module is to ontrol and regu-late the agent ations, whether they are external physial movements or for internalmental operations. The role of the NCS module is to maintain the general systemknowledge, either impliit or expliit. The role of the MS module is to provide un-derlying motivations for pereption, ation, and ognition. The role of MCS moduleis to monitor, diret and alter the operations of the other three modules. CLAR-ION ognitive arhiteture has seen appliations to multi-agent soial simulations[Sun, 2009℄.EPIC, (Exeutive Proess Interative Control) [Kieras and Meyer, 1997℄, aims atapturing human pereptual, ognitive and motor ativities through several inter-onneted proessors working in parallel, and to build models of human-omputerinteration for pratial purposes [Duh et al., 2008℄. The arhiteture enodes long-term knowledge as prodution rules, and a set of pereptual (visual, auditory, tatile)and motor proessors. Researh on EPIC has inluded a strong emphasis on ahievingquantitative �ts to human behavior, espeially in tasks that involve interating withomplex devies [Langley et al., 2009℄.Polysheme [Cassimatis et al., 2004℄, ognitive arhiteture integrates multiplemethods for representations, reasoning, and problem solving [Duh et al., 2008℄. Eahrepresentation has a speialist assoiated module, modelling a di�erent aspet of theworld, it supports forward inferene, subgoaling, and other basi operations, whihare mathed against the shared dynami memory with elements grounded in perep-tion and ation [Langley et al., 2009℄. The arhiteture ould be used for abstratreasoning and also for ommon sense physial reasoning in robots. The PolyShemearhiteture makes a stronger semanti ommitment than most other arhitetures:it enodes all strutures within a basi set of relations of time, spae, events, identity,ausality, and belief [Langley et al., 2009℄. Polysheme arhitetures has been used tomodel infant reasoning, inluding objet identity, events, ausality, spatial relations



54 2. Intelligent Arhitetures for Humanoid Robots[Duh et al., 2008℄.IBCA (Integrated Biologially-based Cognitive Arhiteture), is a biologially in-spired ognitive arhiteture [O'Reilly et al., 1998℄, it imitates automati and dis-tributed notions of information proessing in the brain. The arhiteture ontem-plates three modules inspired by the role of three regions in the brain, posteriorortex (PC), frontal ortex (FC), and hippoampus (HC) [Duh et al., 2008℄. ThePC module fouses on sensory-motor as well as multi-modal, hierarhial proessing,assuming overlapping, distributed loalist organizations. In the FC module, work-ing memory units are isolated from one another, ontributing ombinatorially, in anon-overlapping, reurrent loalist organization. The HC module utilizes a sparse,onjuntive globalist organization, in whih units ontribute interatively to a givenrepresentation. In the IBCA framework, the underlying regularities of the world andsensory-motor ativities, are aptured by employing slow integrative learning, in thePC and FC modules, that blends many individual experienes. The HC module addsa fast learning retaining and disriminating over he individual experienes. Cooper-ation between HC and FC/PC re�ets the omplementary learning paradigms in thebrain [Duh et al., 2008℄.RCS (Real-time Control System) [Albus, 1997℄, is a ognitive arhiteture, orig-inally designed for the sensory-interative goal-direted ontrol of laboratory ma-nipulators. It has evolved over three deades into real-time ontrol arhiteture forintelligent mahine tools, fatory automation systems, and intelligent autonomousvehiles [Albus and Barbera, 2005℄. The RCS arhiteture onsists of a multi-layeredhierarhy of omputational modules, operating in parallel, ontaining elements ofsensory proessing (SP), examining the urrent state, world modelling (WM), pre-diting future states, value judgment (VJ), seleting among alternatives, behaviourgeneration (BG), arrying out tasks, and a knowledge database (KD). The Knowl-edge representation is heterogeneous, inluding frames, rules, images, and maps[Langley et al., 2009℄. At the lower levels, goal-seeking reative behaviours are gen-erated. At higher levels, deision making, planning, and deliberative behaviour takesplae [Albus and Barbera, 2005℄. The higher level modules in�uene, in a top downmanner, the lower level modules, whih in turn pass information bak up.Other approahes to ognitive arhitetures or frameworks inludes, PRS (Proe-dural Reasoning System) [Ingrand et al., 1992℄, a well know agent arhiteture, basedon the belief-desire-intention paradigm. PRS inludes a plan library, of partially-elaborated plans alled knowledge areas, as well as expliit symboli representa-tions of beliefs, desires, and intentions [Wooldridge and Jennings, 1995℄. The frame-work stores the hierarhial proedures, e�ets, and ordered steps that invoke subproedures. Among dynami strutures inludes, agent belief about the environ-ment, desired goals to ahieve, and planned intentions of the agent. At eah on-trol yle, PRS arhiteture deides on whether to ontinue exeuting its urrentintention or to selet a new intention to pursue [Langley et al., 2009℄. PRS hasbeen evaluated in a simulation of maintenane proedures, as well as other domains[Wooldridge and Jennings, 1995℄. SULTAN (Simultaneous User Learning and TAskexeutioN) [Balaguer et al., 2011℄, o�ers a framework for an intelligent servie robotisystem that an be apable of physial and ognitive ollaboration. The SULTAN



2.6. Robot Cognitive Arhitetures 55onept sets the problem in a user-task-objet domain, aimed at solving the hallengeof how an agent an robustly perform a set of tasks for di�erent users in di�erent envi-ronments. In SULTAN the learning proess is based on hierarhial Bayesian networksbuild on the base of the Bayesian approah to ognitive system [Balaguer et al., 2011℄.A model of the user is maintained by SULTAN learning module, and the representa-tion of the physial interation tasks is onurrently re�ned keeping expliit aountof user learning. The framework allows the augmentation of personal apabilities, itsmain fous is the reation of a human+robot binomial in whih physial and ognitiveollaboration is ahieved as a whole with potential appliations for assistive robotis[Balaguer et al., 2011℄. ISAC ognitive arhiteture [Kawamura et al., 2008℄, devel-oped for the humanoid robot ISAC, is a multi-agents arhiteture, based on the IMA[Pak et al., 1997℄. The ISAC ognitive arhiteture provides three ontrol loops forognitive ontrol of robots: Reative, Routine and Deliberative. It relies on the par-allel operation of several ognitive agents, suh as a Pereptual Agent, an AtionAgent, a Self Agent, a Central Exeutive Agent, a Goal Agent. Also three mem-ory omponents are implemented in the arhiteture, inluding: Working MemorySystem (WMS), Short Term Sensory Memory (STM), Long Term Memory (LTM)[Tan, 2012℄. Work on ISAC foused on human-robot interation and development ofognitive ontrol for humanoid robots [Pak et al., 1997℄.E�orts in ognitive arhitetures have produed important advanes in ognition,reasoning and oneptual aspets of human thinking. [Levesque and Lakemeyer, 2008℄o�ers an overview of the hallenges and e�orts taken in the subjet of ognitiverobotis. A omprehensive review of various di�erent ognitive arhitetures, issuesand hallenges, an be found in [Langley et al., 2009℄, many of whih have seen pra-tial use in real-world problems. To date, ontributions to the development of ogni-tive arhitetures for humanoid robots have been rather sparse. However, attemptsto provide ognitive proesses and funtionalities for a humanoid robot an be foundin the works of [Brooks et al., 1999℄, [Burghart et al., 2005℄, [Zoliner et al., 2005a℄,[Galindo et al., 2005℄, [Jung et al., 2007℄, [Lemaignan et al., 2010℄, [Choi et al., 2009℄,[Kim et al., 2010℄, and [Tan, 2012℄, among others.Further researh into ognitive arhitetures, frameworks and ognitive models isimportant to improve the ontrol and design of the intelligent roboti agents. Themost obvious arena for improvement onerns the introdution of new apabilities,and additional researh on the strutures and proesses that support suh apabili-ties [Langley et al., 2009℄, whih bear the wide range of human skills and ognitiveabilities. The arhitetures must address the issue of the agents' physial limited re-soures. Frameworks are needed that an enode knowledge in a variety of formalisms,and use them with greater �exibility and more e�etively to support intelligent be-haviours [Langley et al., 2009℄. Cognitive arhitetures need to onfront the roles ofthe interation with the environment, agents' internal drives, emotions, et. Thereis also the need for experimental methods for the thoughtful evaluation of ognitivearhitetures [Langley et al., 2009℄. The development of ognitive arhitetures sup-port the entral goal of arti�ial intelligene, ognitive siene and robotis: and ofbuilding arti�ial systems that are as apable as human beings. The reviewed ogni-tive arhitetures onstitute a solid basis for building intelligent systems, sine they



56 2. Intelligent Arhitetures for Humanoid Robots
Arhiteture Deliberative Reative Hybrid CognitiveDesignParadigm Sense-Plan-Atyle Hierarhy ofoupled sense-atbehaviours Low-level reativelayers and high-level deliberativelayers Interonnetedstruture of fun-tional ognitivemodulesStrengths -Planning of longterm ations.-Break om-plex task intosubtasks.-Can produeoptimal, domain-independentsolutions.

-Improved naviga-tion and obstaleavoidane.-Great e�ienyat run-time.-Robust, simpleand omputation-ally tratable.
-Combine real-time response andadaptability ofreative systemswith planning anddeision makingof deliberativeapproahes.

-Solid basis forbuilding intelli-gent systems.-Interonnetedmodels of og-nitive abilitiessupport range ofskills and ations.Challenges -Fail to addressunertainty.-High omputa-tional ost.-Poor perfor-mane whenfrequent replan-ning.
-No long-termplanning.-Limited applia-bility.-Di�ult todebug and under-stand emergingbehaviour.

-Very appliationdependant.-Lak general de-sign, methodolo-gies.-Di�ult to gen-eralize in varyingdomains.
-Introdue newapabilities.-Address agentphysial limitedresoures.-Experimentalmethods to evalu-ate arhitetures.Implementations STRIPS, IRMA,et. Subsumption ATLANTIS, SSS,3T, AuRA, et. Soar, ICARUS,ACT-R,EPIC, etAppliabilityforHumanoidRobots Un�t to operate inhanging environ-ments. O�ers limitedappliability on-�ned to low leveltasks. Couple strengthsof deliberative/re-ative paradigms.Lak of good the-oretial models. Support goalfor intelligentarti�ial systems.Further researhis important.Tab. 2.2: Comparison of Intelligent Arhitetures with their strengths, hallengesand possibilities for appliation in the �eld of humanoid robotis.



2.7. Framework for Learning and Adaptation of Skills to Task Constraints 57are based on well-motivated and properly grounded ognitive researh [Sun, 2009℄.The desired ognitive agents must display apaities for environmentally oupled em-bedded ation: and at the same time, they must think or reason abstratly aboutthe world in a de-oupled manner, as argued by the theories of embodied situatedognition.Table 2.2 summarizes the most relevant aspets and shortomings of the intelli-gent arhiteture approahes for developing humanoid robots that have been reviewedthroughout this hapter. Comparing their their design, strengths, hallenges, imple-mentations and possibilities for appliation in the �eld of humanoid robotis.2.7 Framework for Learning and Adaptation of Skills to TaskConstraintsFrom everything that has been stated throughout this hapter, it beomes learthat the envisioned humanoid robots of the future, apable of working autonomouslyand serving humans, are required to have advaned motor ontrol skills, omprehen-sive pereptual systems, and suitable intelligene, with an intelligent agent being un-derstood as in [Poole et al., 1998℄, as one that is �exible to hanging environments andhanging goals, and one that learns from experiene and makes appropriate hoies,given pereptual limitations and �nite omputation. The previous setions presenteda review of di�erent approahes for developing a robot's funtional arhiteture thatwould endow it with the apabilities for performing intelligent behaviours in the en-vironment. Clearly this is a very hallenging topi in whih ompletely satisfatorysolutions have not yet been reahed. Although great e�orts and advanes have beenmade over the years, obtaining important ontributions through the �eld.When thinking about what ould onstitute a general typial task for a humanoidrobot operating in a domesti environment together with other human agents, let usonsider a kithen setting and a ooperative task of setting a table for supper. Therobot would be required to pik up, plae and hand di�erent objets into di�erentplaes at di�erent times, not neessarily following a partiular order or sequene es-tablished beforehand, and in a world being hanged not only by its ations, but alsoby other agents working in the same spae. In this senario, deliberative planningapproahes would be unsuitable, sine they are inappropriate to operate in dynamihanging environments. A reative and behaviour-based approah would be limitedin its appliability, and onentrated only on low level reative behaviours. Hybridapproahes ould be employed when designed to resolve the hallenges of one partiu-lar task but a di�erent mehanism would be neessary when the fous is on humanoidrobots presenting human level intelligene and in repliating the omplex level of skillsand operations presented by humans. The agent's arhiteture paradigm must on-entrate on the development of intelligent thinking at the system internal proessing,entred on an organization of intelligene in terms of the on�guration and inter-ation of ognitive modules. Researh in ognitive arhitetures onstitutes a solidbasis for building intelligent systems, but even though some attempts on the �eldhave been made for providing ognitive proesses for humanoid robots, there are no



58 2. Intelligent Arhitetures for Humanoid Robotsfully developed ognitive arhitetures apable of endowing robots with the neessaryfuntional intelligene readily available.[Albus, 1991℄ proposed a multi-layered hierarhial system arhiteture, wheredi�erent levels of intelligene in the hierarhy an be ahieved, depending on theomputational power of the system and the sophistiation of its proessing algorithms.A minimal level of intelligene requires at least the ability to sense the environment,make deisions and take ations. Higher levels of intelligene may inlude the abilityto reognize objets and events, to represent knowledge in a world model, and toreason about and plan for the future. More elevated forms of intelligene provide theapaity to pereive and understand, to hoose wisely, and to at suessfully undera large variety of irumstanes.The urrent humanoid robots may only be around the minimum and mid-levelsof intelligene. Even if perhaps the ultimate levels of intelligene ould turn out tobe out of reah, and reating robots that repliate the total sope of human intelli-gene may prove impossible, it is neessary for future humanoid robots to ahieve asu�iently high level in the hierarhy. A ognitive framework for humanoid robotsneeds to provide a minimum degree of intelligent behaviour; this is the ability to sensethe environment, learn, and adapt its ations to perform suessfully under a set ofirumstanes.The referene model arhiteture [Albus and Barbera, 2005℄, [Albus, 1991℄, iden-ti�es �ve elemental systems ontained in eah layer, suh as, sensory proessing, worldmodelling, behaviour generation, value judgement and knowledge, interonneted in away that enables the various system elements to interat and ommuniate with eahother in intimate and sophistiated ways. Researh e�orts must fous on building theneessary modules of ognition that would form the layers in this hierarhy and allowfor assembling the levels of intelligene.Humanoid robot agents to be suessfully used for working alongside human part-ners would need to address important hallenges suh as high level understanding,engaging interations and quik adaptations to environmental dynamial hanges[Stoythev and Arkin, 2001℄. The ability to self-adapt and learn from experieneis a major onern. In order to have humanoid robots ating �uently in the world,interating with di�erent objets and people, they must be able to learn and adapttheir motor ontrol to dynami hanges in their interation with the world, that is,robot systems must be ontinuously self-adapting [Brooks, 1996℄.It beomes apparent that humanoid robots must be provided with systems thatallow them to ontinuously learn new skills and adapt their existing skills to newontexts, as well as to robustly reprodue new behaviours in a dynamial environmentin order to ope with working in ontinuously hanging environments and performingan unlimited variability of tasks.Motivated by the design of multi-layered referene model arhitetures, in thespirit of [Albus, 1991℄, and in�uened by the ideas of the Dynamial System approahto embodied ognition, as promoted by the works of [van Gelder and Port, 1995℄,[Clark and Grush, 1999℄, [Clark, 2004℄, [Beer, 2000℄, and in the Learning from Demon-stration approahes for enoding omplex motions as Dynamial Systems, �rst intro-dued by [Ijspeert et al., 2001℄, [Ijspeert et al., 2002℄, representing movement plans



2.7. Framework for Learning and Adaptation of Skills to Task Constraints 59
Demonstrations

Extraction 

of Task 

Constraints

Reproduction

Generation 

of Task 

Model

Skills Knowledge base

Model of

 a skill

1

2

3

4

Perceptual 

InputFig. 2.6: Proposed framework of a ognitive model for the learning and adaptationof robot skills to task onstraints. A knowledge base (2) is built withthe models of the robot skills learned through demonstrations (1). Theonstraints of a requested task are extrated from the pereption of theworld state. With the urrent task onstraints and the models of a skillretrieved from the knowledge base an adapted task model (3) is generatedfor reprodution (4).as mixtures of non-linear di�erential equations with well-de�ned attrator dynamis,in this work a framework is proposed for a ognitive module for the generation andadaptation of learned models of robot skills for omplying with task onstraints.We follow a view whih laims that models of ognition must be embodied pro-esses apturing the unfolding of ognition in time, mindful of the assoiated sensoryand motor surfaes embedded in the environment in whih ognitive phenomena takesplae [Shöner, 2008℄. And that systems' internal representations may be modellednot as simple inner states but as dynamial patterns of just about any oneivablekind [Clark, 2004℄. Here, thought an be desribed by variables governed by a set ofnon-linear di�erential equations and an agent behaviour an be generated from theomplex dynamial evolution of stable states and their instabilities in a non-lineardynamial system [Shöner, 2008℄.For the rest of this work, and throughout the following hapters, a frameworkfor the generation and adaptation of learned skills to task onstraints is presented,developed, implemented and validated. Figure 2.6 illustrates our proposed framework.The main purpose of the framework is to provide the humanoid robot with a basilevel of intelligene, namely, the ability to sense the environment, learn and adaptits ations to perform suessfully under a set of irumstanes. In the developedframework a knowledge base of skills is built with the models of the skills learned



60 2. Intelligent Arhitetures for Humanoid Robotsthrough demonstrations. During exeution the onstraints of a requested task areextrated from the pereptual system from the working environment and the modelsof an appropriate skill are retrieved from the skills knowledge base. With all availableinformation a new adapted task model is generated for reprodution.The framework provides humanoid robots with systems that allow them to on-tinuously learn new skills, represent their skills' knowledge, and adapt their existingskills to new ontexts, as well as to robustly reprodue new behaviours in a dynamialenvironment. The proposed framework is formed by 4 fundamental modules:1. Module for the learning of robot skills.2. Module for the management and representation of robot skill knowledge.3. Module for the generation and adaptation of robot skill models.4. Module for the reprodution of robot skills.The robot skill learning module ollets the learning proesses and algorithms usedfor learning and enoding the models of the skills. The robot skill knowledge moduleontrols the developed knowledge base. The robot skill generation and adaptationmodule governs the proess by whih the learned model of a skill an be operated toreprodue a new task. The robot skill reprodution module produes the adequateontrol signals to the robot for the reprodution of those skills. Additionally, a per-eption and interation module is in harge of proessing the outside information ofthe robot's working environment to use in the other modules. The following hapterswill desribe in more detail the modules for learning the robot skills models, rep-resenting the robot skills knowledge, generating and adapting robot skills, and thereprodution of the robot skills.The ultimate goal for a humanoid robot would require them to present full levelognitive and intelligent arhitetures, yet urrent developments are not yet even nearlose to these apaities. The ognitive arhiteture arhetype ould, eventually, verywell be the most suitable approah for building the humanoid robots' intelligeneapabilities. However, a majority of urrent ognitive approahes fous more onsolving intelligene as an abstrat reasoning proess and do not take into aountthe physially embedded aspets of ognition and the partiular hallenges humanoidrobotis represents. Furthermore, fully developed ognitive arhitetures with theapabilities for endowing robots with the needed funtional intelligene are not readilyavailable. Therefore we begin our approah by trying to attain a basi funtional levelof intelligene allowing a robot the ability to sense the environment, learn, and adaptits ations to perform suessfully under a set of irumstanes. The frameworkdeveloped in this work was proposed as a ognitive model intended to provide therobot with an essential ognitive ability for learning and adaptation of skills. Ourframework an be thought of as one module level in the hierarhy of a more omplexarhiteture, or as a �rst stepping stone upon whih to inrementally build moreomplex ognitive proesses.



2.8. Summary of the Chapter 612.8 Summary of the ChapterThroughout this hapter a review of the developments and hallenges in humanoidrobotis researh has been presented along with di�erent proposals for intelligentagent arhitetures for roboti systems. Table 2.1 summarizes the major histori-al developments in humanoid robotis researh. Setion 2.2 disussed the issuesemerging for humanoid robot developments and for motor ontrol, pereption, inter-ation and intelligent behaviour. Muh work remains to be done in order to improvethe apabilities of humanoid robots for loomotion, pereption, interation, ognitivebehaviour and ompetene at performing tasks. Humanoid robots must present in-telligent, natural, preditable and reasonable behaviours. Di�erent approahes werereviewed in planner based, behaviour based, hybrid, and ognitive arhitetures forintelligent robots. Setion 2.3 presents a review of approahes to robot planner-basedarhitetures. They follow the Sense-Plan-At yle, intelligene resides on a en-tral planner that produes appropriate plans of ation for the robot reprodution.Setion 2.4 presents a review of approahes to robot behaviour-based arhitetures.They present diret oupling between pereption and ation. Intelligene emerges asa result of an embodied agent interation with the environment. Setion 2.5 presentsa review of approahes to robot hybrid deliberative/reative arhitetures. They at-tempt to use the advantageous aspets of both the behaviour-based and the planner-based approahes. Setion 2.6 presents a review of approahes to robot ognitivearhitetures. Planning approahes are un�t to operate in hanging environments,as would be required of humanoid robots. Behaviour-based approahes are limitedin their appliability to low-level behaviours and they would not be suitable to dealwith the omplexities of behaviours present in humanoid robots. Hybrid approahesombine the strengths of deliberative and reative approahes and an be readilyemployed as the system arhiteture for several roboti platforms, but they tend tobe very spei� and appliation dependent; also, the lak of good theoretial modelsmakes generalization and reprodution of their results di�ult for varying domains.Researh in ognitive arhitetures onstitute a solid basis for building intelligentsystems, but even though some attempts in the �eld have been made for providingognitive proess for humanoid robots, there are no fully developed, ognitive arhi-tetures apable of endowing robots with the needed funtional intelligene readilyavailable. Cognitive approahes are entred on the mehanism that allows for thegeneration of thought and the interior workings of ognition. This alls for an orga-nization of intelligene in terms of ognitive models. Table 2.2 summarizes the mostrelevant aspets and shortomings of the intelligent arhiteture approahes for de-veloping humanoid robots that have been reviewed throughout this hapter. Setion2.7 presents the proposed framework, followed in the rest of this work, of a ogni-tive model for learning and adaptation of skills to task onstraints. Our approahattempts to attain a basi funtional level of intelligene, allowing a robot the abilityto sense the environment and learn and adapt its ations. The framework provideshumanoid robots with systems that allow them to ontinuously learn new skills, rep-resent their skills' knowledge and adapt their existing skills to new ontexts, as wellas to robustly reprodue new behaviours in a dynamial environment.
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3. LEARNING ROBOT SKILLS MODELSFROM DEMONSTRATIONS.3.1 Outline of the ChapterThis hapter presents the methodology followed in this work for learning modelsof robot skills. Robots working alongside humans means there will be ontinuouslyhanging environments and a huge variability of tasks that the robot is expetedto perform: thus, the robot should have the ability to ontinuously learn new skillsand adapt the existing skills to new ontexts. An important part of the frameworkproposed in the previous hapter, and developed through this work, is the learning ofrobot skills. Figure 3.1 shows the framework proposed throughout this work for thelearning and adaptation of robot skills to omply with task onstraints, highlightingthe module for learning the robot skills disussed in this hapter. Learning fromDemonstration (LfD), also known as Robot Programming by Demonstration (RPbD)or Imitation Learning, has appeared as a major trend for developing intuitive ontrolmethods. This hapter presents important onepts in LfD and the most relevantdevelopments in demonstration learning approahes. It also desribes the learningproess and algorithms used for learning and enoding the models of the skills. Finally,the results of the teahing and learning proess for various di�erent robot skills arepresented. The organization of this hapter is as follows:
• Setion 3.2, presents the basi notions, and a review of the �eld, of Learningfrom Demonstration (LfD).
• Setion 3.3, presents a review of methodologies for teahing and building thedemonstration datasets for learning. This inlude kinaestheti teahing, visualdemonstrations, motion apturing systems to reord demonstrations and, gen-erating robot trajetories with virtual reality or simulated environments.
• Setion 3.4, presents the framework employed through this work to learn robotskill motions from demonstrations. The approah is based on learning timeindependent models of the motion dynamis estimated through a set of �rstorder non-linear multivariate dynamial systems.
• Setion 3.5, presents a review of the methodologies used for the enoding of themodels of the motion dynamis for learning robot skills.
• Setion 3.6, presents a review of the methodologies used for the reprodutionof the learned motion dynamis of robot skills.



64 3. Learning Robot Skills Models from Demonstrations.
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Fig. 3.1: Learning models of robot skills module, highlighted over the proposed og-nitive framework for learning and adaptation of robot skills in omplianewith task onstraints. To learn a robot skill, models of the motion dynamisare built from various human demonstrations of the skill. Robot repliatesa skill by reproduing the model of the demonstrated skill motion.
• Setion 3.7, disusses approahes for using the learned robot skills as basiprimitives of movement.3.2 Learning from DemonstrationPreviously in setion 2.2, the hallenges of developing humanoid robots were dis-ussed. When trying to develop the next generation humanoid robots, with theapabilities to ollaborate and interat together with humans and, sharing the samespae, tools, and ativities with them, there are many important issues that ariseand whih motivate the �eld's researh diretions. Finding suitable solutions to thehallenges in system design, appropriate materials, power supply, proessing apa-ities, motor ontrol and sensory pereption is a fundamental goal. However, even ifit would be possible to have aess to an ideal roboti system with every desirableproperty, the suessful operation of a humanoid robot would not be possible withoutdeveloping proper ontrol mehanisms. The ontrol algorithms traditionally availableare not nearly versatile, robust or �exible enough to ahieve the level of omplexityof the biologial systems whih are to be emulated. Missing are the abilities to dealwith large movement repertoires, variable speeds, onstraints and unertainty in thereal-world environment in a fast, reative manner [Peters et al., 2003℄. Most urrentroboti systems an only solve tasks after the task has been arefully analysed andadded to the robot program by a human [Shaal, 1999℄. This requires an impressive



3.2. Learning from Demonstration 65amount of work, researh and time, and it is very ine�ient when it is needed todevelop a broad set of behaviours. The lassial robotis approah relies heavily onteleoperation or �xed �pre-anned� behavior based ontrol with very little autonomousability to reat to the environment [Peters et al., 2003℄. There are many approahesthat rely on the teleoperation ontrol of humanoid robots [Hasunuma et al., 2006℄,[Pierro et al., 2009℄, [Glassmire et al., 2004℄, [Neo et al., 2007℄, [Stilman et al., 2008℄,[Evrard et al., 2009℄. A teleoperation system for the ontrol of a humanoid robot anpresent advantages, like versatility, provided by the human operator when dealingwith various tasks and environments. Yet several hallenges arise in humanoid robotteleoperation, from the ontrol of the many DOF of humanoid robots, satisfying bothsevere balane onstraints and the geometrial and dynamial di�erenes between hu-manoid robots and humans, in addition to the regular issues presented in teleoperatedsystems [Chen et al., 2007℄, suh as, limited FOV, degraded pereption, time delay,user interfae, operator ognitive load, et. As useful as teleoperation ontrol an befor ertain humanoid robot missions, to bene�t from the full potential of humanoidrobots ontrol arhitetures annot rely only on teleoperation sine humanoid robotsare also expeted to perform their tasks in an autonomous way. In order to overomethe need for teleoperation and manual �hard-oding� of every behaviour, a learningapproah is required [Shaal, 1999℄.Robot learning overs a large �eld, enompassing learning to pereive, ontrol,to plan and, make deisions, et. [Shaal and Atkeson, 2010℄. Mahine learning al-gorithms have been extensively developed in the last ouple of deades. Mahinelearning tehniques present wide appliation at several levels of robot planning andontrol [Münh et al., 1994℄, o�ering solutions in omputer vision, objet reognition,grasp planning, robot motion, pattern reognition, language proessing, et. Robotisystems, of the harateristis of the humanoid robots we want to develop, need to beable to learn, and adapt to unertainty and unforeseen hanges in their dynami envi-ronments. Fous on this work will enter on topis of learning ontrol, in partiular ofrobot learning of motion trajetories and skills. Learning ontrol refers to the proessof aquiring a ontrol strategy, at the ore of this is the problem of learning a mappingbetween world states and ations. This mapping, or poliy, enables a robot to seletan ation based upon its urrent world state [Argall et al., 2009℄. The goal for a robotlearner is to generalize from its experiene [Bishop, 2006℄, to �nd appropriate ontrolpoliies to aomplish a given movement task. The traditional approahes to robotontrol of modelling dynamis and deriving mathematially-based poliies is most of-ten a hallenging task and heavily dependent upon the auray of the world model.As a result, mahine learning tehniques have been applied to poliy development[Argall et al., 2009℄. Robot learning an be lassi�ed, from the viewpoint of mahinelearning, as supervised learning, reinforement learning, learning modularizations orlearning feature representations that subserve learning [Shaal and Atkeson, 2010℄.Robot Programming by Demonstration (RPbD) [Billard et al., 2008℄, appeared asa promising route to automate the tedious manual programming of robots and asa way to redue the osts involved in the development and maintenane of robotsin a fatory. Moving from purely preprogrammed robots towards �exible interfaesfor training robot tasks follows a three-fold motivation. RPbD or LfD is a powerful



66 3. Learning Robot Skills Models from Demonstrations.mehanism for reduing the omplexity of searh spaes for learning. It o�ers animpliit and natural means of interating and teahing a mahine. It also helps tounderstand the oupling mehanism of pereption and ation [Billard et al., 2008℄.Aquiring e�ient motor learning, exploring the onnetion between ation andpereption and modular development of motor ontrol in the form of movement prim-itives, are three issues at the ore of Imitation Learning [Shaal, 1999℄. The ImitationLearning approahes fous on the development of algorithms that are generi in theirrepresentation of the skills and in the way they are generated. Implementing LfDmethods o�ers the possibility of making learning faster, in ontrast to tedious rein-forement learning methods or trial-and-error learning. LfD formulates user-friendlymethods by whih a human user an teah a robot how to aomplish a given task,simply by demonstrating this task [Gribovskaya et al., 2010℄, and generalizing thedemonstrated movements aross a set of demonstrations. Due to the intuitive natureof the demonstrations, LfD algorithms have the potential of making robots aessiblefor everyday users, not requiring extensive programming experiene but rather theability to provide demonstrations of the hosen behaviours [Argall et al., 2009℄.A most important question here is what is it that should be learned? The majorgoal of learning ontrol is aquiring a task-dependent ontrol poliy π that maps aontinuous-valued state vetor x of a ontrolled system and its environment, to aontinuous-valued ontrol vetor u. The motor ontrol learning is thus entred on�nding the generally non-linear funtion π that is adequate for a desired behaviour[Shaal and Atkeson, 2010℄.As mentioned above, the mahine learning approahes for poliy developmentan be mainly divided between unsupervised learning, supervised learning and rein-forement learning. Unsupervised learning refers to the problem of �nding hiddenstrutures in data. No reward or error signal exists to evaluate a potential solutionsine the examples given to the learner are unlabelled.Reinforement learning in robotis o�ers one of the most general frameworks to-wards true autonomy and versatility [Peters et al., 2003℄. The reinforement learningapproah should enable humanoid robots to autonomously learn motor skills from in-teration with the environment, and given only a relatively unspei� feedbak on thequality of ompleting the task. However, in pratie, applying reinforement learningto humanoid robots poses several hallenges [Stulp et al., 2010℄. The state and ationspaes are ontinuous, the learning problems are high-dimensional thanks to the largenumber of DOF in humanoid robots. Exploration in high-dimensional spaes is ostlyand time onsuming, and it is di�ult to aquire an aurate model of the robot andits interation with the environment. The greedy poliy improvement algorithms arelikely to fail to sale to the high dimensional systems as their large hanges in thepoliy during learning makes stable algorithms, so far, infeasible. The poliy gradientmethods are promising tehniques in terms of saling to high dimensional ontinuousontrol systems, and have been applied in humanoid robotis for both walking and�ne manipulation [Peters et al., 2003℄.In Supervised Learning the agent is presented with labelled training data andlearns an approximation to the funtion that generated suh data. LfD an be seenas a subset of Supervised Learning [Argall et al., 2009℄. In the sope of LfD, the
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Demonstrations Model of the skill ReproductionFig. 3.2: Generalization of a skill by extrating the statistial model aross multipleobservations. Adapted from [Billard et al., 2008℄training dataset is omposed of example exeutions of the task by a demonstrationteaher. As LfD it is understood the general ategory of algorithms in whih a poliyis derived based on demonstrated data. A probabilisti transition funtion de�nes themapping between the world states S and ations A, S × A× S → [0, 1]. The learnerhas only aess to observed states Z, sine state S is not fully observable, throughthe mapping U : S → Z. A poliy selets from the set A of ations, ontaininglow-level motions to high-level behaviours, based on observations of the world state[Argall et al., 2009℄.To reprodue a skill in a new situation, the robot annot simply opy an observedbehaviour; it must have the apability to generalize [Calinon, 2009℄. A ommon ap-proah for generalizing a skill onsists of reating a model of the skill based on severaldemonstrations, performed in slightly di�erent onditions. The goal is to exploitthe variability inherent to the various demonstrations and to extrat the essentialomponents of the task. Figure 3.2 illustrate this proess.LfD overs methods by whih a robot learns new skills through human guidane.Common to all these approahes is the presene of a teaher, providing examplesfor the exeution of a desired behaviour, and a learner, provided with a set of thesedemonstrations and deriving a poliy from suh examples apable of reproduing thedemonstrated behaviour. Distintions among LfD methods an be made based ontheir hoie of demonstration approah: the hoie of demonstrator or demonstra-tion tehnique, the hoie of state ation representation, either disrete or ontinuousrepresentation and the seletion of an algorithm for generating the poliy. The deter-mination of these deisions an greatly be in�uened by fators suh as the general do-main, task omplexity and robot apabilities, and developers preferene. Within LfD,the learning problem is thus segmented into two phases: gathering the examples andderiving a poliy from suh examples [Argall et al., 2009℄. In LfD a popular methodemploys a probabilisti framework gathering information from ross-situational obser-vations of a skill with information extrated from di�erent soial ues observed duringthe interation [Calinon and Billard, 2008℄. A key onept at the bottom of these ap-proahes is that of determining a metri of imitation performane. First it must bedetermined the metri, weights of the funtion for the reprodution of eah of theomponents of the skill. Then it is possible to �nd an optimal ontroller for imitationby minimizing the metri. Relevant problems to address in these approahes are, theproblem of extrating the relevant features of a given task, the problem of evaluating



68 3. Learning Robot Skills Models from Demonstrations.how the task should be reprodued and the problem of �nding optimum ontrollersto generalize the aquired knowledge of various ontexts [Calinon et al., 2007℄.The demonstrated behaviours an be used to learn the appropriate ontrol pol-iy diretly by supervised learning. In these methods, alled �task-level imitation�[Shaal, 1999℄, a serious onstraint is imposed on the need for the state and ationof the teaher to be observable and identi�able. Therefore, a oordinate frame basedon variables that an be pereived would be needed to de�ne a movement primitive.Prior knowledge of how a task-level ommand an be onverted into an atuator-levelommand is required. For this purpose, motor ontrol needs to be modular, assumingat least separate proesses for movement planning and exeution. A seond approahto learning novel behaviours is based on building poliies out of the demonstratedtrajetories. This proess results in data about the movement of the manipulatedobjet in Cartesian oordinates, as well as the movement of the atuator in termsof joint angle oordinates. Knowledge of the task goal is manually provided in theform of an optimization riterion. Based on this knowledge, the robot's performaneimproves by trial and error learning until the task is aomplished [Shaal, 1999℄. Athird method employs model-based learning from the demonstrated behaviours tolearn a novel primitive; the dynamis of the task are approximated in the form ofa preditive forward model. Given knowledge of the task goal, the task-level poliyof the movement primitive an be omputed with reinforement learning proeduresbased on the learned model [Shaal, 1999℄.Researh within LfD has seen the development of three ore approahes to pol-iy derivation from demonstration data: a mapping funtion approah onsisting oflearning an approximation to the state-ation mapping; A system model approahbased on learning a model of the world dynamis and deriving a poliy from thisinformation. An alternately is planning approahes where a sequene of ations anbe produed by a planner after learning a model of ation pre and post-onditions[Argall et al., 2009℄. The mapping funtion approah to poliy learning alulatesa funtion that approximates the state to ation mapping, f() : Z → A, for thedemonstrated behaviour. These types of algorithms aim to reprodue the underlyingteaher poliy and to generalize over the set of available training examples. The goalis to aquire valid solutions for similar states that may not have been enounteredduring demonstration [Argall et al., 2009℄. The system model approah to LfD pol-iy learning derives a poliy π : Z → A using a state transition model, T (s′|s, a),of the world. The transition funtion, T (s′|s, a), is generally determined from thedemonstration data and any additional autonomous exploration the robot may do[Argall et al., 2009℄. In the planning framework, the poliy is represented as a se-quene of ations that lead from the initial state to the �nal goal state. Ations areoften de�ned in terms of the state that must be established before the ation an beperformed, pre-onditions, and the state resulting from the ations' exeution, post-onditions. Demonstration-based algorithms di�er in how the rules assoiating preand post-onditions with ations are learned, and whether additional information isprovided by the teaher [Argall et al., 2009℄.The most important issues in the �eld of Imitation Learning are ategorized underthe broad spetrum of four major questions, namely, the set of generi questions what



3.2. Learning from Demonstration 69to imitate, how to imitate, when to imitate and who to imitate [Billard et al., 2008℄.A �fth entral question on researh on Imitation Learning relates to how to evaluate asuessful imitation attempt [Alissandrakis et al., 2002b℄. Intense researh has beenmade into solving these questions, foused mainly on tehnial approahes to answer-ing the what to imitate and how to imitate questions. What to imitate is related to thegeneral problem of `what to learn of a skill'. There are several aspets of a behaviourthat ould be imitated. An agent must be able to extrat the relevant features of agiven task from the `ues' and onstraints that de�ne the `skill' to imitate. An agentis required to build the struture of the knowledge transferred, hoosing between twodi�erent kinds of imitation, opying the organizational struture of the behaviourversus opying the surfae form of the behaviour [Alissandrakis et al., 2002b℄. Howto imitate onsiders the problem of `how to enode a skill', the problem of evaluatinghow the task should be reprodued and the problem of �nding the optimum on-troller with whih to generalize the aquired knowledge [Calinon et al., 2007℄. Thelearning algorithm must provide means from whih to learn the enoding of relevantknowledge of the `skill' to build models appropriated for reprodution. Agents mustemploy the appropriate mehanisms to learn and reprodue neessary imitating a-tions [Alissandrakis et al., 2002b℄. The when to imitate and who to imitate questionsare strongly related to the soial interation between the imitator and the imitated,these questions have been less explored. When to imitate question refers to the prob-lem of `when it is �t to reprodue a skill'. Agents need to learn to reognize fromsoial and environmental `ues' when a learned imitation `skill' is to be used. Theimitating agents have to segment the demonstrator behaviour and have to deide on asuitable time and plae for imitation, based on the appropriateness of previous or ur-rent observed behaviour in their urrent ontext [Alissandrakis et al., 2002b℄. Who toimitate overs the problem of `observing from whom to learn a skill'. An agent mustreognize from soial `ues' and interation imitation demonstrations provided fromother agents, and evaluate their usefulness as an appropriate behaviours to imitate.The agent must hoose its demonstrator in order to engage in imitation, produe animitated behaviour that is bene�ial, and at the same time, not to imitate agentswhose tasks and needs are not relevant to the imitator [Alissandrakis et al., 2002b℄.The question of how to evaluate an imitation attempt refers to the need to �nd propermeasures to evaluate behavioural mathing [Alissandrakis et al., 2002b℄. Determin-ing a metri of imitation performane is very important. It must be determine themetri, weights of the funtion for the reprodution of eah of the omponents of the`skill' [Calinon and Billard, 2008℄. The above questions and their solutions aim atbeing generi in the sense of making no assumptions about the type of skills that maybe transmitted [Billard et al., 2008℄.One all the features and relevant knowledge of a given task have been extratedfrom a set of suitable teaher's demonstrations, the most fundamental issues beomeshow suh information should be onverted into ations; this onerns the How toimitate question above. For this purpose the onept of movement primitives, alsoalled movement shemas, or units of ations, is prolaimed. Movement primitives aresequenes of ation that aomplish a omplete goal-direted behaviour [Shaal, 1999℄.A movement primitive an have di�erent forms of representation. Two major trends



70 3. Learning Robot Skills Models from Demonstrations.an be identi�ed for the generalization of these task representations: a trajetorylevel and a symboli level representation. A task at a trajetory level is desribed bytemporally ontinuous signals representing di�erent on�guration properties hangingover time. A task at a symboli level is desribed by the sequential or hierarhialorganization of a disrete set of primitives that are pre-determined or extrated withpre-de�ned rules [Calinon, 2009℄.RPbD or LfD ontribute to major advanes in robot learning, and advane thedevelopment of robust ontrollers for servie, personal, and humanoid robots. LfD isan intuitive ommuniation medium for human teahers and enables the developmentof ontrol algorithms to non-robotis experts. For a omplete review on the �eld see[Billard et al., 2008℄. It also, o�ers solutions to ertain weaknesses in traditionalapproahes and omplements traditional poliy learning tehniques. LfD has beensuessfully applied to many roboti appliations. The �eld has seen very ativeresearh, as exempli�ed in the works of [Kober and Peters, 2010℄, [Shaal et al., 2007℄,[Ijspeert et al., 2009℄, [Gribovskaya et al., 2010℄, among others.Researh into RPbD or LfD has seen important developments in many areas, yetsome issues have reeived limited attention, these issues inlude, su�ient availabilityof state features to adequately desribe the task and to allow its learning, the enod-ing of temporary information and event memory into the demonstration sequene;also reovery operations in the event of enountering failures in poliy derivation orexeution, the ability to ontinuously learn from its experiene, the appliation ofLfD in multi-robot settings, the development of standardized evaluation metris, et.[Argall et al., 2009℄. Certain outstanding questions remain to be addressed, suh as,how an appropriate movement representation be developed in an automated fash-ion? How an new primitives be learned, and old primitives be ombined to formhigher level movement primitives? How an sequening and reognition of sequenesof movement primitives be aomplished? Are the mehanisms for movement gener-ation also diretly employed for movement reognition? How an the demonstratedmovement intentions be reognized? And how an they be onverted to the imitator'sgoal? [Shaal, 1999℄.3.3 Providing Demonstrations of a SkillA LfD framework has many favourable features, as stated in the previous se-tion; one suh very attrative feature for the development of a demonstration ap-proah is that of an intuitive medium for ommuniation from humans who alreadyuse demonstration to teah other humans [Argall et al., 2009℄. Providing demonstra-tions to a humanoid robot agent o�ers a familiar and instintive way for non-expertusers to ommuniate and program the robot behaviours. The Imitation Learningapproah allows for a well-known mehanism, regularly employed for teahing andlearning the performane of tasks among the general publi, to be easily used tonaturally interat with a robot. LfD provides an impliit means to failitate learn-ing for humanoid robots. Demonstrations also have the pratial feature of fousingthe dataset to areas of the state-spae atually enountered during task exeution



3.3. Providing Demonstrations of a Skill 71[Argall et al., 2009℄. The LfD or RPbD paradigm to learning ontrol has at its orethe goal of enabling robots to perform new task autonomously, foused on building ap-propriate robot ontrol poliies derived from observations of a human demonstrationperformane. Within LfD, the learning problem is thus segmented into two phases:gathering the demonstration examples and deriving a poliy from suh examples[Argall et al., 2009℄. In this setion, various tehniques for exeuting and reordingdemonstrations are disussed.The �rst approahes to Imitation Learning, adopted for manipulator robotis,hose to rely on symboli reasoning [Billard et al., 2008℄. Due to redued ompu-tational power demonstrations onsisted of manually pushing the robot through amovement sequene [Shaal et al., 2003℄, divided into subgoals and into appropriateprimitive ations, ommonly hosen to be simple point-to-point movements. Thedemonstrated tasks were segmented into sequene of state-ation-state transitions,and from them 'if-then' rules were extrated, desribing the states and ations aord-ing to symboli relationships [Billard et al., 2008℄. The �eld moved gradually fromopying movements to generalizing over sets of demonstrations. [Münh et al., 1994℄suggested using mahine learning to reognize Elementary Operators, de�ning dis-rete sets of basi motor skills, learning tasks by generalizing over a sequene ofdisrete ations. However, this was only one part of the problem and learning on-tinuous trajetories to ontrol atuators were also required [Billard et al., 2008℄. Asmahine learning, roboti and sensor systems have experiened advanes in theirrespetive �elds. Imitation Learning has been in�uened by non-symboli learningtools, inluding, arti�ial neural networks, radial-basis funtion networks, fuzzy logi,statistial learning, et. [Shaal et al., 2003℄. More reent trends take inspirations onproesses of animal imitation, taking into aount evidene of neural-mehanism forvisuo-motor imitation in primates, and developmental stages of imitation apaitiesin hildren [Billard et al., 2008℄. In essene urrent works follow mostly a oneptualapproah, very similar to that of early approahes, as reent progress has mainlya�eted only the interfaes to support teahing. New elements inlude the use ofomputer vision, data gloves, laser range �nder, kinaestheti teahing, marker-basedobservation systems, et. [Shaal et al., 2003℄.An LfD dataset is omposed from the state-ation pairs reorded during teaherexeution of demonstrated behaviours. A majority of work on LfD makes use ofhumans demonstrations, while some tehniques explore the use of roboti teahers,hand-written ontrol poliies and simulated patterns [Argall et al., 2009℄. An im-portant matter for a demonstration approah to be suessful is that states andations provided by the learning dataset be usable by the robot, by onstraining thedemonstrations modality the robot an understand and providing su�ient exam-ples to ahieve desired generality [Billard et al., 2008℄. Demonstrations are de�nedas reorded trajetories in the teaher's state spae, with identi�able start and endpoints and proeeding through a �nite number of steps. For a well formed set ofdemonstrations the teaher must onvene to the learner all neessary information ofthe task spae to fully generalize the demonstrated knowledge of a task. The de�-nition outlined above aimed at being general and makes no assumptions about thetype of trajetories or task that are demonstrated, what and how the variables are



72 3. Learning Robot Skills Models from Demonstrations.reorded, what platform is use during exeution, and what types of representationsare employed. The hoie of demonstrator and the demonstration tehnique are twokey deisions when gathering teaher demonstrations [Argall et al., 2009℄. Choosinga demonstrator is additionally deomposed into the ontroller of the demonstratorand the exeuter of the demonstration. Choosing a demonstration tehnique furtherrefers to strategies for providing the data to the learner and the seletion of algorithmsfor deriving a poliy.The major fous in RPbD or LfD works is in the seletion and development ofalgorithms for poliy derivation. Yet studying the learning proess, the �owing of in-formation from teaher to robot learner, is also important. In hoosing demonstrationtehnique strategies for the learning proess and for providing data for the learningmehanism are seleted. Options inlude bath learning, self-improvement and inter-ative approahes. For bath learning, the demonstrations are sampled beforehand,either beause olleting the data is di�ult or proessing it is too time onsumingand it is more pratial to ollet the data all at one. In bath learning the pol-iy is learned only after all data has been gathered [Argall et al., 2009℄. Teahers'demonstrations must over the behaviour su�iently to ensure adequate generaliza-tion. For self-improvement learning, demonstrated data is also olleted at the onsetof the learning approah; it is separated from bath learning in that self-improvementinvolves generating new samples from the learning of the original demonstrationswhih in turn are used to drive the improvement of the poliy itself. For interativelearning approahes, the learning proess is also iterative, learning must be quikerand demonstration easier to aquire ompared to bath learning approahes. In in-terative learning, the poliy an be updated inrementally as learning data is madeavailable [Argall et al., 2009℄. Interative learning allows teahers to provide addi-tional demonstration to target observed errors in the robot's reprodution.Another important hoie is seleting the information to reord from the demon-stration examples. Reorded sensory information must be parsed into knowledgeabout objets and their spaial loation in a oordinate system whether internal orexternal. Some information should beome available on the posture of the teaherand/or positions of objets, if any are involved, while moving [Shaal et al., 2003℄.Afterwards, this information needs to be onverted into ation. Common approahesreate model of the skill based on sets of demonstrations performed in slightly dif-ferent onditions generalizing overt the inherent variability to extrat the essentialomponents of the skill [Billard et al., 2008℄.The knowledge of the task, extrated from demonstrations of the states and ationsin the teaher's dataset, must be relevant and usable to the learner for a suessfulImitation Learning approah. In an ideal set-up, states and ations of the teaherexeution would map diretly to the learner's embodiment. However, in pratie, adiret mapping is generally not possible, as it is most likely to �nd that the learnerand the teaher will di�er in their sensing and mehanial systems and apaities[Argall et al., 2009℄. In nature, even two humans or animals of the same speiesin spite of their morphologial similarities would still present dissimilar mappings astheir height, weight, musle build, stamina and so on, would di�er between them. Forhumanoid robots learning from a human teaher, even though an attempt is made at



3.3. Providing Demonstrations of a Skill 73repliating its funtionalities, a diret mapping would not be possible as they don't atin the environment in the same manner. Even when dealing with a robot teaher andlearner, inluding robots of idential types, dissimilar mappings are likely to our dueto di�erenes in their respetive sensory-motor harateristis. The hallenges whiharise from these di�erenes are broadly referred to as the Correspondene Problem[Nehaniv et al., 1998℄.In order to math reprodution of an observed behaviour in a opying, imitationor mimiry approah, it is important that a suitable orrespondene is established. Toahieve a behavioural math a orrespondene must expliitly or impliitly be present[Nehaniv et al., 1998℄. Di�erent orrespondenes ould be required depending on thetype of task to imitate, whether it is desired to math individual ations or globalgoals, or how teaher and learner sensory-motor harateristis di�er from eah other.The Correspondene Problem is irumsribed to determining partial orrespon-dene between states and events for the imitator and those of the model to imitate, andto searh for an appropriate relational morphism ensuring a su�ient degree of orre-spondene between them for imitation to be possible [Nehaniv and Dautenhahn, 2001℄.As outlined above, dealing with issues of orrespondene is important sine exatopying of behaviours, even when there is similar embodiment, is almost never possi-ble [Nehaniv et al., 1998℄. Solving these disrepanies in sensory-motor apabilities ofagents is a problem related to the how to imitate question. It is important to note thatorrespondene need not be a one-to-one mapping, it an take many forms; also su-essful imitation does not neessarily involve a �xed mapping orrespondene, a par-tial mapping ould also be an useful orrespondene [Nehaniv and Dautenhahn, 2001℄.Simple one-to-one orrespondene annot exist between the joints of two agents witha di�erent number of DOF, as often would be the ase among robots. A robot may,however, still imitate a human suessfully, e.g. in a waving task, without requiringthat it has the same number and type of joints as the human whose behaviour itemulates using a partiular orrespondene [Nehaniv et al., 1998℄. Humans and hu-manoid robots, although interating in the same environment and using the sameobjets, would still pereive and at in the world in very di�erent ways due to theirdi�erene in struture, form, DOF, sensors, and abilities. Correspondene, neverthe-less, an still be found regarding to two di�erent dimensions, a pereptual equivalene,dealing with the di�erenes in whih the agents an pereive the world, and a physialequivalene dealing with the di�erenes in whih the agents an perform the task inthe world.Aording to [Nehaniv and Dautenhahn, 2001℄, for a behaviour to be alled imi-tation, a orrespondene of pereption, both exteroeptive and proprioeptive, mustexist between model and follower. While orrespondene in form, struture, dynamisof ations and behavioural repertoire are also very important aspets, a orrespond-ing pereption of a shared ontext between the model and imitator is a fundamen-tal requirement for imitation. This shared ontext an be �xed, whether designedby nature or arti�ially engineered, aidental, opportunisti, or atively established[Nehaniv et al., 1998℄. With an insu�ient pereptual orrespondene, an agent ouldstill be able to follow or mimi another agent's behaviour; however, the agent annotperform the behaviour alone; unless it has pereptions orrelating to those of the



74 3. Learning Robot Skills Models from Demonstrations.model, no true imitation of that partiular behaviour an take plae.It is possible to distinguish with respet to how the events of an imitator `orre-spond' to the distint types of imitation of the imitatee: ation-level imitation, wherethe imitator is set to arry out ations exatly as in the imitated system; where thepurpose of the behaviour lies in ation-mathing rather than fousing on a partiularresulting state [Nehaniv and Dautenhahn, 2001℄; program-level imitation, where theimitator arries out an idential program oneived as a struture of hierarhial sub-routines; it entails aquiring a program of ation that makes use of a solution to theorrespondene problem. Program-level imitation fouses attention on omponents ofthe behavioral program rather than the strutural [Nehaniv and Dautenhahn, 2001℄;e�et-level imitation, where the imitator's onern is obtaining results similar to thoseof the imitatee, rather than with mathing spei� ations; for e�et-level imitation,trying to imitate, relies on disovering a�ordanes to attain e�ets orresponding tothose attained by the agent being imitated [Nehaniv and Dautenhahn, 2001℄.No generi solution exists to solve orrespondene problems so task spei� equiv-alenes are formulated for eah ase. To �nd proper mappings between like individ-uals of the same kind or speies an be natural and diret. Determining the map-pings between dissimilar bodies is a problem dependent on the observer point of view[Nehaniv and Dautenhahn, 2001℄. The judgement of the degree of suess or failureof an imitative behaviour is observer-dependent; the observer, either the demonstra-tor, the learner, or a possible third party, has a entral role at judging whetheror not an exhibited behaviour mathes that of a model [Nehaniv et al., 1998℄. Thesubjetive notion of observer-attributed goals must be transformed to a well-de�nednotion of metris. By hoosing the metris, one is hoosing whih states of thedemonstrator are deemed to math those of the imitator and how losely they math[Nehaniv and Dautenhahn, 2001℄. A metri provides a quanti�able method to mea-sure the error of an attempted imitation, whih the imitator uses to evaluate its ownsuess [Alissandrakis et al., 2002a℄. Degrees of suess an be formalized by metrisin states and ations and measures of orrespondene with respet to ahieving someresult.As a formal de�nition [Nehaniv et al., 1998℄, a orrespondene between two au-tonomous agents is a relation of states Φ ⊆ X×Y and sequene of ationsΨ ⊆ Σ∗×∆∗satisfying:
∀x ∈ X and y ∈ Y, if(x, y) ∈ Φ and (σ, δ) ∈ Ψ, then (x, y, σ, δ) ∈ Φwhere the state of the systems are represented as X , and Y , and the ations-eventsare represented as Σ, and ∆. A orrespondene or mapping to model (Y,∆) fromimitator (X,Σ) is a relational homomorphism: φ : (X,Σ) → (Y,∆). A sequeneof ation-events for system (X,Σ) given by w ∈ Σ∗ is said to math suessfullya sequene z ∈ ∆∗ in another system (Y,∆) if w ahieves the same e�ets as z[Nehaniv and Dautenhahn, 2001℄. The solutions to orrespondene problems resultfrom suessful attempts at imitation [Nehaniv et al., 1998℄.Di�erent methods ould be lassi�ed in aordane to the variables employed bylearning whih are assumed to be observable, are they kinemati or kineti, are in-ternal or external oordinates used for the demonstrations, are task goal expliit



3.3. Providing Demonstrations of a Skill 75or not, et. [Shaal et al., 2003℄. Approahes for gathering demonstration dataan be ategorized in respet to orrespondene of two mappings, an embodimentmapping, whih is onerned with how the reorded state-ations on the datasetmathes those whih the learner would exeute; and a reord mapping, whih relatesto how the states-ations of the teaher are reorded within the demonstration dataset[Argall et al., 2009℄. When exat states-ation experiened by the teaher are diretlyreorded in the demonstration dataset the identity I(Z,∆) onstitutes the reordmapping, where Z are the observable states, and ∆ are the ations. If not a reordmapping, gE(Z,∆) 6= I(Z,∆), is needed to enode the teaher's demonstrationswithin the dataset. Analogously, when the states-ations are mapped diretly to thelearner for exeution the embodiment mapping is the identity I(Z,∆). In any otherway an embodiment, gR(Z,∆) 6= I(Z,∆), exists to map the learner's exeution of thereorded demonstrations. This mapping does not hange the ontents of the demon-strated dataset, only the referene frame whih represents it [Argall et al., 2009℄. Fur-ther ategorization of LfD approahes for data aquisition an be made aording towhether reord and embodiment mappings are present. The presene of more map-pings inreases the di�ulty of reognizing and reproduing the teaher's behaviour.Yet, it also redues teaher onstraint and helps improve generality of the demon-stration tehnique [Argall et al., 2009℄. Approahes are �rst split into two ategoriesbased on the embodiment mapping and then further distinguished, within these at-egories, based on the reord mapping.The ase when there does not exist an embodiment mapping, that is gE(Z,∆) ≡
I(Z,∆), is denominated as demonstration. Here, the teaher demonstrations of be-haviour are performed diretly by the learner platform or a representation thereof,and the embodiment mapping is not an issue. However, a non-diret reord mappingan exist, thus dividing approahes for providing demonstration data as teleopera-tion and shadowing, [Argall et al., 2009℄. For teleoperation, the teaher operates thelearner platform and the exeution is reorded by the learner's own sensors. Thereord mapping is diret, gR(Z,∆) ≡ I(Z,∆). Among all the methods teleoperationis the most diret for transferring learning data, however, it is required that the opera-tion of the robot be manageable for the learners whih is not always possible, makingit a tehnique not suitable for all systems [Argall et al., 2009℄. In shadowing, thelearner reords its exeution while trying to mimi or opy the teaher demonstratedbehaviours. The reord mapping is not diret, gR(Z,∆) 6= I(Z,∆). The shadowingmethod requires an additional omponent to enable the learner to trak and shadowthe teaher exeution [Argall et al., 2009℄.The ase where the embodiment mapping do exist, that is gE(Z,∆) 6= I(Z,∆),is denominated as imitation. Here, the teaher demonstrations are performed on aplatform that is di�erent from the learner platform, therefore embodiment mappingis an issue to regard. Equally as in the ase of demonstration, the reord mapping anexist or be the identity, thus dividing approahes for providing imitation as sensorson teaher and external observation [Argall et al., 2009℄. In sensors on teaher, theplatform exeutions are reorded by sensors diretly on itself. The reord mapping isdiret, gR(Z,∆) ≡ I(Z,∆). The sensors on teaher method an provide more pre-ise measurements of the example exeution, however, appliability of this tehnique
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Fig. 3.3: Intersetion of the reord and embodiment mappings. Adapted from[Argall et al., 2009℄. The demonstration tehnique an be divide, aord-ing to its reord and embodiment mappings into four quadrants. (top-left)Teleoperation demonstration when both reord and embodiment mappingsare diret. (top-right) Sensors on teaher imitation when there exist anon-diret reord mapping. (bottom-left) Shadowing demonstration whenthere exist a non-diret embodiment mapping. (bottom-right) Externalobservation when both reord and embodiment mappings are non-diret.an be limited by the overhead assoiated with the need to use speialized sensors[Argall et al., 2009℄. For external observations, the data from the teaher exeutionsare reorded by sensors externally loated to the exeuting platform, these sensorsmay or may not be loated on the learner's platform. The reord mapping is notdiret, gR(Z,∆) 6= I(Z,∆). The external observation method is less reliable as un-ertainty inreases from having to infer the teaher states-ations from reorded data[Argall et al., 2009℄.Many tehniques have been employed throughout the �eld for providing and gath-ering the demonstration datasets; most popular among them are teleoperation, datagloves, hapti devies, kinaestheti teahing, motion apture systems, virtual sim-ulations environments, speeh interation and omputer vision [Billard et al., 2008℄.As outlined above, the role of the interfae employed at gathering the demonstra-tions plays a signi�ant role. In this setion, four important tehniques for providingdemonstrations to a humanoid robot, orresponding to the previous ategorization,are reviewed. Figure 3.3 summarizes the approahes' review for gathering and build-
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Fig. 3.4: Kinaestheti Teahing of a Skill: (left) A human teaher operates theHOAP-3 robot arms through a demonstration of the skill. (right) TheHOAP-3 robot reprodues the reorded demonstration of the skill.ing the demonstrations datasets, and how they interset with the onsidered reordand embodiment mapping of orrespondene.Kinaestheti TeahingOne method for providing demonstrations of the motion to the robot is by meansof kinaestheti teahing. The kinaestheti teahing proess [Calinon, 2009℄, onsistsof using the motor enoders of the robot to reord information while the teaher movesthe robot's arms. To reord the demonstrations the robot motors are set in a passivemode, a human demonstrator, standing beside the robot, moves simultaneously therobot's arms as it performs the motions.In kinaestheti teahing the robot is operated by the teaher while reording fromits own sensors. The reord mapping is therefore diret, gR(Z,∆) ≡ I(Z,∆). Sinethe demonstration is performed on the atual robot learner, the embodiment mappingwill also be diret, gE(Z,∆) 6= I(Z,∆), just like the desribed ategory of teleopera-tion, as represented by the top left quadrant of Figure 3.3.In this work, kinaestheti teahing was employed to teah several demonstrationsto a humanoid robot by operating the robot arms in the performane of di�erentmotions. The kinematis of eah joint motion were reorded at a rate of 1000Hzduring the demonstrations and were then re-sampled to a �xed number of points.The robot is provided with motor enoders for every DOF, exept for the hands andthe head atuators. The proess is illustrated in Figure 3.4 for the teahing of a skillwith the humanoid robot HOAP-3.Providing demonstrations to the robot by means of kinaestheti teahing is ad-vantageous on several fronts. As disussed above for teleoperation, it is the mostdiret method, and sine both mappings are the identity there is not orrespondeneproblem. Also, it provides the human teaher with knowledge of the robot platformlimitations when performing the demonstrations. However, the manageability of therobot operation is an issue. It would be di�ult to provide omplex demonstrationsrequiring the human to move several limbs simultaneously. And it limits the human
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Fig. 3.5: Demonstrations in a Motion Capture Systems: (left) A human teaherperforms a demonstration. (right) The generated skeleton of the humanreorded demonstration.teaher's ability of performing the demonstration naturally, as they would be doing itthemselves; speially when the human and the robot have very di�erent embodiments.Motion Capture SystemsMotion Capture (MoCap) is the term that desribes the proess of reording themotion of the human or animal body, where the reording proess ould be in realor delayed time. MoCap involves the mapping of human motion onto the motionof a omputer harater or Skeleton. This mapping an be diret, suh as a humanarm motion ontrolling a harater's arm motion, or indiret, suh as a human handand �nger patterns ontrolling a harater's skin olor or emotional state. There aretwo main tehnologies used in motion apture. Inertial Motion Capture tehnology,were the systems are based on inertial measurement sensors. During the motion, thedata aptured from the inertial sensors is often transmitted wirelessly to a omputer.Optial systems, were optial sensors and one or more ameras are used to estimatethe 3D position and orientation of the human body segments during the motion. Forthe optial systems, markers are generally attahed to the human body, whih areloated on the joint or the body part needed to be aptured. The number and thetype of these markers and the number of the ameras used in the system depend onthe omplexity of the motion to be aptured [Dyer et al., 2013℄.In teahing demonstration to the robot reorded by a motion apture system, thereording sensors are loated diretly on the teaher exeuting the task. This meanstherefore, that there is no reord mapping, gR(Z,∆) ≡ I(Z,∆). Imitation, however,is diretly performed by the teaher and not the robot, therefore the embodimentmapping is not diret, gE(Z,∆) 6= I(Z,∆), just as it is for the desribed ategory ofsensors on teaher, as represented by the top right quadrant of Figure 3.3.Currently there are several di�erent options of equipment that an be used forMoCap systems, although they remain a little priey. Alternatively, many libraries
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Fig. 3.6: Teahing Demonstrations in Simulated Environment: (left) A humanteaher provides demonstration to the virtual HOAP-3 robot. (right) TheHOAP-3 robot reprodues the reorded demonstration of the skill.and databases of available apture motions, suh as, the CMU Graphis Lab MotionCapture Database do exist. Future work for this thesis would require to also use theselibraries to build a vast repertoire of demonstrations to learn robot skills. Figure3.5 illustrates the proess of motion apture from one of the motions in the CMUdatabase.Providing demonstrations to the robot by means of a MoCap system an be ad-vantageous, as disussed above for sensors on teaher, as it an provide more preisemeasurements of the example exeution. Also, the human teaher an perform thedemonstrations naturally. However, this tehnique requires the use of speializedsensors, and sometimes the onditioning of a dediated room just for these systems,making the system omplex and expensive and was thus not used in this work.Simulated EnvironmentAnother method for providing demonstrations of the motion to the robot is byemploying simulated environments. For instane, the demonstrations of the skill anbe provided by a human teaher by means of a virtual simulator interfae. A humanteaher an provide demonstrations to a simulated robot in a virtual environment,either by a joystik, mouse or any other appropriated input devie.In teahing the robot under a simulated environment the demonstrations arereorded by the simulator's virtual interfae, meaning that a reord mapping exists,and gR(Z,∆) 6= I(Z,∆). The demonstrations, however, are performed on a simulatedrobot learner, the embodiment mapping will therefore be diret, gE(Z,∆) ≡ I(Z,∆),just like the desribed ategory of shadowing, as represented by the bottom left quad-rant of Figure 3.3.In this work the Open Robotis Automation Virtual Environment, (OpenRAVE)[Diankov and Ku�ner, 2008℄, was used to develop a simulated environment to ontrola humanoid robot HOAP-3. A 3D model of the real HOAP-3 robot is loaded into the
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Fig. 3.7: Visual Demonstrations Teahing of a Skill: (left) A human teaher per-forms a demonstration. (right) The generated skeleton of the humanreorded demonstration.OpenRAVE environment. The simulated HOAP-3 is ontrolled by a human operatorwhih provides the virtual robot with demonstrations of the task. The proess isillustrated in Figure 3.6 for the teahing of a skill to a humanoid robot HOAP-3simulated in OpenRAVE.Providing demonstrations to the robot with a simulated environment an be ad-vantageous in that it an allow the human teaher better ontrol over the learner andthe demonstration environment. Also, it an be safer to interat with a simulatedversion of the robot and not with the real robot platform. However, as disussedabove for shadowing, it requires an additional omponent to enable the learner totrak and shadow the teaher exeution. Also, the reord mapping is not diret andthe orrespondene problem must be dealt with.Visual DemonstrationA robot platform provided with its own set of ameras and vision sensors an alsoreord the teaher demonstrations by itself. The human teaher would simple performthe demonstrations of the motion in front of the robot vision system. Computer visionalgorithms an be employed to build a system apable of traking human motions, asit performs the demonstrations, with the robot ameras.In teahing the robot by visual demonstrations of the skill, the imitation relies ondata reorded by sensors loated externally to the exeuting platform, meaning thata reord mapping exists, and gR(Z,∆) 6= I(Z,∆). The demonstrations, however,are performed by the human teaher and the embodiment mapping would not beidential, gE(Z,∆) 6= I(Z,∆), just like the desribed ategory of external observation,as represented by the bottom right quadrant of Figure 3.3.In this work, visual demonstrations are provided to the robot learner using thestereo robot ameras equipped within the robot or via a Mirosoft Kinet sensor[Mirosoft, 2013℄, and the appropriate omputer vision software modules implementedto trak aordingly the motions of the human teaher performing the desired skills.The proess is illustrated in Figure 3.7 for the teahing of the skill with visual demon-



3.3. Providing Demonstrations of a Skill 81strations employing the Mirosoft Kinet sensor.Providing demonstrations to the robot by visual demonstrations is advantageousin that it is a simpler and heaper method than a MoCap system. Also, demonstratingthe skills visually to a robot reording from its own sensors provides a more naturaland intuitive way for a human teaher to interat with a robot as it ould be able toperform as it would typially do if interating with another human partner. However,as disussed above for external observation, it is less reliable as unertainty inreasesfrom having to infer the teaher states-ations from reorded data. And it fores usto deal with both reord and embodiment orrespondene problems.Eah of these interfaes presents positive and negative aspets, for instane, in theontext of teahing humanoid robots, imitation approahes relying on motion apturesystems or visual demonstrations are partiularly suitable to human teahers sinethey would be able to provide the demonstrations naturally, performing as it would inregular situations of human interation, while a teleoperation or kinaestheti approahwould prove more di�ult to the teaher, sine ontrolling all the DOF of the learnerould be a omplex task. However, a kinaestheti approah also provides its ownadvantages by allowing the demonstrator more diret ontrol of the learner platformreprodution. Exploring the way these interfaes ould be employed together toexploit omplementary information and short-iruiting its respetive disadvantages,would be an interesting topi.Apart from the teahing interfae employed, within the ontext of gatheringteaher demonstrations several issues and limitations should also be addressed. Suhas the manageability of the large streams of data omprising the dataset, whih ouldbe typially at rates from 60 to 1,000 data points per seond [Shaal and Atkeson, 2010℄,whih must be used for ontinuous learning without degradation over time. Availabil-ity of the training data, is an important limitation, for most general ases; the teaherwould be inapable of providing a demonstration for every possible state of the task,dealing with under demonstrated datasets raises many questions that the learningsystems need to address, most ommon approahes would attempt at generalizingfrom the existing demonstrations or re-engaging the teaher to provide additionalinformation [Argall et al., 2009℄. One major omplexity omes from the high dimen-sionality of the learning data, in partiular for more omplex robot systems suh ashumanoid robots. Ideally learning should happen in real time; this requires om-putationally tratability, e�iently data management, robustness towards shiftinginput distributions and apaity for disovering relevant features, while automati-ally exluding irrelevant or redundant inputs, from hundreds or thousands of inputdimensions [Shaal and Atkeson, 2010℄.The performane of the learner an also be limited by poor quality of the dataprovided by the demonstrations. A teaher demonstration may be ambiguous, unsu-essful or suboptimal in ertain areas of the state spae [Argall et al., 2009℄. Teaherfeedbak must, beyond evaluating performane, also provide orretion of the exe-uted behaviour. The gathering demonstration proess is greatly in�uened by theevolution of the robot interation with the human. Several insights from the �eld ofHuman-Robot Interation (HRI) are explored in order to make the transfer of skillmore e�ient [Billard et al., 2008℄. The role of the teaher is one of the most im-



82 3. Learning Robot Skills Models from Demonstrations.portant key omponents of attention for an e�ient transfer of skill, where an ativepartiipation of the teaher, not only for demonstrating the skill but also to re�ne theaquired model, allows the learner to adapt the skill for partiular body apaities[Calinon and Billard, 2008℄.3.4 Learning a Robot SkillAn aim of this work is to learn models of robot skills for humanoid robots; thelearned robot skills should latter be used to build a knowledge base of robot skills. Toteah and learn the robot skills a LfD framework is implemented. The motivations foradopting a LfD approah have been outlined in the previous setions; it provides intu-itive and user-friendly methods to teah tasks to a robot by demonstrating the skills,and they don't require the user to have expert programming skills. It also, reduesthe ost of developing automated planning and manual programming of robot ontrol,and speeds up the learning proess, as opposed to reinforement learning methods,reduing omplexity of searh spaes, giving prior knowledge of task performane.The LfD approahes fouses on the development of algorithms that are generiin their representation of the skills and in the way they are generated. One ommonapproah reates models of the skill based on sets of demonstrations performed inslightly di�erent onditions, generalizing about the inherent variability to extrat theessential omponents of the skill [Calinon, 2009℄. Current approahes to generalizinga skill an be broadly divided into two trends: a symboli enoding, providing a high-level representation of the skill, in whih the demonstrated task is deomposed into asequene of state-ation-state transitions; and trajetory enoding, providing a low-representation for the skill, taking the form of non-linear mapping between sensoryand motor information. The most promising approahes are those that enapsulatethe dynamis of the movement into the enoding [Billard et al., 2008℄. Generaliza-tion is important sine it is not possible to demonstrate all the motions the robot isexpeted to perform and the learned motions must be appliable to ontexts not seenduring training. Working in dynamially hanging environments, it is neessary toadjust the desired trajetories appropriately, or to generate new ones by generalizingfrom previously learned knowledge [Shaal et al., 2007℄. Statistial mahine learn-ing approahes are a popular mehanism for enoding hanging orrelations arossvariables and observed variations from multiple demonstrations of the movement.Generi approahes must allow the robot to automatially extrat relevant featuresof the task and searh for a ontroller to optimize their reprodution.Employing statistial learning tehniques is a popular trend for dealing with thehigh variability inherent to the demonstrations. Traditional means were based onspline �tting tehniques to deal with the unertainty ontained in several motiondemonstrations [Ude, 1993℄, [Aleotti and Caselli, 2006℄. Non-linear regression teh-niques were proposed as a statistial alternative to spline-based representations. Anumber of authors exploited the robustness of Hidden Markov Models (HMMs) forenoding temporal and spatial variations and modelling various types of motion[Tso and Liu, 1996℄, [Yang et al., 1997℄. Popular approahes used Gaussian Mix-



3.4. Learning a Robot Skill 83ture Model (GMM) to enode a set of trajetories, and Gaussian Mixture Regression(GMR) to retrieve them [Calinon et al., 2007℄, [Calinon and Billard, 2008℄. The workof [Chatzis et al., 2012℄ proposed an extension of GMR-based learning by demonstra-tion models to inorporate onepts from the �eld of quantum mehanis. Di�erentapproahes [Shaal and Atkeson, 1998℄, used Reeptive Field Weighted Regression(RFWR) to learn pieewise linear models with non-parametri regression tehniques.Autonomous dynamial systems have also been proposed as an alternative approah,representing movements as mixtures of non-linear di�erential equations with well-de�ned attrator dynamis [Ijspeert et al., 2001℄.E�orts in Imitation Learning fous on three important issues: e�ient learningof motor ontrol; organizing relation of pereption and ation units; and ahievingmodular motor ontrol in the form of movement primitives [Shaal, 1999℄. Learningmotor ontrol requires mapping world states and ations, a given motor movementan generally be formalized as a poliy in terms of the expression,u = π(x, α) (3.1)whih maps the state vetor, x, to a ontrol vetor of the system, u. The ve-tor, α, ontains task spei� and adjustable parameters shaping the poliy. Themajor goal of learning ontrol being entred around �nding a generally non-linearfuntion π, the motor ontrol poliy, adequate to reprodue a desired behaviour[Shaal and Atkeson, 2010℄. Imitation Learning overs the algorithms by whih arobot learns a poliy based on demonstrated data. As mentioned in previous setions,the learning problem is segmented between gathering the demonstrations, inludingthe hoie of a demonstration tehnique, and deriving a poliy from the demonstra-tions, inluding the seletion of an algorithm for generating this poliy. Signi�antproblems to address in these approahes are the problem of extrating the relevantfeatures of a given task, the problem of evaluating how the task should be reproduedand the problem of �nding optimum ontrollers to generalize the aquired knowledgeof various ontexts [Calinon et al., 2007℄.The Robot Skills Models learned in this hapter would form a set of basi primi-tives of ation from whih a skills knowledge base is built for generating, adapting,and reproduing more omplex tasks in the right ontext. Suitable models of therobot skills must promote the simple learning and representation of desired traje-tories. Robot skills ought to enlose all the general knowledge of the task to allowgeneralization of the skill for reprodution and to form full goal-direted motions anda set of basi units of ation. Robot skills should also present ertain properties suhas autonomous behaviour without expliit time dependeny and adaptation of theirparameters, �exible learning, basi stability, oupling phenomena of pereption andation, ompat representation and ease of ategorization of movement trajetories,reusable for similar and related tasks, modi�able to new tasks and ontexts not seenduring demonstrations; robustness against both temporal and spatial disturbanesof movement in dynami environments and allowing learning disrete and rhythmimovements.Adopting non-linear dynami systems theory has beome an inreasingly aepted



84 3. Learning Robot Skills Models from Demonstrations.pratie in several branhes of siene, with appliations to physis, mehanis, hem-istry, eletromagnetism, biology, engineering, and so on. [Strogatz, 1994℄. The �eldof neural ontrol of movement has long suggested to model movement phenomenawith dynamial systems [Kelso, 1995℄. Similarly, ideas of dynamial systems theoryhave been introdued for developmental psyhologial theories of human develop-ment [Thelen and Smith, 2007℄. In the �eld of ognitive sienes, dynamial systemstheory has also been proposed as a better model for understanding the proess of hu-man ognition [van Gelder, 1995℄, [Beer, 2000℄, [Shöner, 2008℄, as brie�y disussedin Chapter 2. In robot ontrol theory many related approahes, suh as potential�elds, tried to reate �exible attrator landsapes aording to whih any move-ment system must move [Okada et al., ℄, [Tsuji et al., Nov℄. Enapsulating the dy-namis of the movement into a dynamial system enoding is a promising approahto learning movement trajetories [Billard et al., 2008℄. A Dynamial Systems (DS)approah to skill learning an o�er a fast, simple and powerful formulation for rep-resenting and generating movement plans, learned from demonstrations. The DSframework allows to omply with the attrator dynamis of the desired behaviour,modulating it with a set of non-linear dynami systems that form an autonomousontrol poliy for motor ontrol. Statistial learning tehniques an be used to ar-bitrarily shape the attrator landsape of the ontrol poliy for enoding within thedesired trajetory, moving from an initial state to an end state driven by the at-trator dynamis. DS provide e�ient and lean means for enoding a skill andful�lling most of the desirable properties stated above. DS are intrinsially robustand an adapt their trajetories instantly in the fae of spatio-temporal perturba-tions [Khansari-Zadeh and Billard, 2010a℄. The DS do not expliitly depend on timeindexing and provide losed loop ontrol and are able to model arbitrary non-lineardynamis [Gribovskaya et al., 2010℄. The DS an also be easily modulated to gener-ate new trajetories that have similar dynamis, performing in areas that where notovered during demonstrations [Khansari-Zadeh and Billard, 2011℄. Use of DS withstatistial approahes permits the development of a representation of movements,enapsulating the relationships between variables and variations of the task into thedynamial systems' parameters [Calinon et al., 2012℄. The DS approah ould also beused to exploit its representational properties for movement generalization, reogni-tion and lassi�ation [Pastor et al., 2009℄. DS an reate a rih variety of non-lineardynami models �tted for point attrator and limit yli systems allowing enodingof both disrete and rhythmi movements [Ijspeert et al., 2009℄.The dynami system an be generally expressed as a di�erential equation,
ẋ = f(x, θ), (3.2)this equation is mostly idential to Equation 3.1, exept for the left-hand term fdenoting a hange of state, instead of a motor ommand π. The DS is oneiveas a 'kinemati poliy' whih generates target values, in kinemati varibles, e.g.,position, veloity and aeleration [Shaal et al., 2007℄; appropriate ontrollers areneeded to subsequently onvert them to motor ommands. Expliit time dependenyis removed from the formulation of the DS suh that the ontrol poliy beomes anautonomous dynami system; this is advantageous as maintaining timing ounters



3.4. Learning a Robot Skill 85or signals adds a burdensome level of omplexity to ontrol; additionally supportfor suh loking signals in biologial systems is disputed [Shaal et al., 2007℄. Au-tonomous non-linear dynamial systems are a powerful mehanisms to modulate theontrol poliies by learning the model of the skill by building a stable estimate f̂ of
f based on the set of demonstrations. Ensuring the stability of f̂ is a key require-ment to provide a useful ontrol poliy, sine non-linear DS are prone to instabilities.Neessary e�orts are onduted into guaranteeing global asymptoti stability at thetarget [Khansari-Zadeh and Billard, 2011℄.[Ijspeert et al., 2001℄ was the �rst work to emphasize this approah, by designinga motor representation based on dynamial systems in order to enode movementsand for later replaying them in various onditions. The approah oneived the mo-tions as movement primitives and named it Dynami Movement Primitives (DMP)[Ijspeert et al., 2003℄. The DMP an be used as a ompat representation of high-dimensional planning poliies. The approah starts with a simple dynamial systemand transforms it, by means of an autonomous foring term, into a non-linear systemwith presribed attrator dynamis. Non-parametri regression tehniques are used toshape the attrator landsapes to the demonstrated trajetories [Ijspeert et al., 2009℄.DMP an be understood as a two dynamial system with a one-way onnetion suhthat one system drives the other one, a anonial system h whih drives a transformor output system g for every onsidered degree of freedom. The DMP onsists of asystem of di�erential equations given by,

τ ż = h(z, θ),

τ ẋ = g(x, f, θ),whih determine the variables of internal fous x. θ is a plae holder for all pa-rameters of the system, like goals, time onstants, et. z denotes the state of theanonial system, and is a substitute for time, and f is a non-linear foring fun-tion [Shaal et al., 2007℄. The output of the system are desired positions, veloitiesand aelerations. A suitable ontroller is needed to onvert them into motor om-mands. Loally Weighted Regression (LWR) was the initial method proposed to learnthe system's parameters [Ijspeert et al., 2002℄. [Hersh et al., De℄ extended the ap-proah to learning trajetories in multidimensional spae, Gaussian models are usedto enoded the trajetories modulating the dynamial system. [Calinon et al., 2012℄extended the DMP model by formulating the estimation of the parameters of the DSas a Gaussian mixture regression problem with projetion in di�erent oordinate sys-tems. A DS-GMR model was proposed opening roads for developments, ombiningthe versatility of dynamial systems and the robustness of statistial approahes.The original DMP approah operated in a single dimension using a pre-de�neddynamial system as a motion primitive, where the trajetory of every single DOFwas modulated by its own non-linear funtion and transformation system separately.[Gribovskaya and Billard, 2009℄ investigated a method whereby the Gaussian MixtureModels (GMM) ould diretly embed the multi-variate dynamis of a motion. Theirwork presented a generi framework that ombined DS movement ontrol with RPbDin order to teah a robot. The framework requires two systems, a learning system



86 3. Learning Robot Skills Models from Demonstrations.proessing the data from the reorded demonstrations of the task for extrating oor-dination onstraints and enoding the trajetory, and a motor system reproduing thedynamis of the motion while satisfying the onstraints learned in the previous system[Gribovskaya and Billard, 2008℄. An iterative proedure was employed to learn a sta-tistial estimate of an arbitrary multivariate autonomous dynamial system, throughthe enoding of the demonstrated data with Gaussian Mixtures. The state of theroboti system ξ is assumed to be governable by an autonomous dynamial system.The motion model is driven by a �rst order autonomous ordinary di�erential equation,with a single equilibrium point,
ξ̇ = f(ξ),

˙̄ξ = f(ξ̄) = 0the problem onsists of onstruting an estimate f̂ of f from the set of demonstratedtrajetories, the Gaussian Mixture Models (GMM) are used to de�ne the f̂ follow-ing a statistial approah [Gribovskaya and Billard, 2009℄. The GMM de�ne a jointprobability distribution funtion over a training set of demonstrated trajetories as amixture of a �nite set of Gaussian distributions. In order to generate the new traje-tories, one an sample from the probability distribution funtion of the learned GMM,this proess is named Gaussian Mixture Models (GMM). The proposed framework hasthree advantages, i) it allowed generalizing the motion to unseen ontext; ii) providesrobustness to spatio-temporal perturbations of the motion; iii) di�erent types of dy-namis an be embedded [Gribovskaya et al., 2010℄. This framework allowed to learnthe non-linear multivariate dynamis for ases in whih this orrelation between vari-ables is important, unlike other works whih generally disard information pertainingto orrelation aross the joints. Storing the orrelations among the joints' variablesan be ostly; yet it is also advantageous in that the orrelations ontain informationon features harateristi of the motion.The non-linearDS are suseptible to instabilities. An important issue for these ap-proahes is to onsiderer the stability of the generated ontrol poliies. Guaranteeingthe estimates f̂ results in an asymptotially stable trajetory whih is, therefore, a keyrequirement in order to provide useful ontrol poliies. The aforementioned methodis not guaranteed to result in a stable estimate of the motion. A learning proedurealled Binary Merging (BM) was introdued by [Khansari-Zadeh and Billard, 2010b℄.It takles the problem of estimating, from the reorded demonstrations, the unknownnon-linear DS, while ensuring loal stability at the target based on the providedstability onditions. The BM approah an build the loally stable estimate f̂ byminimizing iteratively the number of Gaussian funtions required for ahieving bothasymptoti stability at the target and high auray in estimating the dynamis ofmotion. The estimated DS generates trajetories that aurately follow the motiondynamis based on the metri of auray the user de�nes. However, the method issensitive to demonstrations and only e�etive when demonstrations are very similar.[Khansari-Zadeh and Billard, 2011℄ proposed a learning method, alled Stable Es-timator of Dynamial Systems (SEDS), to learn the parameters of the DS that ensureall motions to losely follow the demonstration dynamis. The approah follows sim-
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ilarly as in [Gribovskaya et al., 2010℄ and formulates the enoding as a ontrol lawthat is driven by a �rst-order autonomous non-linear ODE with Gaussian Mixtures.Their work formulates the problem of omputing the estimate f̂ and the optimal val-ues of θ by solving an optimization problem. Learning the parameters of the GMMproeeds as a onstraint optimization problem under strit stability onstraints; thisensures that the model satis�es the global asymptoti stability of the DS at thetarget [Khansari-Zadeh and Billard, 2010a℄. For the optimization objetive funtion,two di�erent andidates are used. One funtion based in the log-likelihood, as a meansof onstruting the model. And a funtion based on the mean square error (MSE),as a means of quantifying the auray of estimations that are based on demonstra-tions. The approah provides a sound ground for the estimation of non-linear DSwhih is not heuristi driven and, therefore, has the potential for muh larger sets ofappliations. Also, by presenting the properties of being time-invariant and globallyasymptotially stable at the target, the DS estimated with SEDS are able to respondimmediately and appropriately to perturbations that ould be enountered duringreprodution of the motion.In this work, the end-e�etor trajetories, ξ, in Cartesian spae, of a skill motionwill be modelled in terms of a dynami systems approah, as in [Shaal et al., 2007℄for an autonomous dynamial system enoding of the motion. The model of ourmotions is learned by estimating the non-linear funtion f . The frameworks presentedin [Gribovskaya et al., 2010℄ and [Khansari-Zadeh and Billard, 2011℄ are followed tolearn the motions as multivariate DS within a LfD statistial approah. A timeindependent model is estimated through a set of �rst order non-linear multivariatedynamial systems. Figure 3.8 presents the ontrol �ow of the learning framework. ξTand ξR are the target and real robot state, whih ould represent position, veloities,fores, et. The DS provides the desired outputs ξ, ξ̇. qi, q̇i and qf orresponds to theinitial and �nal positions and veloities of the robot joints respetively. The learningblok infers the model parameters θ from the set of demonstrations {ξ, ξ̇}D.



88 3. Learning Robot Skills Models from Demonstrations.3.5 Enoding of a Robot SkillAs stated in the previous setion, to learn, and latter to reprodue, the robotskills, a omputational model of the motion is built in the framework of dynamisystem approahes. The motion dynamis are estimated through a set of �rst ordernon-linear dynamial system equations. DS approah was proposed as alternativeto traditional approahes for motor representation, like spline deomposition and re-gression tehniques. The DS framework provides an e�etive means to enode traje-tories through time-independent funtions that de�ne the temporal evolution of themotions, by representing movements as mixtures of non-linear di�erential equationswith well-de�ned attrator dynamis. A DS model of the robot skill is built, enod-ing the relevant information of the demonstrated skill for reproduing the learneddynamis of the motion.3.5.1 Problem FormalizationFirst let us assume that the state of the robot system an be unambiguouslydesribed using a state variable de�ned as ξ. And let the reorded demonstrations bethe set D of N-dimensional demonstrate data points {ξi, ξ̇i}Di=1, instanes of a globalmotion. Further assume that the motion is governed by a �rst order autonomousordinary di�erential equation (ODE):̇
ξD = f(ξD), (3.3)Here, ξD ∈ Rn, and its time derivative ξ̇D ∈ Rn are vetors that desribe the robotmotion. From Eq. 3.3 it an be seen that it follows the same form as in Eq. 3.2. Toompute the evolution of the motion, giving an initial state ξ0 ∈ Rn, it is possible tointegrate Eq. 3.2 through time,

ξ(t) =

∫ t

0

f(ξ, θ)dt (3.4)the analytial omputation of the above integral are usually non-trivial, espeiallyfor omplex multi-dimensional DS.Let's also onsider that a set of parameters, θ, an desribe the funtion f(ξ), asin Eq. 3.2, optimal values for the parameters θ an be obtained employing di�erentstatistial approahes. The learning problem is redue to building a stable estimate f̂of f , and determining the parameter θ, based on the set of demonstrations, {ξi, ξ̇i}Di=0.The funtion f , f : Rn → Rn, is onsidered to be a non-linear ontinuous andontinuously di�erentiable funtion with a single equilibrium point. Without loss ofgenerality, the attrator, ξ̄, an be transferred to the origin, ξ̄ = 0, so that f(ξ̄) =
f(0) = 0 and by extension f̂(ξ̄) = f̂(0) = 0.

ξ̇ = f(ξ),

˙̄ξ = f(ξ̄) = 0
(3.5)



3.5. Enoding of a Robot Skill 89The motion of the system is uniquely determined by its state ξ. Choosing theappropriate state variables has an important impat on the dynamis to be learned.Here, motions are to be represented in kinemati oordinates, the desired outputs areposition, veloities and aelerations, whih ould be in in joint spae or task spae.It is assumed that there are appropriate ontrollers that onvert kinemati variablesinto motor ommands.Non-linear Regression TehniquesRegression is a problem in statistial analysis for estimating the relationshipsamong variables. The non-linear regression tehniques fous on building a ontinuousmapping funtion f : Rn → Rm, the funtion f is a non-linear ombination of themodel parameters, building f is based on determining the set of parameters θ duringtraining based on the set, D, of training data points, {ξiI , ξiO}Di=1, with ξiI ∈ Rn and
ξiO ∈ Rm orresponding to the input and output variables respetively. The value ξOan be predited from the input ξI with the estimate of f ,

ξ̂O = f(ξ∗I , θ) (3.6)notie the similarities of this statement with the previous formalization of the DSlearning problem.There are numerous regression tehniques to build the estimate of f , the statisti-al methods an be broadly divided into parametri and non-parametri approahes.The non-parametri methods are advantageous in that they make little assumptionsabout the form of the underlying distribution, they are also well suited to auratelyperform data �tting in low-dimensional spaes. However, they su�er from the urseof dimensionality. The parametri methods are better suited to model multivariatedatasets, and deal with problems of regression on multi-dimensional data. How-ever, to hoose the underlying parameters e�etively they rely on heuristial methods[Hastie et al., 2009℄. Existing approahes to statistial estimating of f mostly re-lied on either Gaussian Proess Regression (GPR) [Rasmussen and Williams, 2006℄,[Shneider and Ertel, 2010℄, Gaussian Mixture Regression (GMR) [Hersh et al., 2008℄,[Calinon et al., 2010℄, or Loally Weighted Regression, Loally Weighted Projetion Re-gression (LWPR) [Vijayakumar and Shaal, ℄, [Grollman and Jenkins, 2008℄.Gaussian ProessGaussian Proess Regression (GPR) provides an estimate of the funtion f byassuming it as a Gaussian proess, in whih any set of samples has a joint Gaussiandistribution. A set of training data points with uni-dimensional funtion values ξI =
ξiI

D

i=1, and ξO = ξiO
D

i=1, representing respetively the input and output variables. Byonditioning the multivariate Gaussian distribution on the training data, for any point
ξ∗I , the GPR is obtained,

f(ξ∗I ) | ξI , ξO ∼ N (µ(ξ∗I ),Σ(ξ
∗

I )) (3.7)



90 3. Learning Robot Skills Models from Demonstrations.where the estimate µ(ξ∗I ) and the variane Σ(ξ∗I ) are given by
µ(ξ∗I ) = K(ξ∗I , ξI)(K(ξI , ξI) + σnI)

−1)ξO

Σ(ξ∗I ) = K(ξ∗I , ξ
∗

I )−K(ξ∗I , ξI)(K(ξI , ξI))
−1K(ξI , ξ

∗

I )withK, symmetri matries representing the evaluation of the GP ovariane funtionaross the spei�ed variables.The formulation of GPR is only appliable to multi-input single-output datasets,for datasets with multiple outputs it is neessary to train a separate GPR model forevery output dimension. The GPR method builds an aurate estimate of non-linearfuntions, however, it is ill-suited for appliations requiring fast omputation. theomputational osts of GPR sale ubially with the number of training examples.Gaussian MixtureGaussian Mixture Regression (GMR) is a non-linear regression tehnique whihoperates on the joint probability P(ξI ; ξO). The joint probability is formed by super-position of linear Gaussian funtions,
P(ξI ; ξO) =

∑

πN (ξI ; ξO | µ,Σ) (3.8)where π, µ and Σ are respetively the prior, mean and ovariane matrix of theGaussian funtion N .Given the joint distribution P(ξI ; ξO) and input point ξ∗I , the GMR proess followsthe output from the posterior mean estimate of the onditional distribution,
ξ̂O = f(ξ∗I ; θ) = E[P(ξ̂O | ξ∗I ; θ)] (3.9)with θ = [π, µ,Σ] the parameters of the Gaussian funtions.A more expansive desription of the GMR proess would be given later in thissetion. The GMR method provides an alternative to modelling non-linear trajeto-ries. It usually requires fewer parameters in omparison to other methods, yet it isless aurate. One ritial onern with GMR based approahes is that they requireheuristi methods to determine an optimal number of Gaussian kernels, also, the �nalresults are sensitive to initialization.Loally Weighted ProjetionLoally Weighted Projetion Regression (LWPR) is an inremental regression teh-nique whih provides an estimate of f in terms of the output from a set of loal regions,de�ned with a Gaussian funtion,

w(ξ) = e−(ξ−µ)⊤W (ξ−µ) (3.10)where µ are the entres andW is a positive semi-de�nite distane metri, determiningthe in�uene of the region. The output predition is omputed as the non-linearweighted sum of the output of all regions,
ξ̂O = f(ξ∗I ) =

1
∑

w(ξ∗I )

∑

w(ξ∗I )r(ξ
∗

I ) (3.11)



3.5. Enoding of a Robot Skill 91The LWPR method o�ers in omparison ost-e�ieny for non-linear funtionapproximation. LWPR desribes the system through a �nite ombination of Gaus-sian funtions. The parameters are estimated in one-shot learning through linearregression. However, the approah is very sensitive to the hoie of parameters atinitialization and relies on manual tuning to ahieve high auray.Regardless of the advantages or weakness of these approahes, they annot beused as is to estimate the DS of Eq. 3.5 sine they do not take into aount thestability of the dynamial system they model [Khansari-Zadeh and Billard, 2010b℄.Dynami Motor PrimitivesThe Dynami Motor Primitives (DMP) method [Ijspeert et al., 2009℄, was pro-posed to learn the attrator dynamis of the motion and to deal with the instabilityissues. The DMP an be used to generate one dimensional movements with a basipoint attrator system instantiated by the seond order dynamis as,
τ ż = αz(βz(g − y)− z) + f

τ ẏ = z
(3.12)with g the goal state, αz, βz time onstants, τ a temporal saling fator, and y, ẏorrespond to a desired position and veloity.For appropriate parameter setting and with f = 0 Eq. 3.12 form a globallystable linear dynami system with g as an unique attrator [Shaal et al., 2007℄. Thefuntion f is a non-linear funtion whih an be learned to allow the generation ofarbitrary omplex trajetories. The non-linear funtion f an be de�ned in the formof,

f(x, g, y0) =

N
∑

i=1

ψiwix

N
∑

i=1

ψi

(g − y0) (3.13)where ψi = exp (−hi(x− ci)
2) are Gaussian basis funtion with enter ci and with

hi, and wi are learnable adjustable weight that shapes the trajetory. The funtion
f does not diretly depend on time, but on a phase variable, x,

τ ẋ = −αxx (3.14)with αx a pre-de�ned onstant. The DMP an be understood as two dynamialsystem with a one-way onnetion suh that one system drives the other, with theanonial system in Eq. 3.14 driving the output system in Eq. 3.12.For learning the parameters, a non-parametri regression tehnique from loallyweighted learning an be used to generate the funtion approximator [Ijspeert et al., 2009℄.This method allows us to determine automatially the neessary number of basis fun-tions N , their entres ci, and widths hi. For every basis funtion ψi, whih de�nes asmall region in input spae x, any point that falls into this region is used to performa linear regression, whih an be formalized as weighted regression. The method re-ates a pieewise linear approximation of f , in whih eah linear funtion piee belongs



92 3. Learning Robot Skills Models from Demonstrations.to one of the basis funtions. Other funtion approximators an also be used, likeradial basis funtion networks, mixture models, Gaussian Proess regression, et., forexample [Calinon et al., 2012℄.The DMP approah however presents two drawbaks; the phase variable employedto modulate the dynamis makes the system time dependent and sensitive to temporalperturbations. Also, a DS is learned separately for eah dimension, and a heuristiis needed to synhronize for modelling multi-dimensional systems, this neglets theombined e�et of all the dimensions in the motion.3.5.2 Multivariate Gaussian MixturesTo learn the multi-variate dynamis of a motion trajetory, here, an approahfrom [Gribovskaya and Billard, 2009℄ has been followed, as outlined in setion 3.4.In their work an iterative proedure was employed to learn a statistial estimate ofan arbitrary multivariate autonomous dynamial system, Gaussian Mixture Models(GMM) are used to diretly embed the multi-variate dynamis of a motion throughthe enoding of the demonstrated data.The state of the roboti system ξ is assumed to be governable by an autonomousdynamial system, with a single equilibrium point, as per Eq. 3.5. And the set ofN-dimensional demonstrated data points be represented as {ξi, ξ̇i}Di=1, as desribed inthe problem formalization in 3.5.1. A probabilisti framework is employed to buildan estimate f̂ , of the non-linear state transition map f , based on the set of demon-strations. The dynamis of the motion are learned thus, by modelling the estimate f̂via a �nite mixture of Gaussian funtions, f is de�ned as a non-linear ombinationof a �nite set of Gaussian kernels using the GMM [Gribovskaya et al., 2010℄.Gaussian Mixture ModelsEmploying mixture models is a popular approah for the statistial modelling ofa wide variety of random phenomena. Mixture distributions provide a onvenientframework to model unknown distributional shapes, for density approximation ofontinuous or binary data [Mlahlan and Peel, 2000℄. A mixture model of K om-ponents is de�ned by a probability density funtion,
p(ξ) =

K
∑

k=1

p(k)p(ξ | k) (3.15)where ξ is a data point, p(k) is the prior probability and p(ξ | k) is the onditionalprobability.Given our set of demonstrated data points, {ξi, ξ̇i}Di=1, eah reorded point in thetrajetories is assoiated with a probability density funtion. The GMM de�ne ajoint probability distribution p(ξi, ξ̇i) of the training set of demonstrated trajetoriesas a mixture of the K Gaussian multivariate distributions N k, with πk, µk, and
Σk, respetively the prior, mean and ovariane matrix, parameters of the Gaussianomponent k.



3.5. Enoding of a Robot Skill 93The parameters in Eq. 3.15 beome,
p(k) = πk

p(ξ | k) = N (ξ;µk,Σk)
(3.16)The joint probability distribution, p(ξ, ξ̇), for the GMM is given by,

p(ξ, ξ̇; θ) =
1

K

K
∑

k=1

πkN k(ξ, ξ̇;µk,Σk)with µk = {µk
ξ ;µ

k

ξ̇
} and Σk =

[

Σk
ξ Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇

] (3.17)where the probability density funtion of eah Gaussian, N k(ξi, ξ̇i;µk,Σk), in themodel is then given by:
N k(ξ, ξ̇;µk,Σk) =

1
√

(2π)2n|Σk|
e

−1

2
(([ξ,ξ̇]−µk)T (Σk)−1([ξ,ξ̇]−µk)) ∀k ∈ 1 . . .K (3.18)The mixture of Gaussian funtions would estimate the non-linear funtion f , thusthe unknown parameters of f , θ, beomes the prior, πk, the mean, µk, and theovariane matrix, Σk, of the K Gaussian funtions, suh that θk = (πk, µk,Σk),de�ned as in Eq. 3.17.The mixture modelling method builds a oarse representation of the data densitythrough a �xed number of mixture omponents. By onsidering an adequate numberof Gaussian funtions, and adjusting their means and ovarianes matrix parameters,almost any ontinuous density an be approximate to arbitrary auray. Finding theoptimal number of omponents is not trivial and various methods an be found, suhas, the Bayesian Information Criterion (BIC) [Shwarz, 1978℄, or the Deviane Infor-mation Criterion (DIC) [Spiegelhalter et al., 2002℄. The parameters θ = (π, µ,Σ) offuntion f , governed the form of the Gaussian mixture distribution. To learn the pa-rameters a Maximum Likelihood Estimation of the mixture parameters is performed.EM proeeds by maximizing the likelihood that the omplete model represents thetraining data well.

L(ξ,Θ) =
N
∑

n=1

ln(p(ξn | Θ)) (3.19)First, the model is initialized using the k-means lustering algorithm starting froma uniform mesh and it is then re�ned iteratively through Expetation-Maximization(EM) [Dempster et al., 1977℄, to �nd the maximum likelihood funtion of equation3.17, from Eq. 3.19 as,
Lp(ξ, ξ̇) =

N
∑

n=1

ln

{

K
∑

k=1

πkN ((ξn, ξ̇n) | µk,Σk)

} (3.20)



94 3. Learning Robot Skills Models from Demonstrations.The parameters θk = (πk, µk,Σk) of the GMM are then estimated iteratively untilonvergene, trough alternating between an expetation (E ) step and a maximization(M ) step. The E-step reates a funtion for the expetations of the log-likelihood,using urrent estimate for the parameters. The M-step omputes the parameters,maximizing the expeted log-likelihood of the E-step, these estimates of the parameterare used for determining the next E-step. The iterations stop when the inrease ofthe log-likelihood beomes smaller than a threshold, Lt+1

Lt
< threshold, with thelog-likelihood, L, de�ned as in Eq. 3.19 and 3.20.E-step:

p
k,n

(t+1) =
πk
(t)N ((ξn, ξ̇n) | µk

(t),Σ
k
(t))

∑

K

k=1 π
k
(t)N ((ξn, ξ̇n) | µk

(t),Σ
k
(t))

Ek
(t+1) =

N
∑

n=1

p
k,n

(t+1) (3.21)M-step:
πk
(t+1) =

Ek
(t+1)

N

µk
(t+1) =

∑

N

n=1 p
k,n

(t+1)(ξ
n, ξ̇n)

Ek
(t+1)

Σk
(t+1) =

∑

N

n=1 p
k,n

(t+1)((ξ
n, ξ̇n)− µk

(t+1))((ξ
n, ξ̇n)− µk

(t+1))
⊤

Ek
(t+1)A more in deep theoretial analysis of the Gaussian Mixture Models (GMM) anbe found on [Dasgupta and Shulman, 2000℄, [Calinon, 2009℄. Figure 3.9 illustratesthe learning proess and enoding of a training data set into a model of mixtures ofGaussian funtions. First, several demonstrations of a trajetory are reorded to buildthe D dataset. A model of the trajetories is built enoding the given demonstrationswith K Gaussian distributions, de�ned by the µ and Σ parameters. To generate anew trajetory from the GMM, one then an sample from the probability distributionfuntion p(ξ, ξ̇), this proess is alled Gaussian Mixture Regression (GMR).Gaussian Mixture RegressionGaussian Mixture Regression (GMR) is used for retrieving a generalized trajetorymade up of a set of trajetories used to train the model, where the generalized tra-jetory is not part of the dataset but instead enapsulates all of its essential features[Calinon, 2009℄.
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Fig. 3.9: Illustration of the learning proess with GMM-GMR. (top) Reorded train-ing data of the demonstrated trajetories. (enter) The learned GMMmodel represented by ellipses entre at µi, magnitude and diretion of theellipses are given by the eigenvetors and eigenvalues of Σi. (bottom) Re-prodution of several trajetories trough GMR.



96 3. Learning Robot Skills Models from Demonstrations.The GMM omputes a joint probability density funtion for the input and theoutput so that the probability of the output onditioned on the input are a Mixtureof Gaussian. So it is possible after training, to reover the expeted output variable
ˆ̇
ξ, given the observed input in ξ.Given the joint probability distribution, p(ξ, ξ̇), from Eq. 3.17 and a input querypoint ξ∗, the GMR proess takes the onditional mean estimate of p(ξ̇ | ξ∗), theestimate of our funtion ˆ̇

ξ = f̂(ξ∗) an be expressed by,
ˆ̇
ξ =

K
∑

k=1

hk(ξ∗)(Σk

ξ̇ξ
(Σk

ξ )
−1(ξ∗ − µk

ξ) + µk

ξ̇
) (3.22)where, hk(ξ) =

p(ξ;µk
ξ ,Σ

k
ξ )

∑K

k=1 p(ξ;µ
k
ξ ,Σ

k
ξ)with hk(ξ) > 0 and K

∑

k=1

hk(ξ) = 1A review of theoretial onsiderations of the GMR an be found in [Sung, 2004℄,[Cohn et al., 1996℄. The GMM enoding of the demonstrations and GMR reprodu-tion of the learned motions proess is illustrated in Figure 3.9. The model of thetrajetories are learned from several demonstrations and then enoded as a mixtureof Gaussian distributions. To reprodue the trajetories one sample from the prob-ability distribution of the GMM trough the Gaussian Mixture Regression proess.The GMR approximates the dynamial systems through a non-linear weighted sumof loal linear models. The proess for enoding the dynamis of a motion throughGaussian Mixture Models, and Gaussian Mixture Regression, is illustrated in Figure3.10.The notation of Eq. 3.22 an be simpli�ed through a hange of variable where,
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(3.23)Substituting Eq. 3.23 into Eq. 3.22 produes an expression of the GMR as anon-linear sum of linear dynamial systems,
ξ̇ = f̂(ξ) =

K
∑

k=1

hk(ξ)(Akξ + b
k) (3.24)Rewriting Eq. 3.22 in this way is useful to study the in�uene of eah Gaussianand the stability of the estimate f̂ . Stability of the system is governed by the GMRparameters, the matries A

k, bk and weighting term hk, whih are learned duringtraining. Figure 3.10 represents the in�uene of the GMR parameters in the �nal
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Fig. 3.10: Illustration of the GMR inferene proess for reproduing learned traje-tories. (top) The non-linear weights hk(ξ), as de�ned by Eq. 3.23, give arelative measure of the importane of eah Gaussian ontribution to theestimate f̂ at point ξ. (bottom) The estimate f̂ is expressed as a non-linear sum of DS, as per Eq. 3.24. The linear dynamis of every A
kξ+b

korrespond to a line equation with slope Ak that runs through the entre
µk. Given an observed input ξI , the value of ξO is estimated from f̂ .reprodution. Eah linear dynamis orresponds to a line that passes through theentres µk with slope A

k. The non-linear weighting term, hk, in Eq. 3.24 gives ameasure of the relative in�uene of eah Gaussian loally. Due to the in�uene ofthe non-linear weighting term, hk, the estimate funtion f̂(ξ) is also non-linear andpresents enough �exibility as to model a wide variety of motions. However, it annotbe guaranteed that the system will be asymptotially stable, and the resulting non-linear model f(ξ) an ontain spurious attrators or limit yles even for simple 2Dmodels [Khansari-Zadeh and Billard, 2011℄.[Gribovskaya et al., 2010℄ proposes a modi�ation of the GMM proedure to buildthe mixture resulting in an estimate, loally stable around the target (GMM-DS ). Itis assumed that in the neighbourhood of the origin, the system is governed solely bythe last K Gaussian. In order to guarantee the onvergene to the target additionalsyntheti data is generated within a small neighbourhood around the origin. In addi-tion, the enter of the last Gaussian is set at the target and it is not updated duringtraining. The system would be asymptotially stable by ensuring that the eigenval-ues of AK, from Eq. 3.24, are all stritly negative. The stability is estimated loallywithin a subregion C, inside the robot's workspae. The funtion is approximated in
C , referred to as the region of appliability of the learned dynamis, suh that,

f̂ : C → C

f̂(ξ) ≅ f(ξ), ∀ξ ∈ C
(3.25)



98 3. Learning Robot Skills Models from Demonstrations.Algorithm: Multivariate Dynami Systems GMM [Gribovskaya et al., 2010℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize stability subregion C.2. Compute syntheti data at the target attrator ξ̄, to guarantee onvergene.3. Choose initial number of Gaussian omponents K.4. LOOP Until stability veri�ation is satis�ed.5. Initialize the GMM parameters with k-means lustering.6. Train the joint probability distribution p(ξi, ξ̇i) ∼ N (ξ; θ)with Expetation Maximization.7. Verify loal stability at the origin.8. IF not asymptotially stable at the origin.9. THEN inrease the number of Gaussian omponents.10. END.11. ENDOutput: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.1: Enoding Multivariate Dynamis with GMM-GMR.Initialization of C is data-driven and its size is de�ned by the amplitude of thetraining dataset. After training, initial guesses regarding C are re-estimated, followinga numerial proedure, to empirially verify that C is a region of attration and thatall the trajetories onverge toward the origin; it does not inlude any other attrators.This approah presented the drawbak that it annot ensured to �nd even a loallystable estimate and it gave no expliit onstraint on the form of the Gaussian funtionsto ensure stability [Khansari-Zadeh and Billard, 2011℄.Table 3.1 summarizes the proedure to model the motion dynamis through Mul-tivariate Gaussian Mixtures, employing GMM and GMR as proposed in the work by[Gribovskaya et al., 2010℄.3.5.3 Binary Merging[Khansari-Zadeh and Billard, 2010b℄ proposed a method, as outlined in setion3.4, to takle the problem of estimating the non-linear DS while ensuring loal sta-bility at the target. Their work provides a set of stability onditions that an beused to ensure loal asymptoti stability of f when it is formulated with a mixtureof Gaussian funtions.Ensuring that the estimate f̂ of the non-linear dynamial system results in tra-jetories that asymptotially onverge on the attrator, is a key requirement. Here,
f̂ is a stable estimate of f ∈ Rn if it has a single attrator ξ̄ : f(ξ̄) = 0 and every



3.5. Enoding of a Robot Skill 99trajetory generated by f asymptotially onverges to ξ̄,
lim
t→∞

f̂(ξt) = ξ̄ ∀ξt ∈ R
n (3.26)[Khansari-Zadeh and Billard, 2010b℄ de�ned a region D ⊂ Rn whih overs en-tirely the part of the state spae spanned by the demonstrations, inluding the origin,where the motion an be aurately estimated with f̂ ,

D = { ξ ∈ R
n : p(ξ) ≥ δk }

δk = αmin(p(ξi)) : k = 1 . . .K, i = 1 . . .D
(3.27)where p(ξ) is the probability of ξ as estimated from Eq. 3.17, and α : 0 < α ≤ 1 isa onstant. The de�nition of δ ensures that all data points are inluded in D. Theregion D is then partitioned into K pairwise, disjointed ontinuous subregions, Ωk,via the hyperplanes Φk,

Φk : (ξ − µk
ξ )⊤ · vk = 0 (3.28)with vk being the eigenvetor pointing towards the diretion of motion. Φk is thehyperplane through µk

ξ and normal to vk. Eah subregion, Ωk, is a part of D that isde�ned by,
Ωk = Ω̂k

⋂

D ∀k ∈ 1 . . .K (3.29)For eah subregion Ωk ⊂ D, k = 2 . . .K, the estimate given by Eq. 3.24 is trun-ated so that the dynamis are driven solely by the two dominant Gaussian funtions
N k and N k−1. The estimate for points in partition Ω1 are set by onstrution to onlybe in�uened by the dominant Gaussian N 1. Thus beoming,

ξ̇ = f(ξ) =
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1ξ + b

1 ∀ξ ∈ Ω1

hk−1(ξ)(Ak−1ξ + b
k−1)+

hk(ξ)(Akξ + b
k)

∀ξ ∈ Ωk, k ∈ 2 . . .K
(3.30)The origin, the attrator, of Eq. 3.30 is asymptotially stable if the parameter of f ,

µk and Σk, are onstruted suh that,
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(3.31b)
(vk)⊤ξ̇ > 0 ∀ξ ∈ Φk, ∀k ∈ 1 . . .K− 1 (3.31)

D is an invariant set (3.31d)



100 3. Learning Robot Skills Models from Demonstrations.Putting together the onditions in Eq. 3.31 the system beomes loally asymptoti-ally stable at the origin in the region de�ned by D [Khansari-Zadeh and Billard, 2010b℄.It is neessary for the estimate to be not only stable, aording to the stated de�nition,but also should follow losely the dynamis of the demonstration. This is evaluatedthrough a measure of auray ē with whih f̂ approximates the demonstration dy-namis. This is quanti�ed by measuring the disrepany between the diretion andamplitude of the estimated and observed veloity vetors for all the training points[Khansari-Zadeh and Billard, 2010b℄.
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(3.32)where r and q are positive salars that weight the relative in�uene of eah fator, and

ǫ is a very small positive salar. An estimate of the dynamis is onsidered aurateif ē ≤ emax, with emax a given a maximal aeptable error.The Binary Merging (BM) learning approah proeeds in two steps to build thestable estimate of f . A �rst step that initializes the model with a maximum numberof possible Gaussian funtions. And a seond step that tries to redue the number ofGaussian funtions to a minimum, satisfying the stability riteria while also keepingthe error of the estimates below maximal error emax.The initialization step, �rst with a sample alignment the demonstration trajeto-ries are aligned. The time stamps that result from the sample alignment are used toinitialize the Gaussian mixture. The parameters, θk = (πk, µk,Σk), orresponding toeah Gaussian funtion are then omputed as,
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] (3.33b)where Ξk = {ξk,i, ξ̇k,i}Di=1 denotes a subset of the demonstrations that belong tothe k Gaussian funtion, σ0 is a small positive salar to avoid numerial instability,and I is an identity matrix of the proper size.The iteration step proeeds as follows, a pair of adjaent Gaussian funtions,
{N k,N k+1} are piked randomly and merged into a single Gaussian by omputing



3.5. Enoding of a Robot Skill 101Algorithm: Binary Merging BM [Khansari-Zadeh and Billard, 2010b℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize parameters. (r, q, emax).2. Transfer the target attrator ξ̄ to the origin.3. Sample align demonstrations to length T .4. De�ne time indies tk = k, ∀k ∈ 1 · · · T .5. Initialize the GMM, with the time indies tk = k for K = T .6. LOOP while K > 1 and further merging is possible.7. Bakup the previous model GMM NK.8. Selet randomly an index k ∈ 1 · · ·K− 1.9. Compute the parameters, θk, for a new Gaussian Nm = {N k : N k+1}.10. IF Conditions of stability, 3.31, and auray, 3.32 are satis�ed.11. THEN replae N k with Nm, remove N k+1.Corret numbering of Gaussian and time indies, K = K− 1.12. ELSE disard Nm.13. END14. ENDOutput: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.2: Enoding the estimate of the DS with Binary Merging
the new µk and Σk assoiated to the Gaussian. The stability and auray onditionsfrom Eq. 3.31 and Eq. 3.32 are veri�ed for the updated model. If the onditions aresatis�ed the two seleted Gaussian funtions are replaed by the merged Gaussian,and the new model is now omposed of K − 1 Gaussian funtions. The algorithmterminates when there is no possible pair of Gaussian funtions that an be mergedwithout violating the maximum aepted error or beoming unstable. Table 3.2summarizes the proedure to model the motion dynamis through Binary Merging,as proposed by [Khansari-Zadeh and Billard, 2010b℄.There are some shortomings when using BM, it has a limited region of applia-bility, sine the stability domain D usually orresponds to a narrow region aroundthe demonstrations. Additionally, it relies on determining numerially the stabilityregion, whih ould beome omputation ostly and intratable in higher dimensions[Khansari-Zadeh and Billard, 2011℄.



102 3. Learning Robot Skills Models from Demonstrations.3.5.4 Stable Estimator of Dynamial Systems[Khansari-Zadeh and Billard, 2010a℄ proposed a learning method, alled StableEstimator of Dynamial Systems (SEDS), to learn the parameters of the DS that en-sure all motions losely follow the demonstration dynamis and for the global asymp-toti stability at the target of the estimate f̂ of the non-linear autonomous DS. Theirwork provided a set of stability onditions to ensure the global asymptoti stabilityof f at the target. However, as opposed to BM, the e�et of all Gaussian funtionsare taken into aount, without any need to trunate the estimate to solely using theadjaent Gaussian funtions.In order to build a globally asymptotially stable DS, it is needed to set theparameters, θ, of the estimate of f , suh that, by starting the motion from any pointin the state spae the energy of the system dereases until it reahes the target.Assuming that the state trajetory evolves aording to Eq. 3.24, the non-linearfuntion ξ̇ = f̂(ξ) an be made globally asymptotially stable at the target ξ̄ ∈ Rnby ensuring the following stability onditions,
{

b
k = −A

kξ̄

A
k + (Ak)⊤ ≺ 0

∀k = 1 . . .K (3.34)where A
k and b

k are de�ned aording to Eq. 3.23, and ≺ 0 refers to the negativede�niteness of a matrix, details an be found on [Khansari-Zadeh and Billard, 2011℄.Conditions from Eq. 3.34 impose the onstraint so that the energy dissipation oneah Gaussian beomes negative everywhere exept at the target, where it beomeszero.Established su�ient onditions whereby f(ξ) an be globally asymptotially sta-ble at the target remain to determine a proedure for omputing the unknown param-eters, θk = (πk, µk,Σk), of Eq. 3.22 satisfying the stability onditions. Learning theparameters of the GMM proeeds as a onstraint optimization problem, the SEDSlearning algorithm omputes optimal values for θ under strit stability onstraints,ensuring that the model satisfy global asymptoti stability of the DS at the target[Khansari-Zadeh and Billard, 2010a℄. For the optimization objetive funtion two dif-ferent andidates are used. One funtion based in the log-likelihood, as a means ofonstruting the model; and a funtion based on the mean square error (MSE), as ameans of quantifying the auray of estimations that are based on demonstrations.The optimization problem is subjet to the following onstraints,
b
k = −A

kξ̄ ∀k = 1 . . .K (3.35a)
A

k + (Ak)⊤ ≺ 0 ∀k = 1 . . .K (3.35b)
Σk ≻ 0 ∀k = 1 . . .K (3.35)

0 ≤ πk ≤ 1 ∀k = 1 . . .K (3.35d)
K
∑

k=1

πk = 1 (3.35e)



3.5. Enoding of a Robot Skill 103Algorithm: Stable Estimator of Dynamial Systems SEDS[Khansari-Zadeh and Billard, 2011℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize optimization parameters.2. Transfer the target attrator ξ̄ to the origin.3. Choose initial number of Gaussian omponents K.4. Find initial estimate for the Gaussian parameters θ́k = (π́k, µ́k, Σ́k), k ∈ 1 · · ·K,running Expetation Maximization.5. De�ne optimize parameters as πk = π́k and µk
ξ = µ́k

ξ .6. Convert the ovariane matrix suh that it satis�ed the stability and optimizationonstrains as given by Eq. 3.35.7. Compute µk

ξ̇
solving the optimization problem onstraints given by Eq. 3.35.8. Solve onstraint optimization problem for J(θ) as given by the objetive funtion of:Eq. 3.36 for the Likelihood.Eq. 3.37 for the MSE.9. IF optimization onstraints hek satis�ed.10. THEM return.Output: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.3: Enoding the estimate of the DS with SEDSThe �rst two onstraints of Eq. 3.35 are the stability onditions from Eq. 3.34. Andthe last three onstraints are imposed by the nature of the GMM, from Eq. 3.17,ensuring Σk being positive de�nite matries, and the πk prior probabilities beingpositive salars, smaller than or equal to one and their sum equal to one.The SEDS-Likelihood method, using the log-likelihood as a means to quantify theauray of estimations, omputes the optimal values of θ by solving,
min
θ
J(θ) = −

1

T

D
∑

i=1

T i
∑

t=o

ln p((ξt,i; ξ̇t,i) | θ) (3.36)where p((ξt,i; ξ̇t,i) | θ) is given by Eq. 3.17 and T =
∑D

i=1T
i are the total numberof points in the demonstration dataset. For seleting an optimal number of Gaussianfuntions K for this method, Bayesian Information Criterion (BIC) was used todetermine a trade-o� between the optimization of the model's likelihood and thetotal number of parameters needed to enode the data,

BIC = T J(θ) +
np

2
ln(T )in whih J(θ) is the normalized log-likelihood of the model in Eq. 3.36 and np is thetotal number of free parameters.



104 3. Learning Robot Skills Models from Demonstrations.In SEDS-MSE method, whih uses the mean square error as a means to quantifythe auray of estimations, the optimal values of θ are omputed by solving,
min
θ
J(θ) = −

1

2T

D
∑

i=1

T i
∑

t=o

(f(ξt,n)− ξ̇t,n)⊤(f(ξt,n)− ξ̇t,n) (3.37)where f(ξt,n) is alulated diretly from Eq. 3.22 and T is, as above, the totalnumber of points in the demonstration dataset. In order to obtain an optimalnumber of Gaussian funtion K for this method, the demonstrations are split intotraining and test datasets. The optimal number of Gaussian funtions orrespondsto the minimum value of K that provides an aurate estimate on both datasets[Khansari-Zadeh and Billard, 2011℄.Table 3.3 summarizes the proedure to model the motion dynamis through StableEstimator of Dynamial Systems, as proposed by [Khansari-Zadeh and Billard, 2011℄.The resulting models from optimizing with both SEDS-Likelihood and SEDS-MSEmethods bene�t from the inherent harateristis of autonomous DS. However, eahobjetive funtion has its own advantages and disadvantages. Employing the SEDS-log-likelihood an be advantageous in that it is more aurate and smoother thanSEDS-MSE. Furthermore, the SEDS-MSE ost funtion is slightly more time on-suming sine it requires omputing GMR at eah iteration. However, the SEDS-MSEobjetive funtion requires fewer parameters than the SEDS-log-likelihood, whih maymake the algorithm faster in higher dimensions or when a higher number of ompo-nents are used [Khansari-Zadeh and Billard, 2011℄.From the GMM-GMR approah the learning parameters requirements for esti-mation would be K(1 + 3n + 2n2), for π, µ, and Σ of size 1, 2n, and n(2n + 1)respetively, with n the dimensionality of the demonstrations dataset. However, forSEDS-Likelihood the total number of parameters an be redued sine Eq. 3.35 pro-vides expliit formulation to ompute µξ̇ from the other parameters. The number offree parameters to onstrut the model with SEDS-Likelihood is K(1 + 2n(n + 1)).For SEDS-MSE the term Σξ̇ is not used, the total number of parameters SEDS-MSEenoding redues to K(1 +
3

2
n(n + 1)). For both approahes, the number of param-eters grows linearly with the number of Gaussian funtions and quadratially withthe dimension. In omparison, the number of parameters in SEDS would be smallerthan those needed for the other methods.Figure 3.11 presents examples of the learned DS from a demonstrated trajetorywith the methods presented in this setion: GMM-DS, BM, SEDS-MSE and SEDS-Likelihood. As mentioned before, the non-linear DS are suseptible to instabilities.Guaranteeing the estimates f̂ results in an asymptotially stable trajetory and is akey requirement to provide a useful ontrol poliy. The GMM-GMR approah as de-�ned by Eq. 3.24 annot guarantee the system's asymptotially stability. The methodpresented by [Gribovskaya and Billard, 2009℄, Table 3.1, look for an estimate of f̂that is loally stable around the target, but without guaranteeing that suh a modelwould be found or onsidering the auray of its reprodution. As an be seen from3.11(a) the learned model presents a spurious attrator and some of the trajetories
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() SEDS-Likelihood (d) SEDS-MSEFig. 3.11: Examples of the learned DS. The letter C pattern demonstrations fromFig 3.9 are modelled with the GMM-DS(a), BM(b), SEDS-Likelihood()and SEDS-MSE(d) methods. Reprodutions are drawn as red lines. Thetarget attrator is drawn as a blak x at (0,0). The existene of spu-rious attrators is drawn as magenta ⋄. The streamlines of the learneddynamis are drawn in blue.
are not aurate enough. The BM approah [Khansari-Zadeh and Billard, 2010b℄,Table 3.2, ensures loal stability around a de�ned region D. Here, as an be seenfrom 3.11(b), spurious attrators an still exist outside of D, whih also has a limitedregion of appliability. The SEDS approah [Khansari-Zadeh and Billard, 2011℄, Ta-ble 3.3, provides strit stability onstraints ensuring that the model satis�es globalasymptoti stability of the DS at the target. As an be seen from 3.11()-(d), forSEDS-MSE and SEDS-Likelihood respetively, reprodutions of the learned DS areguaranteed to be globally asymptotially stable.



106 3. Learning Robot Skills Models from Demonstrations.3.6 Reprodution of Learned Robot SkillsAs stated before in the problem formalization in the previous setion, the sys-tem motion an be unambiguously determined by the state variable ξ when governedby the estimate f̂ of the motion dynamis. Choosing this variable is therefore ru-ial for the trajetory of the reprodution of the learned robot skill. The learningalgorithms desribed in setion 3.5 aim at being a generi framework and make noassumption on the variable that is used for training. Here, the hoie is made to repre-sent the motions in kinemati oordinates, the Cartesian spae, with the assumptionthat appropriate ontrollers are available to onvert the kinemati variables to motorommands. Adopting a kinemati formulation is quite suitable for motion ontrol,sine the kinemati variables generalize over a large part of the workspae, and plan-ning in kinemati spae is often more onvenient for motor ontrol. Also, kinematiplans an theoretially be learly superimposed to form more omplex behaviours[Shaal et al., 2007℄.First, it is desirable to validate the performane of the methods presented insetion 3.5. For this a set of 2-D sample motions is olleted from the valida-tion data provided by the authors of the original formulation of these methodsin their respetive soure odes. A total of 8 motions were hosen to omparethe performane of the methods, 4 from [Khansari-Zadeh and Billard, 2011℄, 1 from[Khansari-Zadeh and Billard, 2010b℄, 2 from [Calinon, 2009℄ and �nally 1 hand drawnmotion reorded withMLDemos visualization tool for mahine learning [Basilio, 2013℄.All reprodutions are generated in simulation to avoid adding the robot ontroller er-rors. The methods' performane are evaluated over two error measurements. Anauray error measurement, ē from 3.32, whih measures the error in the estimationof ξ̇ magnitude and diretion. And a �swept area error� measurement,
E =

1

D

D
∑

i=1

T i
∑

t=0

A(ξi(t), ξi(t + 1), ξt,i, ξt+1,i) (3.38)
A orrespond to the area of the tetragon generated by the points (ξi(t), ξi(t+1), ξt,i, ξt+1,i),were ξt, ξt+1 are given by the demonstration datapoints at t and t+1, and ξ(t), ξ(t+1),omputed by ξ(t) = ξ̇(t) ∗ dt, are an estimate of the demonstrated trajetories start-ing from the same initial points. Eq. 3.38 measures the umulative error over thereprodution of trajetories.Figure 3.12 and Tables 3.4, 3.5 summarize the results of validating the methodswith 8 sample 2-D motions. The GMM-DS method, tries to satisfy loal stabilityonditions, however, it does not ensure the possibility of �nding a stable DS. TheBM method, generated the most aurate estimates among the methods, produinggenerally better results than both SEDS versions. However, the BM method is alsothe more omputationally ostly and the one whih requires the highest numberof parameters among the methods, BM and GMM-DS have the same number ofparameters K(1+3n+2n2) yet the value for number of Gaussian K was onsistentlyhigher for BM sine this method began at a max number of Gaussian and mergeddown from there. Finally, the BM method only ensures loal stability of the DS.



3.6. Reprodution of Learned Robot Skills 107Auray Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityGMM-DS 0.75348 0.226-1.660 1930.3 199-8766 101(60-165) No(Loal)BM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Loal)SEDS-Likelihood 0.77215 0.628-1.198 2241.3 648-10290 95(52-156) Yes(Global)SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)Tab. 3.4: Performane omparison of the methods presented in setion 3.5 with aset of sample 2-D motions. BM generates the most aurate estimate, andalso require the more number of parameters among the methods. Theperformane of SEDS-MSE and SEDS-Likelihood is similar.The performane of both SEDS methods, Table 3.3, was omparable, with verysimilar results partiularly for the auray error (ē), and slightly better with SEDS-MSE for the sweep area error (E). The SEDS-MSE method is advantageous inthat it requires fewer parameters than SEDS-Likelihood. However, SEDS-MSE has amore omplex ost funtion, making the algorithm omputationally more expensive[Khansari-Zadeh and Billard, 2011℄. Both SEDS methods outperforms BM in thatthey ensure global asymptoti stability and are apable of better generalizing motionsfor trajetories that are far from the demonstrations. Figure 3.12 shows results ofestimating the 8 sample 2-D motions of Table 3.5 with SEDS-Likelihood method.The motivation for this hapter is to learn and enode the demonstrated motiondynamis in order to build models of the robot skills as needed by the subsequentmodules of the proposed framework in Figure 3.1. The Robot Skills Models are de�nedby the estimate of the motion dynamis, f̂ , as learned by the methods in Setion3.5, desribed in Tables 3.1, 3.2, 3.3. Therefore a robot skill is modelled by theparameters θ of f̂ . We will use the notation M̄RS for a Robot Skill Model, determinedby f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, suh that,
M̄RS = {θ1, · · · , θK} (3.39)where θi = {π, µ,Σ} of the N i Gaussian de�ned by Eq. 3.18, and K is the totalnumber of Gaussian funtions required to estimate the motions dynamis.For the roboti system reprodution of motions, the robot skills in this work areto be represented in the Cartesian oordinate system, the desired output variablesare then positions, veloities and aelerations, in order to ontrol the system inthe operational task spae. From [Gribovskaya and Billard, 2009℄, the task spaetrajetories of the robot's end-e�etor are seleted so that it an be taught to ontrolthe position and orientation of the motion. The variables in the training set werehosen as the translation omponent of a motion of the end-e�etor, a vetor ofCartesian oordinates x ∈ R

3; and the orientation of the end-e�etor, a pair ofvariables {s, φ} representing the axis and the angle of rotation. Aording to thisrepresentation, the orientation of a moving referential {x′y′z′} with respet to a �xed



108 3. Learning Robot Skills Models from Demonstrations.Auray Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MAngle1 0.332 0.737 0.708 1082 1931 1178 135 120 80Sine1 0.804 1.051 0.945 6101 7700 5627 195 90 60Khamesh1 0.371 0.703 0.688 861 969 1021 90 90 60Trapezoid1 0.353 0.698 0.675 575 984 789 180 75 50Ar2 0.328 0.640 0.639 1037 1244 1112 90 75 50Waves4 0.759 0.875 0.887 723 1179 889 300 180 120U-Curve3 0.404 0.655 0.752 264 1825 1741 150 60 405-Curve3 0.509 0.747 0.584 2586 2814 1767 180 75 50Tab. 3.5: Performane Comparison of Learning Methods on Sample Set of 2-D Mo-tions. (1) taken from [Khansari-Zadeh and Billard, 2011℄, (2) taken from[Khansari-Zadeh and Billard, 2010b℄, (3) taken from [Calinon, 2009℄, (4)reorded with MLDemos visualization tool [Basilio, 2013℄.referential {xyz} is desribed by the rotational axis s ∈ R3 and the angle φ ∈ [0; 2π].Internally an inverse kinematis ontroller is available to onvert the end e�etor'sontrol variables to appropriated joint spae motor ommands, θ, ˙theta.Therefore, the estimate f̂ of the DS that it must be learned from the demonstra-tions is,
ẋ = f̂x(x) with ξ = x ∈ R

3 (3.40)for the dynamis of the end-e�etor's position (x). And,
ȯ = f̂o(s, φ) with ξ = [s, φ], s ∈ R

3, φ ∈ [0; 2π] (3.41)for the dynamis of the end-e�etor orientation (o).Alternatively, the state variable ξ an be made to enode the oupled dynamisof the end-e�etor's position and orientation as,
ξ̇ = f̂ξ(ξ) with ξ = [x, s, φ], x ∈ R

3, s ∈ R
3, φ ∈ [0; 2π] (3.42)Then the estimate f̂ of the dynamis an be inferred through the GMR proess,

ξ̇ = f̂(ξ) = E

[

p(ξ̇ | ξ)
]

=
K
∑

k=1

hk(ξ)(Akξ + b
k) where,

x = f̂(x) = E [p(ẋ | x)] =
K
∑

k=1

hk(x)(Akx+ b
k)for ontrolling the position. (3.43a)
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(a) U-Curve (b) 5-CurveFig. 3.12: 8 2-D motions use to ompare the performane of the various methods.The resulting reprodutions orrespond to the SEDS-Likelihood Models.



110 3. Learning Robot Skills Models from Demonstrations.Auray Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityBM 1.1079 0.179-2.258 1965 589-4548 112.5(45-210) Yes(Loal)SEDS-Likelihood 1.8395 0.582-4.920 2024 389-6454 81.25(65-91) Yes(Global)SEDS-MSE 1.7191 0.458-4.316 2989 985-8028 62.5(50-70) Yes(Global)Tab. 3.6: Performane omparison of the methods presented in setion 3.5 with aset of sample 3-D motions. The estimates generated with BM are moreaurate, while also requiring the bigger number of parameters among themethods. Performane of SEDS-Likelihood and SEDS-MSE is very similar,with SEDS-Likelihood outperforming SEDS-MSE in auray estimates,and SEDS-MSE doing better with Swept Area Error.
ȯ = f̂(o) = E [p(ȯ | o)] =

K
∑

k=1

hk(o)(Ako+ b
k)for ontrolling the orientation. (3.43b)

[ẋ, ȯ] = f̂(x, o) = E [p([ẋ, ȯ] | [x, o])]

=

K
∑

k=1

hk([x, o]))(Ak [x, o]) + b
k) for a oupled ontroller. (3.43)as de�ned by Eq. 3.22 and Eq. 3.24.Figure 3.13 and Tables 3.6, 3.7 summarize the results of validating the methodswith 4 sample 3-D motions. The GMM-DS method, was omitted this time from thevalidations sine it does not ensure the stable DS it will not be further employedin this work. The BM method, again, generated the most aurate estimates, pro-duing generally better results than both SEDS versions, although its performanewas not always better for all of the task, see Table 3.7, this ould be beause of badmodelling of the task. Also, just as expeted, the BM method presented the highernumber of parameters among all methods. The performane of both SEDS-MSE andSEDS-Likelihood was very similar with SEDS-MSE performing slightly better for theauray error (ē), and SEDS-Likelihood outperforming SEDS-MSE this time for thesweep area error (E). It must be taken into aount that these results are very taskdependent, and no other true onlusion an be made between these methods exeptthat they are both su�iently adequate for their intended purpose in this work. Fig-ure 3.13 shows the results of estimating the 4 sample 3-D motions of Table 3.7 withthe SEDS-Likelihood method.The assumption was made from Eq. 3.5, that the motions are modelled with a�rst order time-invariant ODE. The proposed DS are generi enough to represent awide variety of motions, however, they would fail to de�ne seond order dynamisaurately. This problem an be solved by de�ning the motion in terms of position,veloity and aeleration [Khansari-Zadeh and Billard, 2011℄. This means solving



3.6. Reprodution of Learned Robot Skills 111Auray Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MiCub-Task1 1.956 4.327 3.869 3112 599 1993 105 91 70Cup-Task2 1.522 1.215 1.248 11200 4758 24708 45 65 50Door-Task3 0.263 1.523 0.923 1989 2796 2684 90 78 60Cap-Task4 2.416 1.267 1.383 791 1064 1973 210 91 70Tab. 3.7: Performane omparison of learning methods on a sample setof 3-D Motions. (1) taken from [Gribovskaya and Billard, 2009℄,(2) taken from [Khansari-Zadeh and Billard, 2010b℄, (3) taken from[Kheddar et al., 2009a℄, (4) reorded with kinaestheti demonstrationswith the robot HOAP-3.Auray Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityBM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Loal)SEDS-Likelihood 0.77215 0.628-1.198 2241.3 648-10290 95(52-156) Yes(Global)SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)Tab. 3.8: Performane omparison of the methods presented in setion 3.5 with aset of sample self-interseting motions.the problem as seond order DS. When onsidering the motions in its seond orderdynamis, that is ẍ = g(x, ẋ), it would be very advantageous if it ould be simpli�edwith a hange of variable into a �rst order ODE,
{

ẋ = v

v̇ = g(x, v)
⇒ [ẋ, v̇] = f(x, v) (3.44)By de�ning the state variable, ξ, as ξ = [x, v] ⇒ ξ̇ = [ẋ, v̇] the Eq. 3.44 simpli�es to

ξ̇ = f(ξ) as in Eq. 3.24 and an be learned following the methods presented in theprevious setion.Figure 3.14 and Tables 3.8, 3.9 summarize the results of validating the methodsby learning the seond order dynamis of a motion. It an be observed from thetrajetories that when enoding the interseting motion with only the �rst orderdynamis reprodution failed to re�et the full demonstrated motion, Figure 3.14.Enoding the seond order dynamis of the motion allows disambiguation of thediretion of the motion when reproduing a self-interseting trajetory.In order for a robot to reprodue a skill a model,MRS, of the estimate f̂(ξ) of themotion dynamis must have been learned beforehand as per the methods presented inthe previous setion. Assuming appropriate models exist the �rst step is to detet atarget objet of the skill, the attrator of the modelled dynamis, in a �global referen-
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(a) Door-Task (b) Cap-TaskFig. 3.13: 4 3-D motions use to ompare the performane of the various methods.The results orrespond to the SEDS-Likelihood Models.
Auray Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MLoop1 4.348 2.741 2.246 5601 1078 3587 90 65 50Letter T 2 3.260 7.211 6.448 3315 1773 2846 155 78 70Tab. 3.9: Performane omparison of learning methods on a sample set of self-interseting motions. (1) taken from [Khansari-Zadeh and Billard, 2010b℄,(2) reorded with MLDemos visualization tool [Basilio, 2013℄.
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Fig. 3.14: 2 self-interseting motions DS use to ompare the performane ofthe various methods. Top trajetory is a loop motion taken from[Khansari-Zadeh and Billard, 2010b℄. Bottom trajetory is a letter T mo-tion reorded with MLDemos visualization tool [Basilio, 2013℄. (left) Theresult of enoding the �rst order dynamis of the motion. (right) The re-sult of enoding the seond order dynamis of the motion as it is presentedin Eq. 3.44.
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Algorithm: On-line reprodution of the learned robot skillInput: Learned Robot Skill Model, MRS , of the estimate ξ̂ of the motion dynamis under-lying the skill.1. Detet a target position in the global referential {xt, yt, zt} : xG.2. Transfer the origin of the task referential frame to the deteted target {xt, yt, zt} :
xT = {0, 0, 0}.3. Reompute the urrent state of the end-e�etor in the target referential ξ∗ =
{x′

e, y
′

e, z
′

e} : xT .4. LOOP until the target position is reahed. t = 0.5. Infer the veloity at the time step t through GMR, Eq. 3.24.
ξ̇(t) =

∑K

k=1
hk(ξ∗)(Akξ∗ + b

k).6. Compute the end-e�etor's state for the next time step, ξ(t+ 1).
ξ(t+ 1) = ξ(t) + ξ̇(t+ 1) · dt.7. Compute the robot motor ommand for the next step,
ξ, ξ̇ 7→ q, q̇, solving the inverse kinematis problem.8. Exeute the robot ommand and sense the new q e�etor position.9. Update the end-e�etor state in the target referential
q 7→ ξ : ξ∗ = {x′

e, y
′

e, z
′

e} : xT .10. ENDOutput: ξ̇(t); ξ(t) = ξ(t− 1) + ξ̇ ∗ dt robot skill trajetory.Tab. 3.10: Proedure for on-line reprodution of the learned robot skills.



3.7. Robot Skills as Basi Primitives of Movement 115tial frame�, {xt, yt, zt} : xG, this ould be from the robot's own viewpoint referentialor any other pereption system referential available for the task. The origin for thetask referene frame is then attahed to the target, {xt, yt, zt} : xT = {0, 0, 0}. There-fore, the robot skill motion is ontrolled with respet to this frame of referene, witha target attrator at the origin as in the formulation of Eq. 3.5. This representationalso makes that the parameters of the DS invariant to hanges in the target position.Subsequently, the urrent state of the end-e�etor, {xe, ye, ze} : xG, is reomputed inthe referential frame of the target, ξ∗ = {x′e, y
′
e, z

′
e} : xT . The trajetories of the repro-dued motion are governed by the modelled dynamis, progressing from the urrentstate, ξ∗, towards the attrator point of the DS loated at the origin of the targetreferential frame, xT = {0, 0, 0} , aording to the estimated attrator landsape ofthe learned DS, see Figures 3.12 and 3.13. At every step, the end-e�etor's nextstate, ξ∗+1, is inferred by sampling from the GMR, to obtain ξ̇ : ξ∗+1 = ξ∗ + ξ̇ · dt,this is repeated suessively until the target is reahed. The robot reprodution ofthe trajetories of the learned motion dynamis an be omputed on-line through theGMR of the modelled robot skill. The proess for on-line reprodution of the learnedmotion dynamis is summarized in Table 3.10.3.7 Robot Skills as Basi Primitives of MovementA desirable appliation for the learned Robot Skill Models is the building of alibrary of so alled movement primitives that an be readily available for later reuseby the robot when a situation required it to.For motion ontrol in robotis di�erent motor behaviours an be seen as di�er-ent ontrol poliies, representing di�erent ations. It is desired to have methodsfor representing human movement ompatly in terms of a linear superimposition ofsimpler movements, whih are termed primitives. The motor primitives, also alled,movement primitives, basi behaviours, units of ations, et., are sequenes of a-tions that an aomplish a ertain movement goal [Shaal, 1999℄. Movement prim-itives are biologial strutures that organize the underlying mehanism of ompletemovements [Fod et al., 2000℄. An approah based on movement primitives relies onpossessing available sequenes of motor ommands, exeuted in a ertain order, toaomplish a given motor task. The movement primitives an be viewed as a basiset of motor programs that are su�ient for generating entire movement repertoires[Muelling et al., 2013℄.A starting point for this approah is in the assumption that omplex movementskills are omposed from smaller units of ation. The established belief is that humanativity is deomposed into building bloks of elementary ations. There are manytheories whih propose human motion being divided into their elementary trajetories[Fod et al., 2000℄.Dealing with these issues leads to faing the problems of segmentation and las-si�ation of human motion. The work of [Vehio, 2002℄ deals with deomposingontinuous trajetories of the human body into their omponents, whih are alled`movemes', and aims to build a so alled �alphabet of movemes� to represent and



116 3. Learning Robot Skills Models from Demonstrations.desribe human motion similar to the way phonemes are used in speeh. The un-derlying idea for a roboti system to ope with the omplexity of repliating humanmotor skills is for the learned, demonstrated movements to be �rst segmented intosub-goals from whih appropriate primitives an be obtained.Movement primitives in their most simple form an be thought of as simple as theelementary ations in the symboli approah to imitation, with simple point-to-pointmovements employed by industrial robots [Shaal, 1999℄. Learning motions of suh alow-level of representation failed to sale well to systems with many degrees of free-dom. Movement primitives would bene�t from oding omplete temporal behaviours,that result in state-ation representation that are ompat and whih need to adjustonly a few parameters for a spei� goal [Shaal, 1999℄. Learning the Robot SkillsModels as in setion 3.6 an be a most suitable way of forming basi primitives ofmovement, enoding within the model the motion dynamis of a demonstrated skill.Learning suh basi units of ation has long been thought useful for generatinglibraries of motor skills. A roboti system equipped with a library of movement primi-tives with a su�ient number of skills an be thought of possessing an adequate reper-toire of ations to deal with a vast range of situations. Also, it is generally regardedthat omplex motions an be dealt with by building a library of movement primitives[Pastor et al., 2009℄, providing basi omponents from whih multiple desired robottasks an be performed by ombination and superposition of the primitives.From leading views of motor ontrol in neurobiology it is generally regarded thathumans do employ basi motor primitives as an underlying mehanism of biologialmotor ontrol. Evidene exists from human and animal experiments supporting thebelief that sets of motor primitives are used to build a basis for voluntary motor ontrol[Konzak, 2005℄. It is well aepted in these approahes that for oping with theomplexity of motor skills learning for robots, it is neessary to rely on the insight thathumans deompose motor skills into smaller subtasks. There are many theories aboutmotor primitives whih suggest that they are a viable means for enoding humanoidmovement. Primitives are fundamental building bloks of motor ontrol determiningan e�etive basis set of primitives is therefore a di�ult problem [Fod et al., 2000℄.Motor ontroller omponents of the movement primitives may be manually derivedor learned. It is important that the representations used for extrating units of ationsalso relate to the movement generation [Meier et al., 2011℄. The primitives must beharaterized in parametri form to allow generalization and their appliability todi�erent senarios. Adequate representations are needed for the movement primitives,in order to build a library of skills.The work of [Ijspeert et al., 2003℄ was the �rst to suggest the idea of using DSas motor primitives. Their approah employed the DMP to learn and enode thedynamis of demonstrated motions. The ontrol poliies ould be used to representbasi movements that form a library of motions. De�ning the primitives in terms ofausal dynamial systems allows then to be parametrized by a small set of dynamialparameters and an input driving the overall dynamis [Vehio, 2002℄.Various examples an be found to represent movement primitives suh as thatrepertoires of motions that an be built from learned motion tasks. [Ude et al., 2007℄presents a framework for synthesizing goal-direted ations from a library of example



3.7. Robot Skills as Basi Primitives of Movement 117movements; di�erent methods an be utilized for the onstrution of these movementlibraries. [Zoliner et al., 2005b℄ deals with the integration of learned manipulationtasks into a knowledge base as well as enabling the system to reason and reorga-nize the gathered knowledge in terms of re-usability, salability and explainability oflearned skills and tasks. In [Pastor et al., 2009℄ a olletion of dynami movementprimitives is used to build a library of movements by labelling eah reorded move-ment aording to task and ontext. [Vehio, 2002℄ proposed understanding humanmotion by deomposing it into a sequene of elementary building bloks that belongto a known alphabet of dynamial systems, whih an be omposed to represent anddesribe human motions and shown dynamial harateristis whih are su�ient todistinguish between them. [Muelling et al., 2013℄ reated a movement library fromImitation Learning ; movements stored in the library an be seleted and generalizedusing a mixture of primitives algorithm. [Fod et al., 2000℄ presented a method usedto derive a set of pereptual-motor primitives diretly from movement data. Theprimitives an be used as a lower-dimensional spae for representing movement.A di�ult problem remains in these approahes in the segmenting of omplexmovements and lassi�ation of the movement primitives. [Meier et al., 2011℄ ap-proah aimed at movement segmentation with simultaneous movement reognition,assuming that a library of movement primitives already existed, and redued thesegmentation problem to online movement reognition.The ability to imitate is based on a mapping mehanism whih an automati-ally lassify all observed movements onto their set of pereptual-motor primitives[Fod et al., 2000℄. Building systems that an detet and reognize human ation arean important goal. Thus segmentation and lassi�ation beome key interrelated pro-esses of movement interpretation. The segmentation problem an be divided intothree sub problems, �rst determining the number of segments, then estimating thestart and end time of eah segment and reognizing whih primitive from the libraryis exeuted in eah segment [Meier et al., 2011℄. Understanding motor behaviour be-omes a proess of lassifying the observed movements into the known olletion ofmovement primitives [Fod et al., 2000℄.Distinguishing between general lasses of motor skills is useful. [Vehio, 2002℄ se-lets between �reah� and �drawing� motions. The work of [Shaal and Atkeson, 2010℄makes a lassi�ation along �regulator� tasks whih keep the system over a point ofoperation. �Traking� task ontrol systems to follow a given desired trajetory. �One-shot� tasks de�ned by ahieving a partiular goal. And �periodi� movement tasks.A omplex movement would be omposed of sequening and superimposing of thesesimpler motor skills.[Ijspeert et al., 2002℄ showed that trajetories with similar veloity pro�les �t sim-ilar enoding parameters and proposed to use the learned ontrol poliies to lassifymovements, omputing the orrelation between them. The goal is to build a baseof robot skills learned from the demonstrations and to selet and generalize amongthese skills to adapt to new situations. A robot skill ould be ategorized aordingto its veloities and aeleration pro�les and the orrelation between its variablesinto several ategories, suh as reahing movements, striking or hitting movements,traing or drawing movements and oordinated and unoordinated movements.



118 3. Learning Robot Skills Models from Demonstrations.3.8 Summary of the ChapterThroughout this hapter a review of the �eld of Learning from Demonstration(LfD) has been presented along with the proess and methods used for learning andenoding the models of the robot skills. In setion 3.2 basi notions of LfD werepresented. Setion 3.3 reviewed methodologies for gathering demonstrations and theorrespondene problem. Various tehniques for teahing and building the demon-stration datasets were presented, suh as kinaestheti teahing, visual demonstrations,motion apturing systems for reording demonstrations and the generation of robottrajetories with virtual reality or simulated environments. The framework employedthrough this work to learn robot skill motions from demonstrations was introduedin setion 3.4. The approah is based on learning time independent models of themotion dynamis, estimated through a set of �rst order non-linear multivariate dy-namial systems. Setion 3.5 presented the formalization of the learning problem, areview of various regression tehniques was presented. Also, three algorithms to learnthe dynamis of demonstrated motions were introdued. A �rst approah to learningmultivariate Gaussian was developed. This original formulation ould not guaranteethe learning of a stable estimate of the dynamis. The BM method was presentednext, this method ould produe a model of DS with loal asymptoti stability at thetarget. Finally the SEDS method was reviewed with two objetives funtions, SEDS-likelihood and SEDS-MSE. The SEDS formulation to learn the underlying dynamisof a motion an guarantee that the estimate of the dynamis is globally asymptotiallystable at the target. Setion 3.6 reviewed the methodologies used for the reprodutionof the learned motions dynamis of the robot skills. Comparing the performane of themethods presented in setion 3.5. Validation was performed by learning the estimatesof 8 2-D motions and 4 3-D motions. The performane of the methods was omparedaross the demonstrated motions, the results are presented over Tables 3.4 to 3.9.Setion 3.7 disussed the existing approahes for building libraries of basi movementprimitives with the learned robot skills. A library of robot skills an be built withthe learned models of motion dynamis in order to build an appropriate repertoireof movements for a robot to perform in several situations. In this work a modulewas suessfully implemented allowing the robot to learn skills from demonstrations,we employed three di�erent modalities to teah a robot the skill motions, reordingthe robot's trajetories as manipulated by a teaher with kinaestheti teahing, em-ploying vision system to trak the teaher demonstrations, and reording the robottrajetories in an OpenRAVE simulated environment. After studying, omparing,and implementing various algorithms and tehniques a Dynamial System approah,based on learning time independent models of the motion dynamis through a setof �rst order non-linear multivariate dynamial systems, was hoose in this thesisto learn the robot skills employing the SEDS-likelihood method for the remainingexperiments presented in this work.



4. REPRESENTATION OF ROBOTSKILLS KNOWLEDGE4.1 Outline of the ChapterThis Chapter desribes the development of a knowledge base for the storing andretrieval of the learned models of the skills. For a roboti system to perform di�erentskills and tasks in a hanging and unstrutured senario, it is important to develop aframework in whih to organize the aquired knowledge in a manner that allows itsretrieval in order to use it to deal with the urrent ontext onstraints. An importantaspet of the framework developed in this work is the existene of a knowledge base ofthe learned robot skills. Figure 4.1 shows the framework proposed through this workfor the adaptation of learned skills to task onstraints, highlighting the knowledgebase for robot skills model disussed in this hapter. To introdue the ontents ofthis hapter, �rst a review of the basi notions and onepts of knowledge represen-tation and reasoning is given; a review of di�erent approahes with a similar aim ofbuilding repertoires of basi motor skills is given next; the representational strutureand organization of the knowledge base is presented; the representations used in theknowledge base for the storing of the robot skills and the proess for searhing theknowledge base are also desribed. The organization of this hapter is as follows:
• Setion 4.2, presents an introdution to the topi of knowledge. The basinotions and onepts in the �eld of knowledge representation and reasoning arereviewed.
• Setion 4.3, presents a review of similar approahes aimed at building repertoiresof basi units of ation, also known as movement primitives, whih an representa basi set of elementary robot motor skills.
• Setion 4.4, presents approahes for the representation of the objet's knowledgein a robot skill's knowledge base.
• Setion 4.5, presents approahes for the representation of the ation's knowledgein a robot skill's knowledge base.
• Setion 4.6, presents approahes for the representation of the event's knowledgein a robot skill's knowledge base.
• Setion 4.7, presents the developed representational struture of the robot skill'sknowledge base.
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Fig. 4.1: Module for representation of learned models of skills in a knowledge base,highlighted over the proposed ognitive framework for learning and adapta-tion of robot skills in ompliane with task onstraints. A knowledge baseof the learned Robot Skills Models is built for their storage, lassi�ationand retrieval.4.2 Knowledge Representation and ReasoningAn important hallenge for robotis, and partiularly for robots ating in un-strutured dynami environments, whih is a requirement for humanoid robots, is indealing with internal representation and understanding the world. Cognitive sieneapproahes aim at understanding, also with the hope of repliating, the proesses ofhuman intelligene, and the workings of the mind, with an emphasis on, the mentalrepresentations and mental operations involved in the development of thought andintelligent behaviour. A entral point for the development of ognitive theories lies instudying the nature of knowledge; understanding the mehanism by whih knowledgeis aquired, stored, represented and operated upon in a way that generates intelli-gent thinking and behaviour. The �eld of philosophy has historially tried to explainthe roots and essenes of knowledge. One position, rationalism, supported by thephilosophers Desartes, Spinoza, and Leibniz, among others, believed that knowledgean be gained solely by employing thinking and reasoning skills about things. Inontrast, empiriism, defended by Loke, Hume, among others, believes that knowl-edge is aquired primarily from sensory experiene [Russell, 2012℄. Transendentalidealism, founded by Kant, and ontinued by Shopenhauer, and others, tried to re-onile the di�erenes between rationalism and empiriism views, arguing that humanknowledge, and our understanding of the external world depend on not merely ourexperiene, but in both sensed experiene and a priori onepts, innate to the mind



4.2. Knowledge Representation and Reasoning 121[Deleuze, 1985℄. Experimental psyhology theories of behaviourism, suh as thoseof J.B. Watson, denied the mind, and suggested restriting themselves to examin-ing the relationship between pereived stimulus and observed behavioural responses[Baum, 2003℄. The onstrutivism view in philosophy, de�ned as a term by Jean Pi-aget, whose ideas ould be traed bak to Giambattista Vio, and others, states thatonepts are mental onstruts proposed in order to explain sensory experiene, andthat all knowledge is a ompilation of human-made onstrutions, reated through aseries of individual onstruts [Rokmore, 2005℄.The most agreed view by ognitive sientists is that knowledge in the mind on-sists of mental representations, and that intelligent behaviour and thought are theresultant produts of manipulating, reasoning and operating upon these internal rep-resentations. People, states the view of ognitive sienes, have mental proedures op-erating on mental representations that produe thought and ation [Thagard, 2005℄.Muh of the debate in the �eld is entred upon the lass and nature of these knowledgerepresentations, on the representational mehanisms for aquisition, organization, andutilization of knowledge, and on whether the internal representations are even neededat all or another if paradigm is required. All through history, philosophers, psyhol-ogists, and other sientists, have formulated a variety of metaphors for the mind;for example, omparing it to a blank slate, `tabula rasa', starting empty, withoutany mental ontent or knowledge built into it, and on whih impressions are madereording knowledge from experiene and pereption. Other omparisons involve theanalogy to a hydrauli devie, with various fores operating on it, governing theenergy �ows whih ontrol behaviours; and to the operations of a telephone swith-board, with an interommuniating network of ells, involving omplex swithing ofinformation, responding to sensations, pereptions, thoughts, et., [Thagard, 2005℄.Currently, the dominant analogy in ognitive sienes has been omparing themind and the brain to omputers, where thinking an be understood as omputa-tional proedures. This metaphor assumes that the mind has mental representationsanalogous to data strutures in a omputer program, and omputational proeduressimilar to programmed algorithms [Thagard, 2005℄. Other theories have also arisento hallenge the major premise of the omputational-representational understandingof mind (CRUM) thesis as the most suitable one for ognition. Connetionist modelsproposed novel ideas expanding theoretial frames of ognitive siene about repre-sentation and omputation that use neurons and their onnetions. The onnetionistanalogy is that mental phenomena an be desribed by interonneted networks ofsimple and often uniform units. Where neuron patterns and network onnetions anbe ompared to data strutures, and neuron �ring and spread ativation is analogousfor algorithms [Thagard, 2005℄. Reent approahes in ognitive siene have taken agrowing interest in dynamial systems. The dynamial systems metaphor promotesthinking about the underlying fores, vetor �elds, from whih observed patterns ofbehaviours emerge [Shöner, 2008℄. In this view, the brain is thought of as a dynamiphysial system and the proesses in the mind an be desribed by di�erene anddi�erential equations. The driving idea motivating the dynamial systems approahis that ognitive proesses, ontrary to the omputational hypothesis of disrete rep-resentational operations, must unfold ontinuously and simultaneously in real time.



122 4. Representation of Robot Skills KnowledgeTherefore, a ognitive system would not be a sequential manipulation of disretestati representational strutures, but rather, a struture of mutually and simulta-neously in�uening hange [van Gelder and Port, 1995℄. The agents' behaviour, inits full omplexity, an �nally be generated from the omplex dynamial evolutionof stable states and their instabilities in an interlinked non-linear dynamial system[Shöner, 2008℄. The systems internal representations may be modelled, thereafter,not as simple inner states but as dynamial patterns of just about any oneivablekind [Clark, 2004℄.Traditional ommitment of ognitive sienes to a omputational-representationalview of the mind, that is a view of intelligene as a problem of symbol manipulation,faed inreasing hallenges and septiism. These hallenges have been expliitlystated in works of [van Gelder, 1995℄, [Thelen and Smith, 2007℄, [Wheeler et al., 1994℄,[Haselager et al., 2003℄, et. Theirs is a hallenge to the isolationist oneption of themind, and o�er a rather radial rejetion of representations. Their thesis is basedon the idea that the symboli omputational-representational views of ognition aremistaken, and that ognitive agents do not require use of internal representationto at upon the world. The anti-representationalists laim is that omputations ofstati symboli internal representations form an inadequate analogy to explain theontinuous dynamially omplex patterns of behaviour that ognitive agents display;moreover, that internal representational mehanisms are not readily employed in na-ture in biologial ognition. Many researhers have looked for approahes trying toompletely disregard the use of representations and internal models as a whole. Thesee�orts are best summarized by the behaviourist radial mantra of �the world is itsown best model" [Brooks, 1990℄.The view of the proponents of this hypothesis is that the representational ap-proah is inapable of produing timely, suitable ognitive responses. The ontologialommitment inurred by asribing to a knowledge representation [Davis et al., 1993℄,an be seen as detrimental and ounterprodutive for developing intelligent physialagents. [Clark, 1997℄, addresses these hallenges, and argues in favour of a�ordingomplementary approahes for adaptive suess, instead of thinking in terms of om-peting perspetives. Here it is established, as a minimal ommon ground betweenrepresentationalist and anti-representationalist, that omplex persisting inner statesare at the heart of ognitive phenomena, and that is not neessarily required a re-vision of the notion of internal representations, but rather a revision of the ideas onthe kinds of inner states and proesses whih an possibly serve as vehiles of suhrepresentations. The ritial distintion is not between representational and non-representational solutions but among an ation-neutral form of internal representa-tion, requiring disembodied symboli omputational proessing, and ation-orientedforms, in whih a behavioural response is embedded into the representation itself[Clark, 2004℄. The all is to beware of approahes relying only in intelligene on thehead, and narrow representational ontents, and rather, to take a harder look at tem-porally extended proess that span brain, body and world. The major ontributionof these hallenges is for a general broadening of ognitive siene from its histor-ially narrow fous on disembodied, language-like reasoning towards approahes ofembodied, embedded, situated, ation and ognition [Beer, 2000℄.



4.2. Knowledge Representation and Reasoning 123The theories of embodied ognition underlined that ognition is onstrained by thekind of body we possess, and emphasized the importane of ation grounding, and therole played by bodily states [Borghi and Cimatti, 2010℄. The fous in an embodied,embedded, approah, is in examining possibilities for ation provided by the bodyand the environment. A neessary emphasis is plaed on the lose link of ognitionwith the sensory and motor proesses and the environments in whih these are im-mersed. Models of ognition must be embodied proesses that apture the unfoldingof ognition in time, and the assoiated sensory and motor surfaes embedded in theenvironment in whih ognitive phenomena takes plae [Shöner, 2008℄. Therefore,an agent's potential for ognition is bounded to the motor apabilities of its body,dependent upon its physial harateristis and abilities, and its situatedness andpossibilities of interation with the environment. The laim is not an outright reje-tion of the legitimay of representations, however in order to be valid, for embeddedognition, the representations are to be limited, physially grounded to the environ-ment and oriented toward the spei� needs of the given agent [Anderson, 2003℄. It islear that, despite the many hallenges, some form of reasoning and representation ofknowledge mehanism must be featured in a ognitive agent to produe the intelligentand adaptable behaviour that are desired.The omputational-representational, onnetionist and dynamial systems theo-ries of ognition mentioned earlier, beyond their di�erenes in formalism and the teh-nologies employed, di�er markedly in their theoretial voabulary and explanation onognitive phenomena [Beer, 2000℄. However, while there is a substantial di�erenebetween the presented aounts of ognition, this does not render the approahesinompatible; they an be omplementary [Behtel, 1998℄.The omputational theory is based on the existene of mental representations,and the presene in the mind of �algorithmi� proesses that operate upon the rep-resentations; behaviours are produed by applying proesses to the representations[Thagard, 2005℄. The explanatory fous of the symboli omputational model is solelyon the struture and ontent of the representations and the nature and e�ieny ofthe algorithms [Beer, 2000℄. Various kinds of representation an be onsidered, suhas rules, onepts, analogies, frames, images, et.Connetionist theory is expressed as layered networks and simple, neuron-like,nodes and links. The onnetionist approah employs a more impliit style of repre-sentation, replaing the symboli nature of omputational approah with numerialvetors and operations of vetors ompletion and transformation [Clark, 1997℄. Here,representations involve simple proessing units onneted to eah other and proessesspread ativations between the units via their onnetions, whih produes the be-haviour [Thagard, 2005℄. In a onnetionist theory the fous of explanation is onthe network arhiteture, the learning algorithm, and the intermediate distributedrepresentations that are developed [Beer, 2000℄.The dynamial systems theory onveys a very di�erent format than other ogni-tive theories. A dynamial model is expressed as a set of di�erential or di�ereneequations, desribing system state hanges over time. This fous on system evo-lution and hange over time is an important ontribution of the dynamial systemapproah [Behtel, 1998℄. Dynamial system parameters, attrators, trajetories, bi-



124 4. Representation of Robot Skills Knowledgefurations, et., an be regarded with a representational status, storing knowledgewhih an in�uene behaviour [van Gelder and Port, 1995℄. Here, thought an bedesribed by variables governed by a set of non-linear di�erene equations, theseequations state spae and the nature of the systems dynamis an explain stable pat-terns of behaviours, phase transitions, or the appearane of unpreditable behaviours[Thagard, 2005℄. The explanatory fous of the dynamial systems theory is thus onthe spae of possible trajetories and the internal and external fores that at overthe trajetory unfolding over time, and not on the nature of the mehanisms thatinstantiate the dynamis [Beer, 2000℄.Deisions about how to at are made, for a wide range of ativities, based onwhat is known about the world. Intelligent behaviour is thus, learly onditionedby knowledge [Brahman and Levesque, 2004℄. The �eld of knowledge representationand reasoning is a part of arti�ial intelligene onerned with the mehanism of howan agent an use what it knows to deide what to do. Knowledge representationdeals with how knowledge an be represented and manipulated in an automated way.The goal of knowledge representation and reasoning is the study of how knowledgean be, simultaneously, represented as omprehensively as possible and reasoned withas e�etively as possible [Brahman and Levesque, 2004℄. The most important issuesrelated to an agent's needs in order to behave intelligently and to the omputationalmehanism whih may allow for knowledge to be readily available to an agent asrequired. In knowledge representation and reasoning one's fous is on the symbolistrutures for representing knowledge and the omputational proess for reasoningwith those strutures that must be reated. In dealing with the topi of knowledgewhen building intelligent systems, the problems of representation and reasoning mustalways be taken together. It is not su�ient to state what needs to be known, inwhatever formal representational language, and it is not su�ient either to developreasoning proedures, whih are e�etive for various tasks. There is a neessary trade-o� between these two onerns; and it neessary to take into aount the needs thatreasoning with knowledge strutures has on the form of languages used to representknowledge. It is the interplay between representation and reasoning whih makes the�eld relevant [Brahman and Levesque, 2004℄.To understand the onepts of knowledge representation [Davis et al., 1993℄ pro-poses to review its meaning in terms of the �ve fundamental roles it plays. Theseroles provide a framework useful for haraterizing a wide variety of representationsand knowledge representation tehnologies; that is, basi representation tools suhas logi, rules, frames, semanti nets, et., whih are used to build knowledge rep-resentations. For representations the fundamental task is apturing the omplexityof the natural world. It must form an ontologial ommitment and provide a theoryof intelligent reasoning. Representation and reasoning are inextriably intertwined.A knowledge representation is also a medium for pragmatially e�ient omputationand of human expression [Davis et al., 1993℄. Those �ve roles help to haraterize thespirit of the representations and representation tehnologies that are developed.All representations funtion as surrogates for abstrat notions, suh as, ations,proesses, beliefs, ausality, ategories, et., allowing for a desription of them tobe available so they an be reasoned with. However, every representation would



4.2. Knowledge Representation and Reasoning 125ultimately be an imperfet approximation to reality, attending to some things andignoring others, sine a omplete desription of the world would not be possible oreven pratial or desirable. By hoosing a representation and representation tehnol-ogy a set of deisions are made about what and how to see the world. The stanesa representation takes on these issues and its rationale for those stanes are india-tors of what the representation says about how to view and reason about the world[Davis et al., 1993℄.The representation tehnologies, logi, rules, frames, et., embody a viewpointof the kinds of things that are important in the world. For example, logi involvesviewing the world in terms of individual entities and the relationships between them.Rules view the world in terms of attribute-objet-value triples and the rules of plausi-ble inferene that onnet them. Frames view in terms of prototypial objets. Thus,the ommitment to a partiular view of the world begins with the seletion of a rep-resentation tehnology. The seletion has a signi�ant impat on the pereption ofthe world and the task being modelled. Thus, existing representation tehnologieswould supply its set of guesses about what to attend to and what to ignore in theworld. Choosing among any of them means more than the seletion of a represen-tation, in it a oneption of the nature of intelligent reasoning is also being made[Davis et al., 1993℄. The seleted representation would have inevitable onsequeneson how one sees and reasons about the world, so it must be seleted onsiously andarefully, trying to �nd one that is appropriate for the task. While the seletion oftools and tehniques are important, however, the �eld of knowledge representationis also muh riher than that. It must be the entral preoupation of the �eld tounderstand and desribe the rihness of the world [Davis et al., 1993℄.The fundamental ommitment for representations is as tools for desribing thenatural world; their main role being working as a stand-in for real entities, substi-tuting them for diret world interation. The representations onvey the gatheredknowledge ontent, and funtion as stand-ins for the things that exist in the realworld. Representations thus perform as funtional abstrations of the pereived en-vironment, enoding an agent's knowledge of its world, objets, ations and eventsinto manageable internal strutures; allowing for it to work, and reason, over therepresentations instead of ating diretly upon the world. Sine reasoning is an in-ternal proess, while the things it needs to reason about exist externally, this fun-tional abstration is important. The representations are strutures standing in forsomething else outside the system, by virtue of relations suh as similarity, asualhistory, and onnetions with other representations [Thagard, 2005℄. An agent sys-tem, having useful representations, an therefore operate on them, abstrating itselfbeyond the world. A representation is a relationship between the two domains, aninner self and an external world, where the �rst is meant to take the plae of theseond [Brahman and Levesque, 2004℄. This notion of representations, as proxiesof the world and bridging interation with the environment, is a vehile of humanthought. Performing operations with the representation is a substitute for operatingwith real things, that is, a substitute for diret interation with the world. The roleof representations as surrogates for the world leads to two important questions oforrespondene and �delity. There must be some form of orrespondene between



126 4. Representation of Robot Skills Knowledgeits surrogates and its intended referents in the real world. Seond is the problem ofhow lose a surrogate an be to the real thing. A perfet �delity would be, bothin pratie as in priniple, impossible to obtain [Davis et al., 1993℄. The imperfetsurrogates also leads inevitably to having inorret inferenes. Independent of thereasoning and representation tehnologies employed, every su�iently broad attemptat reasoning about the world will eventually reah inorret onlusions. Therefore,the importane of the seletion of a good representation is in minimizing the error forthe spei� task [Davis et al., 1993℄.As already mentioned above, hoosing a representation involves making a set ofdeisions about how to see the world, and making a set of ontologial ommitmentsabout what part of the world to fous on. This is useful beause the judiious sele-tions of ommitments provides the opportunity to fous attention on aspets of theworld believed to be relevant [Davis et al., 1993℄. The natural world o�ers an over-whelming omplexity, the ommitments inurred by the representational stane o�ersneessary guidane in deiding the parts of the world to attend to and the ones toignore. By determining what and how to see the world, the representations allow oneto ope with what ould be otherwise untenable omplexity and detail. The ommit-ment that is made by hoosing from di�erent ontologies an produe sharply di�erentviews of the task at hand. An ontology an be written down in a wide variety oflanguages and tools. The ommitment to a partiular view of the world, thus, startsin the seletion of a representation tehnology and aumulates from there as hoiesare made about how to see the world in these terms [Davis et al., 1993℄.To use a representation, omputations must be made with it. Reasoning in purelymehanist terms an be seen as a omputational proess. Questions about the om-putational e�ieny are entral to the notions of representation, but one an alsonot be overly onerned with them to the point of produing representations thatare fast but inadequate for real use [Davis et al., 1993℄. Knowledge representationsmust also be means for ommuniation in whih to express things about the world.The representations must ful�l the role of medium for expression and ommuniation.This role matters sine one must be able to speak the language, with heroi e�orts,in order to use it to ommuniate with the reasoning system [Davis et al., 1993℄.A representation an guide and failitate reasoning if it has at its heart a theoryof what reasoning to do. Representation and reasoning are inextriably and usefullyintertwined, in this view, reasoning itself is in part a surrogate for ation in the world.A knowledge representation is also a theory of intelligent reasoning. A representationan be examined in three omponents, �rst its oneption of intelligent inferene. Theseond omponent of a representation theory of intelligent reasoning is the set of san-tioned inferenes. Thirdly, more than an indiation of whih inferenes an legallybe made is needed; an indiation of whih inferenes are appropriate is also needed.Where the ontologial ommitment tells one how to see, the reommended inferenessuggest how to reason [Davis et al., 1993℄. The onept of reasoning is as disputedas those of representation, knowledge and intelligene, olleting inputs from various�elds. Realled by [Davis et al., 1993℄, the mathematial logi view is that, reasoningis a variety of formal alulation. The view in psyhology sees reasoning as a hara-teristi human behaviour, symbolized by human problem solving. An approah rooted



4.3. Developing a Repertoire of Robot Skills Knowledge 127in biology takes the view that the key to reasoning is in stimulus-response behavioursemerging from the parallel interonnetion of simple proessors. Approahes derivedfrom probability theory, add to logi the notion of unertainty, in whih reasoningintelligently means obeying the axioms of probability theory. Reasoning is the for-mal manipulation of the represented olletion of believed propositions in suh a wayas to onstrut representations of new propositions [Brahman and Levesque, 2004℄.Di�erent oneptions of the nature of intelligent reasoning lead to di�erent goals andde�nitions of suess, and di�erent artifats being reated [Davis et al., 1993℄.Knowledge representation hypothesis implies that we would want to build systemsfor whih the intentional stane is grounded by design in symboli representations.A knowledge base is a olletion of symboli strutures representing what it believesand reasons with during the operation of the system. A knowledge base system anbe understood at two di�erent levels. At the knowledge level, questions onern therepresentation language and its semantis. It deals with expressing adequay of arepresentation language and harateristis of entailments, inluding omputationalomplexity. At the symbol level, questions onern the omputational arhitetureand the properties of the data strutures and reasoning proedures, inluding theiralgorithmi omplexity [Brahman and Levesque, 2004℄. Broader oneption of repre-sentations are important, reognizing that a representation embeds a theory of intelli-gent reasoning, the ability to disset some of the arguments about formal equivaleneof representations, and that the entral task of knowledge representation is aptur-ing the omplexity of the real world [Davis et al., 1993℄. Human problem solvingdepends on what is important and interesting given the situation. A human expertlearns to reognize and to reat, they do not think and reason, as a knowledge basesystem would do, over an expliit representation. [Dreyfus et al., 2000℄ would de-sribe the di�erene in terms of �knowing-that� and �knowing-how�. �Knowing-that�is a onsious, step-by-step problem solving ability, with ontext free symbols, whihwe manipulate using logi and language. �Knowing-how� is the natural way one dealswith things, when we just know what to do, and learn to subonsiously, reognize asituation and reat. It generally makes a system slow down having to look up fats ina knowledge base and reason with them at runtime in order to deide what ations totake. The ability to make behaviours whih depend on expliitly represented knowl-edge only seems to pay o� when it is not possible to speify in advane the ways thatknowledge will be used [Brahman and Levesque, 2004℄.4.3 Developing a Repertoire of Robot Skills KnowledgeThe main goal for humanoid robotis researh is to build human like robots thatan work alongside humans dealing with ontinuously hanging environments andperforming a wide variability of tasks. To ahieve a omplex behaviour suh as this,it would be neessary to have an inlusive and omprehensive repertoire of robotskills. For this purpose the onept of movement primitives, also alled movementshemas, basi behaviours, or units of ations, is prolaimed. Movement primitives aresequenes of ation that aomplish a omplete goal-direted behaviour [Shaal, 1999℄,



128 4. Representation of Robot Skills Knowledgeas it has been reviewed in Setion 3.7.From the �eld of neurobiology it is generally regarded that humans employ basimotor primitives as an underlying mehanism of biologial motor ontrol. Evideneexists from human and animal experiments supporting the belief that sets of mo-tor primitives are used to build a basis for voluntary motor ontrol [Konzak, 2005℄.Neurosiene studies in animals point to two neural strutures, spinal �elds and mir-ror neurons, whih support the basis for a theory of pereptual-motor primitives[Matari, 2000℄. It is well aepted in these approahes, that for oping with theomplexity of motor skills learning for robots, it is needed to rely on the insight thathumans deompose motor skills into smaller subtasks. There are many theories aboutmotor primitives whih suggest that they are viable means for enoding humanoids'movements.The movement primitives are sequenes of ation that aomplish a ertain move-ment goal. The primitives enode groups or lasses of stereotypial movements[Matari, 2000℄. Movement primitives in their most simple form an be thought of assimple as the elementary ations in the symboli approah to imitation, with simplepoint-to-point movements employed by industrial robots [Shaal, 1999℄. To deal withomplex motions, a library of movement primitives an be built [Pastor et al., 2009℄,providing basi omponents from whih multiple desired robot tasks an be performedby ombination and superposition of the primitives. A roboti system equipped witha library of movement primitives, with a su�ient number of skills, an be thought ofas possessing an adequate repertoire of ations to deal with a vast range of situations.A theory of primitives is a fundamental building blok for motor ontrol.Learning the Robot Skills Models as they were presented in Setion 3.6 an be amost suitable way to form basi primitives of movement, enoding within the modelthe motion dynamis of a demonstrated skill. Suh olletions of primitives are usedto build a knowledge base from the learned motions of a task. Various examples an befound on building up a knowledge base from learned motion tasks. [Ude et al., 2007℄presents a framework for synthesizing goal-direted ations from a library of examplemovements; di�erent methods an be utilized for the onstrution of this movementslibrary. [Zoliner et al., 2005b℄ deals with the integration of learned manipulation tasksinto a knowledge base as well as enabling the system to reason and reorganize the gath-ered knowledge in terms of the re-usability, salability and explainability of learnedskills and tasks. In [Pastor et al., 2009℄ a olletion of dynami movement primitivesis used to build a library of movements by labelling eah reorded movement aordingto task and ontext.The work of [Ijspeert et al., 2003℄ was �rst to suggest the idea of using DS asmotor primitives. Their approah employed the DMP to learn and enode the dy-namis of demonstrated motions. The ontrol poliies ould be used to represent basimovements that form a library of motions. De�ning the primitives in term of ausaldynamial systems allows then to be parametrized by a small set of dynamial pa-rameters and an input driving the overall dynamis. [Shaal et al., 2003℄, presents aoneptual imitation learning system whih alludes to the onept of movement prim-itives to generate ation behaviours. Pereptual elements are transformed into spatialand objet information and are mapped onto a set of existing primitives, where a set



4.3. Developing a Repertoire of Robot Skills Knowledge 129of movement primitives ompete for a demonstrated behaviour. Motor ommandsare generated from input of the most appropriate primitive. Learning an adjustboth movement primitives and the motor- ommand generator [Shaal et al., 2003℄.E�etiveness of imitation learning with these dynami system primitives was suess-fully demonstrated in a humanoid robot that learned a series of movements suh astennis forehand, tennis bakhand and drumming sequenes from a human teaher[Ijspeert et al., 2003℄.[Matari, 2000℄, proposed to struture the motor system into a olletion of move-ment primitives, whih then serve both to generate a movement repertoire to thehumanoid robots, and to provide predition and lassi�ation apabilities for visualpereption and interpretation of movement. The movement primitives or behavioursare the unifying mehanisms between visual pereption and motor ontrol in theirapproah. They represent the generi building bloks of motion that an be imple-mented as parametri motor ontrollers [Matari, 2000℄. Suh a primitive lets a robotreah toward various goals within a multitude of tasks; this allows for a small numberof general primitives to represent a large lass of di�erent movements, suh as reahingvarious plaes on and around the body. The general system segments the trajetoryover time these segments are, at eah point, mathed to the expeted output of eahof the primitives with the observed input and the best math is seleted. The out-put of the lassi�ation is a sequene of primitives and their assoiated parameters.These then go to the motor ontrol system and ativate the primitives in turn thatreonstrut the observed behaviour [Matari, 2000℄.[Fod et al., 2000℄ presented a method for representing human movement in termsof a linear superimposition of simpler movement primitives. The primitives an beused as a lower-dimensional spae for representing movement. In their model, the per-eptual system is biased by the set of motor behaviours the agent an exeute. Thus,an agent an automatially lassify observed movements into its exeutable repertoire.In [Jenkins et al., 2000℄ pereptual-motor primitives formed a biologially-inspirednotion for a basis set of pereptual and motor routines. Primitives serve as a voab-ulary for lassifying and imitating observed human movements, and an be derivedfrom the imitator's motor repertoire. Their notion of a motion voabulary omprisesmovement primitives that struture a human's ation spae for deision making andpredit human movement dynamis. Through predition, suh primitives an be usedto both generate motor ommands for spei� ations and pereive humans perform-ing those ations, using a known voabulary of primitives [Jenkins et al., 2007℄.[Vehio, 2002℄ developed a study of primitives of human motion, termed �movemes�,using tools from dynamial systems and systems identi�ation, deomposing it into asequene of elementary building bloks that belong to a known alphabet of dynamialsystems, whih, in turn, an be omposed to represent and desribe human motions.[Vehio et al., 2003℄ address the problem of de�ning onditions under whih olle-tions of signals are well-posed aording to a dynamial model lass and, thus, angenerate the �movemes�. Also, developed segmentation and lassi�ation algorithmsin order to redue a omplex ativity into the sequene of �movemes� that have gen-erated it. [Vehio, 2002℄ attempted to de�ne primitives in terms of ausal dynamialsystems, that ould be parametrised by a small set of dynamial parameters and by



130 4. Representation of Robot Skills Knowledgean input whih drives the overall dynamis. An �alphabet of movemes� is built torepresent and desribe human motion. Their experiments showed that it was possibleto distinguish between the �movemes� in drawing tasks.[Zoliner et al., 2005b℄ built up a knowledge base of manipulation tasks by ex-trating relevant knowledge from demonstrations of manipulation problems. Theirwork dealt with the integration of learned manipulation tasks into a knowledge base,as well as enabling the system to reason and reorganize the gathered knowledge interms of re-usability, salability and explainability of learned skills and tasks. Themain goal was omparing newly aquired skills or tasks with already existing tasksand knowledge and deiding whether to add a new task representation or to expandthe existing representation with an alternative. Gathered knowledge is reorganizedand strutured on the level of manipulation segments, enabling an exeution systemto selet from multiple alternative operations [Zoliner et al., 2005b℄.[Ude et al., 2007℄ presents a framework for synthesizing goal-direted ations froma library of example movements, di�erent methods an be utilized for the onstrutionof this movements library. The approah used a general representation based on�fth order splines. The proposed approah enables the generation of a wide range ofmovements that are adapted to the urrent on�guration of the external world withoutrequiring an expert to appropriately modify the underlying di�erential equations toaount for pereptual feedbak. In [Forte et al., 2012℄ trajetories are generalizedby applying Gaussian proess regression, using the parameters desribing a task asquery points into the trajetory database.In [Pastor et al., 2009℄ a olletion of dynami movement primitives is used tobuild a library of movements by labelling eah reorded movement aording to taskand ontext. Their work provides a general approah for learning roboti motor skillsfrom human demonstration. Generalization an be ahieved simply by adapting astart and a goal parameter in the equation to the desired position values of a move-ment. Feasibility of the approah is demonstrated with a pik-and-plae operationand a water-serving task and ould generalize these tasks to novel situations.[Meier et al., 2011℄ approah aimed for movement segmentation with simultane-ous movement reognition, assuming that a library of movement primitives alreadyexisted, and redued the segmentation problem to online movement reognition. In[Muelling et al., 2013℄ the goal was to aquire a library of movement primitives fromdemonstrations and to selet and generalize among these movement primitives toadapt to new situations. The primitives stored in the library are assoiated with aset of parameters that form an augmented state that desribes the situation presentduring demonstration; these parameters are used as omponents in a mixture of mo-tor primitives algorithm. To generate a movement, the system selets movementprimitives from the library. A parametrized gating network is used in the mixtureof primitives algorithm to ativate omponents based on the augmented state andgenerate a new movement using the ativated omponents.The motor ontroller omponents of the movement primitives ould be manuallyderived or learned. In this work a framework to build the models of the robot skillsusing Learning from Demonstration tehniques, as desribed through Chapter 3, washosen to learn the basi primitives of ation. Traditionally, learning motions at a



4.4. Representing Objets in the Robot Skills Knowledge 131low level representation failed to sale well to systems with many degrees of freedom.The learning of movement primitives, therefore, would bene�t from oding the om-plete temporal behaviours that result in state-ation representation that are ompatand whih need to adjust only a few parameters for a spei� goal [Shaal, 1999℄.Primitives must be haraterized in parametri form to allow generalization and theirappliability to di�erent senarios. It is important that the representations used forextrating units of ations also relate to the movement generation [Meier et al., 2011℄.The representation of the robot skills must be �exible and ompat enough to be ableto store, use and retrieve this knowledge in e�ient ways and allow the robot have aomprehensive repertoire of skills. Adequate representations are needed for the skillprimitives in order to build a repertoire of robot skills.4.4 Representing Objets in the Robot Skills KnowledgeBefore one an start to deal with the issues of building a representation of theworld and the ommitments it must asribe to for the representations of knowledgeand the proess of reasoning to work, a key deision must be made on whih as-pets of the world one will fous on and whih aspets of the world one will hooseto ignore and how the knowledge about the world would be strutured. For anyrepresentational system the question of what is needed to be modelled and whatan be ignored or abstrated away is a fundamental issue [Anderson, 2003℄. Theabstrations are neessary beause no system an possible manage a world modelthat inludes the whole of the world. Knowledge of the world, in a ognitive agent,an ome from di�erent soures and present di�erent formalism. Knowledge aboutone's environment an ome through pereption, knowledge about a urrent situationmay ome from planning, reasoning and predition, knowledge about other agentsan ome via ommuniation and knowledge of the past ome from memory andlearning [Langley et al., 2009℄. It is an important ability for an intelligent agent todeal with these various forms of knowledge in an e�etive manner. For instane, anagent must have the ability to reognize situations or events as instanes of knownpatterns, and to assign these objets, situations or events to known onepts or at-egories [Langley et al., 2009℄. Also, the ability to selet among alternative ationsand make deisions is needed. Therefore, an agent must be able to represent andstore knowledge that would enable its ativity. Preeding disussions have dealt withthe numerous views that laim a rejetion of the internal representation paradigm fordeveloping ognitive agents, nevertheless, it is our belief that some form of representa-tions is not only inevitable but also neessary and adequate for robotis. However, therepresentations must be limited and physially grounded to the environment; goodrepresentations must be seletive and oriented to a partiular use by a partiularagent [Anderson, 2003℄.One way to see the world, borrowing representational ideas from natural lan-guages, would have us dealing with �objets�, suh as people, houses, et., and �re-lations� among �objets�, or �properties�, suh as red, round, et., and �funtions�,suh as fatherof, et. Where almost any assertion an be thought of as referring



132 4. Representation of Robot Skills Knowledgeto �objets�, and �properties� or �funtions� [Russell and Norvig, 2010℄. Traditionalrepresentations in arti�ial intelligene have foused on the symboli disrete repre-sentation of objets and ations [Geib et al., 2006℄. The objets-ations dihotomy isan important abstration for the performane of robots as embodied ognitive situatedagents. A majority of approahes in ognitive arhitetures fous on skill knowledgeof how to generate or exeute sequenes of ations, while often relegating equally im-portant oneptual knowledge dealing with ategories of objets, situations or otheronepts [Langley et al., 2009℄. Therefore, muh of an agent's knowledge must onsistof skills, onepts and fats about the world. From what has been onsidered so far,one is lead to a view of the world onsisting of objets, onepts, ations, skills, situ-ations and events. The importane of dealing with objets when developing robotiagents whih must perform in the world seems quite evident, sine most of a robot'soperations in the environment would be bound to the manipulation of an objet. Itseems lear that the representational attributions must be oriented to dealing withobjets in the environment and the ations that an be exeuted on them. In order todeal with hanging dynami environments' representations must also have the abilityto handle di�erent situations or events. Reognizing di�erent events or situations inthe environments and the objets and ations that pertain to the urrent on�gura-tion of the environment is a ruial ability that the roboti systems disussed heremust be able to possess.Prior to populating a knowledge base with objet lasses it is neessary to stateout what is alled an ontology. An ontology determines the kinds of things that anbe said to exist. The word �ontology� means a partiular theory of the nature ofbeing or existene [Russell and Norvig, 2010℄. In philosophy, as an ontology is un-derstood the study of the nature of being, beoming, existene, or reality, as well asthe basi ategories of being and their relations. An ontology de�nes, in the ontextof omputer siene, a set of representational primitives with whih to model a do-main of knowledge [Gruber, 2009℄. The ontology de�nes the onepts, relationships,and other distintions that are relevant for modelling a domain. By means of anontology one determines the kinds of objets that will be important to the agent,the properties those objets will be thought to have, and the relationships amongthem [Brahman and Levesque, 2004℄. Committing to an ontology requires hoosinga partiular view of the world. One the hoies are made one is left with a represen-tational voabulary speifying the domain, with de�nitions for typial lasses or sets,attributes or properties, and relationships among lass members [Gruber, 2009℄. On-tologies an't provide omplete desriptions of everything, but they leave plae-holderswhere new knowledge for any domain an �t in [Russell and Norvig, 2010℄. Ideally, anontology would try to unify di�erent areas of knowledge, general purpose ontologiesshould be appliable in more or less any speial purpose domain. However, generalontologial engineering has so far seen only limited suess [Russell and Norvig, 2010℄.Agreeing to an ontologial representation is a di�ult proposition, and usually mostappliations in arti�ial intelligene make use of speial purpose knowledge engineer-ing, designing their own ontology, tailored for a partiular use.Organizing objets into ategories is a vital part of knowledge representation[Russell and Norvig, 2010℄. It is essential to irumsribe the basi types of objets
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Fig. 4.2: Representing knowledge of objets. (left to right): The real-world objet.3D model representation of the objet. Convex bounding volume represen-tation of the objet. Representation of the objet in Cartesian, spherialor ylindrial oordinates.our knowledge base would have, and to determine the set of attributes that our ob-jets an have. In general, a good ontology should require only a few general rules.One the types of our objets have been established one an apture the propertiesof the objets [Brahman and Levesque, 2004℄. The ontology provides a set of fea-tures that serve to identify objets that an �t typial ategories. One infers thepresene of ertain objets from pereptual input, infers ategory membership fromthe pereived properties of the objets, and then uses ategory information to makepreditions about objets [Russell and Norvig, 2010℄.A typial problem building a representational approah is that knowledge about anobjet ould be sattered around the knowledge base [Brahman and Levesque, 2004℄.The organization of the knowledge of objets in the world towards a manageablestruture of objets' knowledge is a ritial aspet of the design of a knowledge base.Organizing objets into ategories is a vital part of knowledge representation; theapproah is to group fats or rules in terms of the kind of objets they pertain to.Categories are the primary building bloks of knowledge representation shemes, thereal world an be seen as primitive objets and omposite objets built from them[Russell and Norvig, 2010℄. Objets naturally fall into ategories, but an also bemembers of multiple ategories. The objets an also be made of parts, the rela-tionship among an objet's parts is essential to it being onsidered a member ofa ategory. Building taxonomies is also an important aspet of general ommon-sense knowledge; the sublasses relations organize ategories into taxonomy hierar-hies [Russell and Norvig, 2010℄.The framework of �rst-order logi enodes knowledge about the objets as log-ial expressions, eah ast in terms of prediates and arguments, plus statementsthat relate these expressions in terms of logial operators. A model in �rst-orderlogi onsists of a set of objets and an interpretation that maps onstant symbolsto objets, prediate symbols to relations on those objets and funtion symbols tofuntions on those objets [Russell and Norvig, 2010℄. Prodution systems on theother hand, provide a more proedural notation, whih represents objet knowl-edge as a set of ondition-ation rules that desribe plausible responses to di�er-ent situations [Langley et al., 2009℄. Semanti networks provide graphial aids for



134 4. Representation of Robot Skills Knowledgevisualizing the knowledge base and algorithms for inferring the properties of anobjet base on its ategory membership. Semanti networks allow the apabilityof representing individual objets, ategories of objets, and relations among ob-jets [Russell and Norvig, 2010℄. The desription logis system provides formal lan-guage for onstruting and ombining ategory de�nition, and for deiding subsetand superset relationships between ategories. The notation of desription logiswas designed to make it easier to desribe de�nitions and properties of ategories[Russell and Norvig, 2010℄. [Geib et al., 2006℄, proposes the pairing of objets andations in a single interfae representation. Objet-Ation omplexes are suggestedas a framework for representing ations, objets, and the learning proess that on-strut suh representations [Krüger et al., 2009℄. [Lemaignan et al., 2010℄ presentsan embeddable knowledge proessing framework along with a ommon-sense ontol-ogy designed for robotis.A system dealing with objets in the real world must deal with various di�er-ent forms and types of knowledge. Representing the objets' knowledge requiresa strutured approah. [Minsky, 1975℄, suggested the idea of using objet-orientedgroups of proedures, whih where alled frames. The frame onept o�ers a rep-resentation of an objet or ategory, with attributes and relations to other objetsor ategories, assembling fats about partiular objet and event types and arrang-ing the types into a large taxonomi hierarhy analogous to a biologial taxonomy[Russell and Norvig, 2010℄. Frames fous mainly on the reognition and desriptionof objets and lasses. The frame data struture spei�es onepts in terms of at-tributes, alled slots, and their values, alled �llers. One would have speial systemsfor important objets, but also a variety of frames for generally useful �basi shapes�.[Minsky, 1975℄ pitured a great olletion of frame systems stored in permanent mem-ory, when the pereption evidene suggests one will �t a frame is evoked to workingmemory.The frame knowledge struture an be seen as an instane of an objet-orientedrepresentation analogous to the development in an objet-oriented programming lan-guage. This ould allow the frame representation of objets to share many advan-tages of objet-oriented programming systems, like the spei�ation of general lasses,logial ontrol, inheritane of methods, enapsulation of abstrat proedures, et.[Brahman and Levesque, 2004℄. In general, there are two types of frames, individualframes used to represent single objets, and generi frames, used to represent ate-gories of lasses of objets [Brahman and Levesque, 2004℄. Through inheritane ofproperties one an organize and simplify the knowledge base using ategories. Muhof the reasoning done with frames involves the instantiation of individual frames outof the generi frames. Filling some of the slots with some values and inferring others.The reliane on default values for when a reliable inferring of the slots is not possibleis one important aspet of the frame system [Hayes, 1979℄. A generi objet frameholds all neessary information for the reognition and identi�ation of an objet intoa ategory lass, and any positional information and onstraints relate to it and itssituation in the environment. Objet instane in the knowledge base would be de-sribed by the harateristi attributes of the objets; this ould be, for instane, itsolor, shape, size, id tags, or any other relevant intrinsi information property of the



4.4. Representing Objets in the Robot Skills Knowledge 135Objet Frame: Example of generi objet frameand instanes of an objet frame
〈Objet-frame〉 gObj
〈Color〉 none 〈/Color〉
〈Volume〉 0 〈/Volume〉
〈Model〉 none 〈/Model〉
〈Roles〉 obstale 〈/Roles〉
〈Position〉
〈Cartesian〉 0 0 0 〈/Cartesian〉
〈/Position〉
〈Objet〉 ObjA 〈Objet〉 ObjB
〈instaneOf〉 gObj 〈instaneOf〉 gObj
〈Color〉 Blue 〈/Color〉 〈Color〉 # FFFF00 〈/Color〉
〈Volume〉 none 〈/Volume〉 〈Volume〉 none 〈/Volume〉
〈Model〉 none 〈/Model〉 〈Model〉 none 〈/Model〉
〈Roles〉 tool 〈/Roles〉 〈Roles〉 obstale 〈/Roles〉
〈Position〉 〈Position〉
〈Cartesian〉 120 34 56 〈/Cartesian〉 〈Cartesian〉 30 -45 78 〈/Cartesian〉
〈/Position〉 〈Spherial〉 95 35 -56 〈/Spherial〉

〈/Position〉Tab. 4.1: Objet Frame example for a generi objet frame and instantiations ofpartiular objet frames.objet that allows for its identi�ation.Figure 4.2 presents di�erent modes for the representation of an objet loationknowledge. The leftmost image orresponds to a real-world sene, representing theobjet as it is. Managing a full model of the world is a very demanding task. Thereal-world objet an be represented by its 3D model; this ould be diretly omputedfrom sensory input or retrieve from memory given a prior reognition step. Complete3D models are not always neessary, a simpler onvex bounding volume representationapturing the oupied spae of the objet an su�e, for instane when thinking ofthe objet as an obstale to avoid in a path. Typial tasks in robotis need onlyto rely on the knowledge of the objet position in either of Cartesian, ylindrial orspherial oordinate frames of referene, making an objet representation in terms ofits point oordinates a valid one for this objetives. It must be noted that havingone or other representation an lead to a very di�erent set of omputations and tasksthat the robot ould be able to perform with an objet. Yet, these representations arenot exlusive and any ombination of these modes ould be present in a knowledgebase if the system is designed for it. In this work the data struture of Frames isused to store knowledge about the objets in the environment in our knowledge base.Table 4.1 shows an example of the objet frame. A generi objet frame is desribed,and two instanes derived from the generi frame are also present. An instane ofan objet frame inherits from the properties and default values of the generi frame,but this does not prevent it having properties and updating its values on its own.



136 4. Representation of Robot Skills KnowledgeAn objet frame ould also represent instanes of two or more generi frames or beomposed of other objet frames as sub-parts. Important properties of the objetframes their name, position and role values for their identi�ation, loalization andrelationship to the rest of the knowledge base.4.5 Representing Ations in the Robot Skills KnowledgeAs outlined in the previous setion, the representational attributions of objetsand ations, and perhaps more importantly the interrelation between the objetsand ation representations, is a fundamental onern when exeuting tasks in theworld. The main role of a humanoid roboti system is to at and ahieve tasksand goals operating in omplex environments. The robots' ations would generallyinvolve the presene of an objet, or several objets, plus the possible interationwith human partners. Deiding on the model for the representation of ations isan essential undertaking for robotis and ognitive siene researh e�orts. Think-ing beings ought to be onsidered as ating beings in whih ognition is a situatedativity [Anderson, 2003℄. It is important to note that ations are not performedin a vauum, the ognitive proess does not our in isolation, ations are not per-formed disonneted from their embodied presene and the e�ets they have on theworld [Nehaniv and Dautenhahn, 2001℄. These e�ets would be desribed in terms ofombinations of ations, states and goals.Roboti systems, exeuting tasks in unstrutured environments, must have fun-tional representations for ations that failitate the robot performane with objetsand their environment. In setion 4.2, the hallenges to the symboli internal repre-sentations and the stane for an embodied approah to ognition were reviewed. Theembodied view of ognition's most pressing onern lies in the interation between anagent's body with the environment [Haselager et al., 2003℄, and a distrust of the ideathat ognition and knowledge representations are purely symboli mental proessesseparated from ation in the world. However, despite the various hallenges, an out-right rejetion of internal representations also seems to be an inomplete approah.To produe the intelligent and adaptive behaviours that we desire, a ognitive agentmust feature some form of reasoning and representation of knowledge.Human problem solving abilities involve the ooperation between internal rep-resentations, omputations and environmental interations. [Clark, 1997℄ addressedthe hallenges to internal representations and argued in favour of adopting omple-mentary approahes rather than thinking in terms of ompeting perspetives. Repre-sentations, in order to be valid for embedded ognition, are to be limited, physiallygrounded to the environment and oriented towards the spei� needs of the givenagent [Anderson, 2003℄. Therefore, a distintion must not be made between repre-sentational and non-representational solutions but among the ation-neutral formsof internal representations, requiring for disembodied symboli omputational pro-essing and more ation-oriented forms of representation, in whih the behaviouralresponse is embedded into the representation itself [Clark, 2004℄. Real world ognitiveproesses our in very partiular environments and are employed for very pratial



4.5. Representing Ations in the Robot Skills Knowledge 137ends and exploit the interation and manipulation of external props [Anderson, 2003℄.The previous disussion points to the realisation that the ways in whih a robotisystem an at hinges on what its embodiment and the environment allow. This istied to the objet and situation oriented onept of a�ordanes [Krüger et al., 2009℄.When thinking of ations' representations the onept of a�ordanes is essential, asthe onept of an ontology was for the disussion of objet representations. Therepresentations of objets and ations are related in terms of their a�ordanes. Thesystem's ations are embedded in a�ordanes' representations of objets and ationpairs [�ahin et al., 2007℄. The onept of a�ordanes refers to the pereived and a-tual properties of things; partiularly to properties that are fundamental to determinehow a thing ould possibly be used [Norman, 1988℄. An a�ordane is the relationshipbetween a situation, usually inluding an objet of a de�nite type, and the ations thatit allows [Krüger et al., 2009℄. The onept relates to the pereived features in an en-tity, regarding how they an be used to do something. The a�ordanes are proprietiesof the objets and of the kinds of interations they an support. An a�ordane is theobserved availability of things to ertain intervention [Anderson, 2003℄. A�ordanesof an objet are thought to be diretly pereived by the agent, pereption is shapedin terms of ations; the world onstantly invites ation [Anderson, 2003℄. However,an a�ordane is not aurately explained as an element of an objet representation,they are also related to the environment and to ating agents. An a�ordane is also arelationship between the abilities of an agent and the features of an environment; it isequally a reality of the environment and of the ations of an agent and it an be bothphysial and psyhial and, at the same time, neither [Gibson, 1986℄. Hene, a�or-danes refer to the ations' possibilities that the objet presents in an environment.Yet, not only the tools, but also the rest of the environment an provide a�ordanesin a situation [Nehaniv and Dautenhahn, 2001℄. The a�ordanes of the environmentare what it o�ers to the agent, what it provides or furnishes is a relationship with theenvironment, the objet, and the agent. An a�ordane an point both ways, to theenvironment situation and to the observer morphology [Gibson, 1986℄. A�ordanesdepend not only on the objets and their design but also on their embeddedness tothe environment and on the partiular bodily struture and on�guration of the agentwho might use them [Nehaniv and Dautenhahn, 2001℄. Finally, an a�ordane an bede�ned as an aquired relationship between a behaviour, or ation, of an agent andan entity, for instane an objet, suh that the appliation of the behaviour on the en-tity generates a ertain e�et [�ahin et al., 2007℄. [Bark-Holst et al., 2009℄ presentstwo approahes to modelling a�ordane relationships between objets, ations ande�ets. A �rst approah uses a voting funtion to learn whih objets a�ord whihtypes of grasp. The seond approah uses an ontologial reasoning engine for learn-ing a�ordanes. [Varadarajan and Vinze, 2012℄ desribes AfRob, an extension of ana�ordane network or roboti appliations. AfRob o�ers modules to enable robots tointerat and grasp objets through the generation of grasp a�ordanes.Now, attention must be turned to the mehanism for ation representation. In or-der to be general ations must be haraterized in parametri form [Fod et al., 2000℄.When thinking in terms of roboti ontrol, omputations for ations are aptured asontinuous transformations of ontinuous vetors over time. These vetors may be



138 4. Representation of Robot Skills Knowledgeused to represent di�erent ontinuous values, like absolute points in three dimensionalspaes, joint angles, fore vetors, et. [Geib et al., 2006℄. E�orts in arti�ial intelli-gene researh has typially foused on modelling high-level oneptual state hangesthat result from the exeution of ations, and not on the low level ontinuous detail ofation exeution. The representation in arti�ial intelligene fouses on disrete sym-boli representations of objets and ations, generally employing propositional or �rst-order logi [Geib et al., 2006℄. In order to desribe dynami environments and the ef-fets ations have on the world in a symboli logi formalism situation alulus an beused. The basi onepts in the situation alulus are situations, ations and �uents[Fangzhen, 2007℄. A situation is an instant of the state of the world [Funge, 1999℄.Situation are de�ned as a period of time during whih a ertain set of properties hold;whereas the ations are the ause of state transitions [Belleghem et al., 1995℄. Theations are what make the dynami world hange from one situation to another whenperformed by agents [Fangzhen, 2007℄. The �uents are situation-dependent funtionsused to desribe the e�ets of ations [Fangzhen, 2007℄. Any property of the worldthat an hange over time is known as a �uent [Funge, 1999℄. Another formalism isthe use of event alulus. The event alulus is a formalism for reasoning about ationand hange. In event alulus there is one real line of time points, and the eventsare the ourrene of an ation at a ertain point in time [Belleghem et al., 1995℄.Both the situation and event alulus provide rih frameworks for solving problemsin dynami systems. Situation alulus and event alulus share the property of beinginitiated and terminated by ations [Belleghem et al., 1995℄. In situation alulus theations are hypothetial and time is tree-like. In the event alulus, there is a singletime line on whih atual events our. [Mueller, 2007℄.In [Krüger et al., 2009℄ objet ation omplexes are proposed as a framework forrepresenting ations, objet and the proess that onstruts suh representations atall levels. The objet ation omplexes an be used as an interfae between the verydi�erent representation languages of robot ontrol and arti�ial intelligent planning[Geib et al., 2006℄. They ombine the representation strengths of STRIPS planners,the onept of ation a�ordane, and the logi of event alulus [Krüger et al., 2009℄.Pairing ations and objets in a single representation interfae aptures the needs ofboth high level ation representation and low level ontrol [Geib et al., 2006℄. Theexeution of objet ation omplexes is done in a hierarhial system with di�erentlevel oding ations at di�erent levels of abstration [Krüger et al., 2009℄.As has been disussed throughout this setion, the prinipal aim of a situated agentis to take ations appropriate to its irumstanes [Beer, 2000℄. Fitting representa-tions are essential for that goal. General approahes from arti�ial intelligene andlogi base reasoning see the world more in terms of disrete time experienes. How-ever, real-world ation is a ontinuous time phenomena. State and ation represen-tations are dynami entities [Krüger et al., 2009℄. Cognitive systems are not disretesequential manipulations of stati representational strutures, but rather, a strutureof mutually and simultaneously in�uening hange [van Gelder and Port, 1995℄. Inorder to aquire an internal representation of an a�ordane, an agent must arry outa omplex enoding of the sensory stimulus; to reprodue the orresponding ation,an agent must deode the enoded representation of the ations into proper signals.
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xFig. 4.3: Representing knowledge of ations. (left to right): Agent ation exeutionin the real-world. Representation of the ation as a point to point vetortrajetory. Representation of the ation as an attrator landsape of skilldynamis. Representation of the ation enoding the skill dynamis in aMixture Gaussian Model.The embodied approah of ognition alls for the representations to be enoded inthe body and not in the head [Anderson, 2003℄. A dynamial system theory approahto ognition provides a way to overome the separation between mind and the worldthat was largely prevalent in most work on arti�ial intelligene [Behtel, 1998℄. Adynamial approah is promising for providing a uni�ed theoretial framework forognitive siene, espeially when oupled with a situated embodied perspetive onognition [Beer, 2000℄. The working hypothesis of the dynamial approah is thatthrough inreasingly sophistiated use of internal states to mediate between perep-tion and ation, more ognitive behaviours emerge from the dynamis of situatedation [Beer, 2000℄.Various proponents of a dynamial system approah to ognition also advoate fora omplete rejetion of representations, notably the work of [van Gelder, 1995℄. Yet,as addressed in setion 4.2, the provision of an inner model is not an impediment forreal-time suess, but atually enhanes �uent real time ation [Clark and Grush, 1999℄.Most of these hallenges stem from a mistaken idea that representations are usefulas a representation for the system must be ontemplated as a representation by thesystem proessing [Clark, 1997℄. The dynami systems theory provides an alterna-tive to the traditional formats of representations onsidered in ognitive siene, yet,despite the di�erenes between the approahes, they need not be inompatible theyan be omplementary [Behtel, 1998℄. A dynamial relationship of a representationwith what it represents does not underut its status as a representation. Somethingan stand-in for something else being oupled to it in a dynamial manner, and de-termining its response by being so oupled, whih alters the thing being represented[Behtel, 1998℄. A wide variety of aspets of dynamial models an be regarded ashaving a representational status, suh as states, attrators, trajetories, bifurations,and parameter settings [van Gelder and Port, 1995℄. The dynamial models are notbased on the transformations of representational strutures, the representation in adynamial systems theory has radially di�erent formats from others used in ogni-tive siene [Behtel, 1998℄. However, the dynamial systems an store knowledge andhave this stored knowledge in�uene their behaviour [van Gelder and Port, 1995℄.Researh in ognitive siene has explored a wide variety of representational for-



140 4. Representation of Robot Skills KnowledgeAtion Frame: Example of ation-a�ordane frame
〈Ation-A�ordane〉 gAt
〈ObjetList〉 gObj1 gObj2 gObj3 〈/ObjetList〉
〈iniConditions〉 0 〈/iniConditions〉
〈Skill〉 MRS1 〈/Skill〉
〈Ation〉 At1
〈instaneOf〉 gAt 〈SkillModel〉 MRS1
〈iniConditions〉 ... 〈/iniConditions〉 〈Prior〉 0.302 0.295 0.403 〈/Prior〉
〈Skill〉 MRS1 〈/Skill〉 〈Mean〉-424.72 173.09 487.24 -747.64-118.99 4.04 534.15 -72.19-295.90 538.47 -1030.21 -644.18 〈/Mean〉
〈Objet〉 gObj2 〈/Objet〉 〈Covar〉4.04e+3 -5.63e+3 1.33e+4 1.09e+4-5.64e+3 9.60e+3 -2.65e+4 -1.70e+41.33e+4 -2.65e+4 1.02e+5 4.60e+41.09e+4 -1.70e+4 4.61e+4 3.65e+48.42e+3 -7.55e+2 -3.23e+4 8.17e+3-7.55e+2 1.34e+2 2.11e+3 -1.17e+3-3.23e+4 2.11e+3 2.07e+5 -2.96e+48.17e+3 -1.17e+3 -2.96e+4 1.27e+42.43+4 1.27e+4 -6.27e+4 4.01e+41.27e+4 8.81e+3 -3.83e+4 2.05e+4-6.27e+4 -3.83e+4 2.81e+5 -6.72e+44.01e+4 2.05e+4 -6.72e+4 1.01e+5 〈/Covar〉Tab. 4.2: Ation-A�ordane Frame example for generi ation frame and instaneof a partiular ation frame and skill model.mats; the dynamial system theory introdues new notions, suh as the onepts oftrajetories and dynami attrators. One important ontribution of dynamial sys-tem theory is that it fouses on representations that hange as the system evolves[Behtel, 1998℄. A ruial di�erene between traditional symboli omputational mod-els and dynamial models is that the rules that govern how the system behavesare de�ned over the entities that have representational status in a omputationalmodel, whereas for a dynamial model, the rules are de�ned over numerial states[van Gelder and Port, 1995℄. For a dynamial system theory approah, the proesseswithin the system are not de�ned over representations [Behtel, 1998℄. Namely, thedynamial systems an be representational without this meaning having the rulesthat govern their evolution de�ned over representations [van Gelder and Port, 1995℄.The dynamial system theory is revolutionary in adopting a di�erent onept ofexplanation than the mehanisti oneption adopted by most ognitive sientists[Behtel, 1998℄.All through Chapter 3 the framework for teahing and learning the robot skillsby Robot Programming by Demonstration was presented. The robot skills ought toenlose the knowledge of the task to allow generalization of the skill for reprodution



4.5. Representing Ations in the Robot Skills Knowledge 141and to form full goal direted ations. The idea of employing autonomous dynam-ial systems was proposed as an alternative approah for representing movementsas mixtures of non-linear di�erential equations with well-de�ned attrator dynamis[Ijspeert et al., 2001℄. The dynami system an be generally expressed as di�erentialequations of the form ẋ = f(x, θ), as per Eq. 3.2 . Autonomous non-linear dynam-ial systems are a powerful mehanism to modulate the ontrol poliies by learningthe model of the skill building a stable estimate of f based on a set of demonstra-tions. The dynamial systems approah to skill learning an o�er a fast, simple andpowerful formulation for representing and generating movement plans. The dynam-ial systems framework allows it to omply with the attrator dynamis of a skill,modulating it with a set of non-linear dynamial systems that form an autonomousontrol poliy for motor ontrol. Statistial learning tehniques are used to arbitrar-ily shape the attrator landsape of the ontrol poliy for enoding in it the desiredtrajetory. The end-e�etor trajetories of a skill ation are modelled in terms of adynami systems approah, as in [Shaal et al., 2007℄ for an autonomous dynamialsystem enoding of the ation. The Robot Skills Models are learned by estimating thenon-linear funtion f , a time independent model of the ation is estimated througha set of �rst order non-linear multivariate dynamial systems as in the frameworkspresented in [Gribovskaya et al., 2010℄ and [Khansari-Zadeh and Billard, 2011℄, de-sribed in Setion 3.5, following the method of Table 3.3. Therefore the robot skillsare modelled by the parameters θ of f̂ . M̄RS de�nes a Robot Skills Model determinedby f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, where θi = {π, µ,Σ} of the N i Gaussian fun-tion, de�ned by Eq. 3.18, are the prior, πk, the mean, µk, and the ovariane matrix,
Σk, of the K Gaussian and they enode the representation of the skill ation in adynamial system approah.Figure 4.3 shows di�erent representations for a skill ation. The leftmost imagesdisplay a tennis swing skill exeution of the ation by a humanoid agent. Commonation representations in robotis rely on vetor trajetories desribing expliitly thepositions for the robot ontrol at every point. Dynamial systems theory allows torepresent the skill ation in terms of their attrator dynamis. A dynami systemrepresentation allows it to fous on the internal and external fores that at over thetrajetory unfolding over time. Here, the dynamis of the skill ation are enoded ina statistial approah employing the Gaussian mixture models.Table 4.2 shows an example of the ation-a�ordanes frame. Generi ation frameshave an assoiated Robot Skills Model of the enoded skill ation dynamis. As statedby [van Gelder and Port, 1995℄, the dynami models representation status are de�nedover numerial states. In addition to the model of the skill, the ation frame linksations with the orresponding objets that a�ord them. Generi ation frames listall available objets for suh ation, the partiular instanes of an ation frame,reated by the system in the environment, presents only one objet a�ordane for theexeution of the ation. For instane, lets onsider a 〈Pik〉 ation. A generi 〈Pik〉ation-a�ordane frame would hold a robot skill model enoding the ation and a listof objets whih a�ord the ation, like spoons, forks, knifes, et. While partiularinstanes of the ation frame, suh as 〈Pik Spoon〉 serve as representational tools forthe exeution of an ation upon a spei� objet found in the environment.



142 4. Representation of Robot Skills Knowledge4.6 Representing Events in the Robot Skills KnowledgeSetions 4.4 and 4.5 have disussed mehanism for representing objets and a-tions respetively. However, fousing only on these two aspets would not be enoughto develop the knowledge representation strutures needed by the humanoid robotisystems that are the aim of this work. In addition to objets and ations the rep-resentational attributes need to take into aount the state of the world groundingthe representations to the environment, the task at hand and the urrent situationor present events. As disussed in setion 4.2, one of the roles of representationsis as stand-ins for external things outside the system. A roboti system would userepresentations to operate on them and not diretly over the world. The systemrepresentations should inlude objets, ations, tasks goals and world event on�g-urations, as in the representations of Figure 1.5. This does not require building upomplete models of the agent's body and the environment, the stand-ins are onlyneeded for those aspets that are relevant for guiding behaviour [Behtel, 1998℄. Themajor goal for humanoid robots, ognitive systems and embodied situated agents isto take the ations whih are appropriate to take in the present irumstanes of theworld. There are many resoures in servie of this objetive, inluding the physialproperties of an agent's body, the struture of its immediate environment and itssoial ontext [Beer, 2000℄.One of the most important properties of the world is hange. Change is having anation move you from a given situation to a new one [Brahman and Levesque, 2004℄.Propositional logi representations have limitations, suh as tying diretly the notionof time. Situation alulus gets around these limitations by replaing the notion oflinear time with branhing situations [Russell and Norvig, 2010℄. Situation alulustakes into aount situations and ations in the domain [Brahman and Levesque, 2004℄.The situations are omplete states of the world at some point in time, and a se-quene of ations leading from some initial situation to the given atual situation[Brahman and Levesque, 2004℄. Situation alulus was designed to desribe a worldin whih ations and situations are disrete, instantaneous and happening one at atime, making situation alulus limited in its appliability [Russell and Norvig, 2010℄.Event alulus was introdued as an alternative formalism whih is based on points oftime rather than on situations. Event alulus opens the possibilities of talking abouttime, and time intervals. Events, ations and time ould still be represented either insituation alulus or event alulus representations [Russell and Norvig, 2010℄.The objet ation omplexes, desribed in [Geib et al., 2006℄, de�ne instantiatedstate transition fragments to be a situated pairing of an objet and an ation that ap-tures a fragment of the planning domain's state transition funtion. The fragmentsare de�ned as a tuple 〈si, mpj, Objmpi, si+1〉, omprising the initial sensed state of theworld si, a motor program instane mpj , the whole objet ontaining the omponentthe motor program was de�ned relative to Objmpi, and the state that results from exe-uting the motor program si+1. The instantiated state transition fragments ontain allof the information the robot has about the two states of the world [Geib et al., 2006℄.Muh of the world spae in S will be irrelevant for a partiular omplex sine it isnot required for the performane of the ation and the ation will not a�et it, the



4.6. Representing Events in the Robot Skills Knowledge 143system should avoid expending resoures in observing these non-relevant parts of theworld [Krüger et al., 2009℄. It is important to redue the world spae to only thefeatures pertinent to the urrent ation. The representation in [Geib et al., 2006℄ arebounded unto two states of the world, an initial state and a desired end state, and toplanning state transition funtion from one to another. The disussion in Chapter 2disourages us from this type of planning approah for appliations suh as humanoidrobotis.For our goal the representations are to be at one time larger, but also more stru-tured and more intimately onneted, ombining knowledge of ation and objetswith the situations of the environment, the system tasks and the e�ets of exeu-tion. [Minsky, 1975℄, suggested the idea of using objet-oriented groups of proeduresto reognize and deal with new situations. The term frame was used for the datastruture that represents these situations [Brahman and Levesque, 2004℄. Frameswere put forward as a set of ideas for the design of a formal language for express-ing knowledge [Hayes, 1979℄. A Frame is a olletion of questions to be asked abouta hypothetial situation; it spei�es issues to be raised and methods to be used indealing with them [Minsky, 1975℄. To use frames is to make a ertain kind of as-sumption about what entities will be assumed to exist in the world being desribed[Hayes, 1979℄.Frames are essentially bundles of properties. A frame is a data-struture intendedfor representing a stereotyped situation [Minsky, 1975℄. Attahed to eah frame areseveral kinds of information. Some of this information is about how to use the frame.Some is about what one an expet to happen next. Some is about what to do ifthese expetations are not on�rmed [Minsky, 1975℄. It is made up of slots whih anbe �lled by expressions named �llers whih may themselves be other frames. Given aframe representing a onept, we an generate an instane of the onept by �lling inthe slots. A frame instane denotes an individual, and eah slot denotes a relationshipwhih may hold between that individual and some other [Hayes, 1979℄. An individualframe ould look like ( Name-frame: < slot1 �ller1 >, < slot2 �ller2 >, . . . ). Tohelp understand the onept onsider a generi room frame as representing the generalidea of a room with generi slots that an later be �lled by individual room frames,suh as a kithen room, living room, bedroom inheriting from the generi room frameand �lling them with their own speial harateristis. The individual frames are aspeialization of the general one, [Brahman and Levesque, 2004℄. ( Kithen-frame:< Is-a: room >, < Role: ooking >, . . . ).Frame theory adopts a strutured approah, assembling fats about partiularobjets and event types and arranging the types into large taxonomi hierarhies[Russell and Norvig, 2010℄. The idea behind the approah is that when one enoun-ters a new situation one would selet from memory a struture alled a frame. This isa remembered framework to be adapted to �t reality by hanging details as neessary[Minsky, 1975℄. Colletions of related frames are linked together into frame-systems.The di�erenes between the frames of a system an represent ations, ause-e�etrelations, or hanges in oneptual viewpoint [Minsky, 1975℄.It is useful to think about frames as a network of nodes and relations. Thetop levels of a frame are �xed, and represent things that are always true about the



144 4. Representation of Robot Skills Knowledgesupposed situation. The lower levels have many terminal slots that must be �lledby spei� instanes or data [Minsky, 1975℄. Colletions of frame systems are storedin memory, and one of them is evoked when pereptual evidene makes it plausiblethat the sene will �t [Minsky, 1975℄. When a proper frame is retrieved its slots are�lled with available information, its default assignments beome instantly available,and the more omplex assignment negotiations are ompleted later as they beomeavailable [Brahman and Levesque, 2004℄. Certain assignments to the slots terminalsare ompulsory, others are optional, and others take default assignment values inthe absene of better information. The theory states that frames are never to bestored in long-term memory with unassigned terminal values. Instead, frames arestored with weakly-bound default assignments at every terminal, where values anbe hanged dynamially when more suitable information is deemed to be aessible[Minsky, 1975℄. The proess of mathing a proposed frame suitable to represent theurrent situation is ontrolled by the system urrent goals and by information attahedto the frame [Russell and Norvig, 2010℄.The representations of events are, thus, largely onentrated on two major frames,one of the system tasks and goals' knowledge, and one representing the urrent stateof the world knowledge. Representations of the task event knowledge onsist of theagent's knowledge about what it is doing or trying to ahieve. This is the knowledgeabout its purpose, its ommands, its goals, both global and loal, its planned ations,and the relationships between them and the state of exeution of the task in the world.Task event frames would hold knowledge for the requested exeution of a task. Suh asthe task goal, task ations, inluding proper instanes of required ation frames, taskstart, end and invoking onditions, et. Task events are instantiated from reognizingmathing invoking onditions for the event frame or by diretly giving the system highlevel ommands for a task exeution orresponding to a partiular task event. Therepresentation of world event knowledge onsists of the agent's knowledge about thesituation of the environment its operating in. That is, knowledge about objets andplaes and their relationships. The representation of a world event frame would tryto maintain an aurate model of the agent's environment, as it is being explored, sothe world frame holds knowledge of objets being pereived as well as the most reentassumptions of objets no longer in the urrent view that are reasonably thought tostill lie around. Continuous operation of the robot and its pereptual system providesupdates and reinstantiations of the world event. To larify these points we an revisethe example raised in Chapter 1, represented in Figure 1.5. A robot is requested toplae a spoon inside a up on top of a sauer plate on a table. Aside from objet andation frames already stored in the knowledge base, two frames are reated at the startof the robot operation. A world event frame is reated from the robot's pereptionof its environment, so in this ase it would re�et knowledge about deteted objetssuh as the up, the spoon, the plate or any objets that are present and pereived bythe robot, representing, for the robot system, their positions, states, et. The worldevent frame representation orrelates to the world state dimension from Figure 1.5.The task event frame is onstruted from the given task robot ommand representingthe knowledge of the task exeution, in this ase it desribes task goals, state, steps.The task event frame representation orrelates to the goal dimension from Figure 1.5.
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Fig. 4.4: Representing event knowledge. (left) Chessboard state during play. Ahess master an reognize from this state, world event, the piees andpatterns important to its objetive. (top) Board is redued to relevantknowledge whih would lead the player next moves, ative view event.(bottom) Whites have a hekmate, task event goal, in three moves. (right)Football game just after the snap. A professional QB an read the defensiveoverage, world event, to instantly reognize favourable mathups. (top)Field is redued and only the position of the marked players is important forthe play. (bottom) Having a right read on the defene leads to a suessfulompletion of a pass, task event goal, to an open player for a �rst down.When an agent enounters a new situation a viewed event sene is analysed by as-sembling and instantiating frames, the system should wath for ertain kinds of eventsand injet proposed reasons, motives, and explanations for them [Minsky, 1975℄. Inomputer vision systems images seem to hange so quikly, as fast as the sene does,that performing the omputations for instantiating the representations at suh paedoes not seem to be omputationally e�ient. [Minsky, 1975℄ theory proposes thathanges in the frame-struture representation proeed at their own pae. The sys-tem makes small hanges whenever possible. In suh a omplex problem it is notpossible to ope with many details at one. At eah moment, one must work withina reasonably simple framework, and the illusion of ontinuity is due to the persis-tene of assignments to terminals ommon to di�erent view-frames [Minsky, 1975℄.Almost any event, ation, hange, �ow of material, or even �ow of information an berepresented to a �rst approximation by a two-frame generalized event [Minsky, 1975℄.While the di�erent viewpoints help to insulate the parts of the potential ontraditionfrom one another [Hayes, 1979℄.Sine omputational resoures are limited, what is important to onsider here is anagent apaity for disrimination and fousing attention. Humans do not proess thewhole of a sene, one onstantly disriminates information from a sene, ategorizing,grouping and disarding hunks of information. An engage worker would generallyfous all of its attention into a very small region of features deemed important for itslabour. Hene it is desirable to have some indiation as to whih parts of the worldto fous attention on, and to be able to disriminate from the whole information ofthe world only the important features of the urrent situation toward the urrentation. Here, questions arise as to what is relevant, where must attention go, whatpoint of view to take, how to onstrut this fous view that would drive what is taken



146 4. Representation of Robot Skills KnowledgeEvent Frame: Example of the task and world event frameand instanes of an ative view event frame
〈Task-event〉 gTask 〈World-event〉 Env1
〈Goal〉 ... 〈/Goal〉 〈Time〉 1 〈/Time〉
〈AtionSet〉 at1 at2 〈/AtionSet〉 〈ObjetSet〉 obj1 obj2 obj3 〈/ObjetSet〉
〈exeState〉 0 〈/exeState〉 〈Plaes〉 ... 〈/Plaes〉
〈Conditions〉 ... 〈/Conditions〉 〈Relationship〉 ... 〈/Relationship〉
〈AtiveView-event〉 fview
〈Ation〉 at2 〈/Ation〉
〈Objets〉 obj1 obj3 〈/Objets〉
〈Conditions〉 ... 〈/Conditions〉Tab. 4.3: Event frame example for a generi task event frame.from the world to furnish one's thinking and ating. To determine what would bethe agent's ative view, its fous on exeuting attention, we propose to start from thetwo event frames, representing the task and world knowledge, and build from thema single frame of what onstitutes the relevant aspets of the urrent event of theworld, fousing on the knowledge for task exeution. This event frame, alled herean ative view event frame, onsists of knowledge from objets and relationships inthe environment taken from the world event frame aording to what the task eventframe requires towards a frame of ative fous that would drive the agent exeution.Figure 4.4 presents two examples of human ability to disriminate from worldknowledge of a sene, an appropriate simpler frame that fous on only the relevantparts to ahieve a desired goal. In the leftmost images a hess board is depitedat some stage of a game, whih would form a world event frame of the situation ofthe hess environment. A hess master an reognize from this state, the piees andpatterns important to its objetive, whih in a hess task is learly the goal of hek-mating your opponent represented in a task event frame. In the right top image theboard is redued to present only relevant knowledge whih would lead to the player'snext moves, that is, the ative view event. With the information from its world andtask event, a player reognizes its patterns for ation, in this ase a su�oation mate,attaking with the bishop at b2 and the knight at d4 [Weteshnik, 2006℄. In the rightbottom image, the player with whites has a hekmate in three moves starting fromthe original board state in the world event. The rightmost images show a apturesnapshot from a football game just after the snap, forming the world event framefor that situation. A professional quarterbak an read the defensive overage toinstantly reognize favourable math-ups helping him to ahieve ompletion of themove, whih would represent a task event frame. In the right top image the �eld isredued and only the position of the marked players is onsidered important for theexeution of the move, whih onstitutes the ative view event. With the informationfrom its world and task event a player reognizes its patterns for ation, in this asethe bakward position of the defensive players allows for an open spae in the middleof the �eld for the reeiver to exploit. In the right bottom image, having a right read



4.7. Struture of the Robot Skills Knowledge Base 147on the defene lead to a suessful ompletion of the pass to an open player for a �rstdown.Table 4.3 shows an example of the event frames. Generi world event frame andtask event frame are desribed and an instane of the ative view event frame derivedfrom the world and task frames is also presented. A world event frame holds a set ofobjet frames instantiated from the environment, and of plaes or speial loations ofthe environment, like an exit door et., and frames desribing relationships betweenthem. The task event frame bears knowledge of the set of ation frames requiredfor ahieving the task goals, the state of exeution of the task and the onditions forinvoking, exeuting, and ending exeution of ations. The ative view event frame isfoused towards the knowledge neessary for instantiating exeution, the frame onlyhas the ation and objet frames that relate to the exeution of the urrent ativitythe agent is engaged with.4.7 Struture of the Robot Skills Knowledge BaseThe �nal aim is to populate a knowledge base of the robot available skills forreprodution. The knowledge base would need to hold all neessary information forreprodution of the skills. A robot task would be onsidered to be of the form 〈 robotpik blue ball 〉, 〈 robot plae up on plate 〉, et. in whih an ation is desribedrequesting an operation upon an objet for a goal oriented task. Therefore, a diretlink between objets and skill ations an be intuitively established.The �rst attempt at building a knowledge base of robot skills onsisted on the pair-ing of objets and ations. The elements in the knowledge database were representedin two prinipal diretions of objets and skill ations [Hernández et al., 2009℄. Thetask ontemplated in [Kheddar et al., 2009b℄ required for a robot performing ationsover an objet that is found in the environment. A knowledge base of the robot skillwas proposed, where the models of the skill would reside and a humanoid robot ouldaess the neessary learning to perform di�erent motor skills. By linking ations tomanipulatable objets in the representation of the skills knowledge, robot systemswould be apable of generalizing learned motions of manipulation.In [Hernández et al., 2009℄ an objet was represented by any neessary informa-tion for the reognition and identi�ation of that objet, and any onstraint relatedto it, suh as, Tag, Color, Size, Shape, et. Similarly an ation would orrespondto the neessary information from the model of the skill to reprodue said ation.The elements in the database were, in an analogy to objet-oriented programming,instanes of a lass objet, de�ned by its harateristi attributes and available skillations. The knowledge database ontained a series of known objets that the robotould identify in its environment. Linked to any instane of an objet there were one,several or no skill models' operations assoiated with it.Objet1[attributes] =⇒ Ation {SkillModelA

SkillModelB
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Fig. 4.5: Instane of the Objet-Ation Skill Knowledge Database representing ob-jets and ations in the sene �lled with various instanes and behaviours.It was also possible to build sequenes of ations to be performed, therefore,expanding the funtionalities of the Skills Database implementing �behavioural� in-stanes, Figure 4.5. Skill1 7→Skill2 7→Skill3 ⊢ BehaviourA behaviour, onsisted of a sequene of ations, with their assoiated objets, thatneed to be exeuted to ahieve a goal.Behaviour {SkillA[objet℄SkillB[objet℄Thinking in terms of objets and ations is not only intuitive but also onvenientfor a representational undertaking in robotis. Objet and ations are at the basisof robot performane, and manipulating and reasoning with them is important forrobots, as an be seen from the e�orts in objet ation omplexes [Krüger et al., 2009℄.However, representing the manipulation task as pure ation sequenes is not �exibleand also not salable [Zoliner et al., 2005b℄. Setions 4.4, 4.5 and 4.6 have shownthat representational attributions must also inlude information about the world andsituations, events and goals, for e�etive situated performane.From our earlier attempts [Hernández et al., 2009℄, it was lear that informationof objets and ations alone was not su�ient to apture the entire state of the world.Sine for a single task or behaviour there ould be more than one pairing 〈 objet,skill model 〉 the addition of at least one more dimension ould be required in orderto prevent ambiguities. See Figure 4.6. The objets and ations frames don't providesu�ient and omplete information for a robot situated in its environment to be ableto perform its task adequately. To resolve this problem, as has been shown fromsetion 4.6, onsidering two more representational diretives is suggested: one for thetask goal, and one for the on�guration of the urrent state of the world, mainlyobjets position and relations with themselves, the robot and a human operator.
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Fig. 4.6: Representations of the robot skills in the knowledge base in the objet andation diretionsAn agent's knowledge must onsist of skills, onepts and fats about the world.From what has been disussed in this hapter, world knowledge is thought to onsistof objets, ations, and task, situations and events. The representations perform asfuntional abstrations for the pereived environment enoding the agent knowledgeabout its objets, ations, and events, into manageable internal strutures standing,in for things outside the system.In addition to the presene of objets and ations representations, as establishedabove, the representational attributes need to take into aount the state of the world,grounding the representations to the environment, the task at hand and the urrentsituation or present events. The disussion in Setion 4.2 established the importaneof grounding representations to the environment and ognition to situated ativity.The ognitive proesses in the real world our in partiular environments employed toahieve a partiular pratial end, and must exploit the possibilities of interation andmanipulation in the environment. It is neessary to work with symbols and modes ofreasoning related to the pereption and ation of a partiular system [Anderson, 2003℄.Embodied agents interating with the real world must develop preditive models thatapture the dynamis of the world in order to ahieve its goals [Krüger et al., 2009℄.The dynamial system approah works on the hypothesis that through inreasinglysophistiated use of internal states to mediate between pereption and ation, moreognitive behaviours emerge from the dynamis of situated ation [Beer, 2000℄.The representations arry information about the objets or events being repre-sented. The funtion of a representation is in the arrying of spei� information ori-ented toward the needs of the given agent. Representations must be highly seletive,



150 4. Representation of Robot Skills Knowledgerelated to their eventual purpose, and physially grounded. Di�erent mehanismsould very well be needed for high level and low level representations, suh as therepresentations of high level abstrat onepts of objet frames, and the low leveldynami motion ontrol of ation exeution; plus the oordination of their behaviourwithin the events of the environment. The system representations must inlude ob-jets, ations, and events on�gurations as stated in Setions 4.4, 4.5 and 4.6.Objets are all entities that exist in the world, only real physial pereived enti-ties are being onsidered but the approah ould be extended to take into aountabstrat and imaginary entities whose existene lies outside the world plane. Ationsare all proesses, transformations, et., that an be performed or operated over anobjet. Here, �ations� refers to robot skills expressed in terms of a dynamial system.Ations must provide real e�ets on the world yet they ould be generalized to inludeabstrat and imaginary ations, like the at of thinking. As �events�, one thinks of allsituations, states, senarios and on�gurations of the world that one an be in andreognize one's self to be in. The state of the world instantiates the world event withall that an be pereived in it; the pairing of the world event and a task event leadto reognition of the relevant features of the world, in term of its task, to instantiatea foused ative view frame where thought an take plae and ations are invoked.Setion 4.3 presented various approahes aimed at building libraries or databasesof learned motion primitives as ways of having omprehensive repertoires of robotskills, allowing a roboti system to deal with a vast range of situations. Most ofthese approahes, while providing information on how the movement primitives anbe learned and generated, generally o�ered little advie on how the library of skillsould be used in the environment to selet and adapt the primitives to deal withdi�erent onditions.The knowledge base needs to hold all neessary information for reprodution ofthe skills in the environment. Knowledge of the task would be distributed among therepresentation of objets, ations and events of the goal and the state of the world.A task is then represented by the phrase �Do an Ation (A), To an Objet(O), For ahieving Goal (G), When State of the World is (W)� . Therefore,the tuple formed by 〈 Do = Ation(A), To = Objet(O), For = Goal(G), When =World State(W)〉 holds all neessary information for the reprodution of the task.The skill knowledge module representation presented in this hapter, see Figure 4.1,would allow the robot to extrat from the reeived pereptual input knowledge aboutobjets, goals and urrent state of its working environment. The roboti system wouldbe able to retrieve an appropriate skill ation from the knowledge base by �nding theanswer to the phrase �Do Ation (?) ... � for its urrent task onstraints whenbeing presented with the triple 〈Objet, Goal, World State〉.Figure 4.7 shows the representation of the skills in the knowledge database in athree dimensional spae de�ned by the 〈Objet, Goal, World State〉 triple. Seletingfrom their intersetion an adequate model of the skill for the reprodution of the task.For example, let us onsider, as a general typial task for humanoid robots that op-erate in a domesti environment together with other human agents, a kithen settingand the ooperative labours that ould arise from it suh as the setting up or learingof a table, the leaning of dishes, the storing of groeries, et. Tasks behaviours ould
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Fig. 4.7: Representation of the skills in the knowledge base. The intersetion of thetriple 〈Objet, Goal, World State〉 allows to selet the adequate model ofthe skill for reprodution.be 〈 robot pik red spoon 〉 and 〈 robot plae spoon in blue up 〉 in whih we'll have
〈Do = action, To = Spoonred, F or = task_event,When = world_event〉, where theworld situation and the state of exeution of the task will help hoose whether theproper ation would be 〈Do = pick〉 or 〈Do = place〉 in performing the pik and plaebehaviour.The struture of knowledge an be of various kinds, suh as programming by ex-ample, Hebbian neural network, probabilisti look-up table, behavioural loning, et.[Nehaniv and Dautenhahn, 2001℄. In [Geib et al., 2006℄ objet ation omplexes arede�ned as instantiated state transition fragments of a situated pairing of an objet andan ation generalized by the tuple 〈si, mpj, Objk, si+1〉 omprised of two abstratedstates 〈si and si+1〉 a set of motor programs mpj and an objet lass Objk. Here, asomewhat similar organization, in terms of the elements that onstrut the tuple, isused. A struture built on frames, as proposed by [Minsky, 1975℄, has been adopted.Frames are a omputational devie for organizing stored representations in mem-ory, and for organizing the proesses of retrieval and inferene whih manipulatethese stored representations [Hayes, 1979℄. The theory of frames is an e�ort to moveaway from attempts trying to represent knowledge as olletions of separate simplefragments [Minsky, 1975℄. Frames' data strutures are used to represent reognizablesituations. The frame approah has been extraordinarily in�uential, with wide appli-ations in relationship reognition, data monitoring, and propagation and enforementof onstraints [Brahman and Levesque, 2004℄. The hold idea of frames is based on atheory for struturing hunks of memory grouped into pakets of related fats, whihan ontain other pakets, where any number of pakets an be ativated or made



152 4. Representation of Robot Skills Knowledgeavailable for aess at one. The invoation of few appropriate pakets reates anexeution environment tailored to ontain only the relevant portion of the system'sglobal knowledge [Minsky, 1975℄. The major fore is not at a representational level,but rather at the level of implementation, the frames theory works as a suggestionabout how to organize large memories, mainly in a non-lausal form [Hayes, 1979℄In order for a proess to use a representation, the proess must be oordinatedwith the format of the representation, only states appropriate to the proess willount as representations [Behtel, 1998℄. The proess for using the representationsbegins by instantiating the appropriate frames. One a frame is proposed to repre-sent a situation, a mathing proess tries to assign values to eah frame's terminals[Minsky, 1975℄. When �llers for all the slots of a partiular frame are disovered thenit means one has found a frame of suh lass. The data struture of a frame is madeup of slots �lled with attributes, whih an be made of other frames, as organized interms of a lass hierarhy, analogous to an objet-oriented programming paradigm.When instantiating a frame its slots will be �lled with the values present in the system,any slots with unavailable information will be �lled by default attributes assoiatedwith the lass ategories. Default values are assumptions reasonably made when thestate of knowledge holds no information to the ontrary. Default assumptions involvean impliit referene to the whole state of knowledge at the time the assumption wasgenerated, any event whih alters the state of knowledge is liable therefore to upsetthese assumptions [Hayes, 1979℄. Reliane on default values in [Minsky, 1975℄ is basedupon the realization that thinking begins with defetive networks that are slowly, ifever, re�ned and updated.Figure 4.8 presents the ontrol data �ow for the proess of using the representa-tions in the knowledge base for extrating the task onstraints and the appropriateRobot Skills Models within the knowledge module presented in Figure 4.1 and theframework of Figure 2.6. The knowledge of the environment and goals is representedin terms of the World Event Frame and Task Event Frame, with Objet and AtionFrames representing knowledge about available objets and ations in the knowledgebase respetively. From the knowledge of these frames an Ative View Event Frameis built of the foused knowledge promoting the agent's exeution. Looking up theknowledge base for the given objet and ation a�ordane frames yields the neededmodels of the skill, M̄RS, for building the task model.To serve adequately the demands of a onstantly hanging environment, it isneessary not only to pik items out of their general setting, but to know what partsof them may �ow and alter without disturbing their general signi�ane and funtions[Bartlett and Bartlett, 1995℄. The proess for using the representations begins withthe reeption of pereptual input. From a given sene the system instantiates frames,generally governed by the preedene of visual evidene. From the pereived giveninput the �rst step for extrating a task onstraint is the mathing of the world toan instane of the World Event Frame and the instantiation of the Task Event. Themathing proess whih deides the suitability of a proposed frame is partly ontrolledby knowledge of the system's urrent goals and partly by information attahed tothe frame [Minsky, 1975℄. From information olleted in the World and Task eventframes, whih in turn are made up of other objet and ation frames, the system
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Fig. 4.8: Knowledge base ontrol �ow for using the knowledge representations. TheWorld Event Frame and Task Event Frame are instantiated, and an AtiveView Event Frame is built from them with the onstraints of the task.From objet and ation a�ordane frames in the knowledge base the neededmodels of the skill are taken for building the task model.would have information about its urrent goals and the situation of the environment;yet this is not enough to ground the representations in order to e�etively use themfor supporting its performane. As has been disussed previously, the representationsmust be seletive, physially grounded and leading to situated ativity. Extending thenotion of seletive representations leads to losing the gap between pereption andation. The pereption �eld is always already an ation �eld, the pereived world isalways known in terms diretly related to an agent's urrent possibilities for futureation [Anderson, 2003℄. Out of the pereived knowledge of the world, whih weollet in the World Event Frame, the required models for ation must be invoked forthe system's operation. [Minsky, 1975℄ imagined that thinking and understanding,be it pereptual or problem-solving, was onerned with �nding and instantiating aframe, breaking large problems down into many smaller jobs to be done. Maintaininga full model of the world is a large problem and one that ontributes to the failure ofplanning approahes dealing with hanging environments, but a problem with whihit is not neessary to deal with, in suh omplex environments one an never ope withmany details at one. At eah moment, one must work within a reasonably simpleframework. [Minsky, 1975℄ ontend that any problem that a person an solve at all, isworked out at eah moment in a small ontext and that the key operations in problemsolving are onerned with �nding or onstruting these working environments.Therefore motivation for reating an Ative View Event Frame is lear from theneed to fous attention and disriminate from the information of the world and taskevents and the important features of the urrent situation toward the urrent ation.To onstrut this fous view that would drive what is taken from the world to furnish



154 4. Representation of Robot Skills Knowledgeone's thinking and ating, we build a single frame of what onstitutes the relevantaspets of the urrent event of the world, fousing on knowledge for task exeution.The Ative View Event Frame, onsists of knowledge from objets and relationshipsin the environment taken from the world event frame aording to what the task eventframe requires to drive the agent exeution, and onstitutes the system's output forthe urrent world and task onstraints. The frames representation is envisioned aspakets of data and proesses, and so are the high level goals [Minsky, 1975℄. When aframe is proposed, its paket is added to the urrent knowledge so that its proesseshave diret aess to what they need to know, without being hoked by aess tothe entire knowledge of the whole system. One must hoose from one's olletion oflustering methods by using the goals in a miro world ontext [Minsky, 1975℄.For an agent working in an unstrutured environment, the fous of its pereptionmust be direted towards its exeuting ation. Knowledge of its environment and taskwould be olleted into their appropriated frames and a foused ative view framewould be built, taken from their global knowledge and breaking it down into a simplerframework from whih omputations and knowledge take plae.Revisiting the kithen setting, and the task 〈 robot plae spoon in up 〉. A pro-totypial sene is given in whih the objets relevant to the task are reognizabletogether with lusters of other urrently unimportant objets. The frames of objetsand ations' knowledge are instantiated along with an event frame for the on�gura-tion of the environment and an event frame invoked with the knowledge of the taskfrom the desired given task behaviour. Knowledge from the event frames is reduedinto a simpli�ed ative frame ignoring information not pertaining to the exeution ofthe urrent task.Figure 4.9 presents the organization of the knowledge base in terms of the framesdesribed in Setions 4.4, 4.5 and 4.6. To help better understand these points, wereview an example, as before, onsidering a simple ase in whih a humanoid robotis requested to plae a spoon inside a up, and plae the up on top of a sauer plateon top of a table, as if it serving a up of tea or o�ee. The robot would begin isoperation in a kithen setting sene in front of a table with various identi�able objetstypial of the tasks whih would be olleted into the World Event Frame and theneessary instanes of Objet Frames for the objets present in the sene. Naturally,in our example we would have spoon, up and plate objets, as the robot exploresits environment it will reognize any objet as it �nds them, relevant to its task ornot, and will �ll the World Event Frame with its respetive Objet Frames instanes.Additionally the system is provided with the Task Event Frame representing theknowledge of the task and the instanes of the Ation Frames. In this example toomplete the requested task, the robot would be required to perform several simplertasks or subtasks, suh as piking up the spoon, grasping the up and plaing the upon top of the sauer plate, et. The Task Event Frame holds knowledge of the stateof exeution of the task and Ation Frames instanes for the knowledge of the robotskills for reprodution.The Task Event Frame and the World Event Frame represent the knowledge of thestate of exeution of the task and the environment, with Objet and Ation Framesrepresenting the available objets and ations. The Ative View Event is reated from
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Fig. 4.9: Knowledge base struture and organization of the knowledge representa-tions. World Event Frame and Task Event Frames represent the knowledgeof the state of the environment, with Objet and Ation Frames represent-ing the available objets and ations. From the knowledge of this framesan Ative View Event Frame is built of the foused knowledge required todrive the agent exeution, and the system's output for the urrent worldand task onstraints.all these knowledge frames reduing the view of the world into a simpler sene withthe important Objet Frames for the task, with their proper roles assigned for theexeution of the ation. The full sene in Figure 4.9 is broken down into the reduedsene of the Ative View Event Frame whih promotes the exeution of the ation asin the Figure 4.7. Now let us return to our example at some point during the taskexeution. Imagine for instane the exeution of the 〈 robot plae spoon inside up
〉 tasks. To perform the task it is assumed that the spoon objet has already beenpiked by the robot and is in one of its hands, so the target objet for the task isthe up. The World Event Frame and the Task Event Frame are �lled as disussedabove and as in Figure 4.9. The Ative View Frame is built form these knowledgeframes to reate a foused, simpli�ed frame with only the knowledge pertaining tothe ation being performed. In our ase this means a redued frame where only therelevant Objet instanes are inluded, the spoon, the up and the plate, and onlythe exeuting Ation frame instane is inluded to extrat the neessary Robot SkillModel for the ation exeution.Di�erent approahes on related topis foused on the management of knowledgeby roboti system exists, suh as KnowRob, [Tenorth and Beetz, 2013℄ or RoboEarth,[Waibel et al., 2011℄. However these systems lie at a higher more abstrat level of theognitive hierarhy while our framework lies at a lower level of ation exeution.Further researh requires study and omparison of other systems, in partiular theones that may be used to omplement the framework developed in this work.



156 4. Representation of Robot Skills Knowledge4.8 Summary of the ChapterThroughout this hapter the development of a knowledge base for the storingand retrieval of the learned models of the skills has been desribed. In setion 4.2an introdution to the topi of knowledge was presented, and its importane for de-velopment of ognitive robotis. The embodied view of ognition and its hallengesto the traditional approahes of symboli representations were studied. Also, basinotions and onepts in the �eld of knowledge representation and reasoning werereviewed. Setion 4.3, presented a review of similar approahes aimed at buildingrepertoires of basi units of ation, also known as movement primitives, whih anrepresent a basi set of elementary robot motor skills. Learned motion primitives anbe used as ways of having omprehensive repertoires of robot skills. Most of theseapproahes generally o�ered little advie on how the library of skills ould be used inthe environment to selet and adapt the primitives to deal with di�erent onditionsor their mehanism for representing their knowledge. In setions 4.4, 4.5 and 4.6 theapproahes and problems for building representation of objets, ations, and eventsknowledge were presented, respetively. Finally, setion 4.7, presented the develop-ment of a knowledge base for the storing and retrieval of the learned models of theskills, and the representational struture of the robot skills' knowledge base devel-oped in this hapter. The embodied view of ognition alls for representations to belimited, physially grounded to the environment and oriented towards a partiularuse. The prinipal aim for the humanoid robot is to take ations, as situated agents,that are appropriate to its irumstanes. Fitting representations are essential forthis goal. Our representational framework fouses on a lower level of abstrat repre-sentation aiming at ation exeution, while most other systems lie at a higher moreabstrat level of the ognitive hierarhy, however this ould allow both approahes toomplement eah other. In this hapter, the developed representations for our robotwere presented. Objet and ations are at the basis of robot performane, thereforethinking in terms of objets and ations was not only intuitive but also onvenientfor a representational undertaking in robotis. However, representational attributionsmust also inlude information about the world and situations, events and goals, fore�etive situated performane. A struture built on frames has been adopted in thiswork; the frames are a omputational devie for organizing stored representations inmemory, and for organizing the proesses of retrieval and inferene whih manipulatethese stored representations. In our system the knowledge of the environment andgoals is represented in terms of World Event Frame and Task Event Frames, with Ob-jet and Ation Frames representing knowledge about available objets and ationsrespetively. From the knowledge of these frames, an Ative View Event Frame isbuilt of the foused knowledge promoting the agent's exeution. Figure 4.9 presentsthe organization of the knowledge base in terms of the World Event, Task and AtiveEvent Frames, Objet and Ation Frames as desribed in Setions 4.4, 4.5 and 4.6.



5. GENERATION AND ADAPTATIONOF ROBOT SKILLS5.1 Outline of the ChapterThis hapter presents the algorithms developed for the generation and adaptationof robot skills. Humanoid robots are required to perform a wide repertoire of tasksworking beside humans in omplex dynami environments. While Learning fromDemonstration (LfD) approahes provide adequate methods used for learning andenoding the models of the robot skills for every oneivable senario the robot mayenounter would be a daunting undertaking, therefore, mehanisms for the generationand adaptation of new robot skills from previously learned skill models are needed.Figure 5.1 shows the framework proposed throughout this work for the adaptation oflearned skills to task onstraints, highlighting the generation of task models disussedin this hapter. This hapter desribes the proess by whih, using the already learnedmodel of a robot skill and the extrated onstraints knowledge of the urrent task, themodel of a skill is adapted to reprodue a new task. Di�erent modes are presentedfor the adaptation, update, merger, ombination and transition between the RobotSkills Models. The organization of this hapter goes as follows:
• Setion 5.2, presents developments for the generation and adaptation of therobot skills. A review of related approahes aiming at the adaptation of learnedskill models is given. Also, the framework employed through this work to adaptand generate the task models is presented.
• Setion 5.3, presents the adaptation of a task model by operations on its inher-ent dynamial properties. The Robot Skills Models are learned in a DynamialSystems (DS) approah. DS are intrinsially robust to spatio-temporal per-turbations, do not expliitly depend on time and an be generalized to unseeninitial onditions.
• Setion 5.4, presents the adaptation of a task model by updating a robot skill.Models of a skill must be updatable, when given new information for the repre-sentation of a skill, the system must allow for the models to be improved. Thissetion desribes methods by whih Robot Skills Models an be updated.
• Setion 5.5, presents the generation of a task model by merging robot skills.Skills an be generated by merging two or more models into a new skill, multiple
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Fig. 5.1: Module for the generation of task models from the robot skills in the knowl-edge base and the onstraints of the task, highlighted over the proposedognitive framework for learning and adaptation of robot skills.desired robot skills may be omposed from superposition of various models. Thissetion desribes methods by whih Robot Skills Models an be merged.
• Setion 5.6, presents the generation of a task model by ombining robot skills.Models of a skill an be ombined to generate new models that enompass alarger spetrum of the attrator dynamis. This setion desribes methods forthe ombination of Robot Skills Models.
• Setion 5.7, presents the generation of a task model by transitioning betweenrobot skills. To generate omplex behaviours, the system must sequene andtransition between models of the robot skills. This setion desribes methodsby whih the system an shift smoothly among the reprodution of di�erentRobot Skills Models.5.2 Generation and Adaptation of Robot SkillsHumanoid robots are thought to ollaborate and interat together with humans,sharing the same spae, tools and ativities. For humanoid robots to at �uently inunstrutured environments, interating with di�erent objets and people, they mustbe able to perform dynamially hanging tasks that require great adaptations. Flexi-ble and generi ontrol methods that an adapt to various tasks and robots onstraintsare neessary. Learning systems are required to aquire skills and mehanisms are



5.2. Generation and Adaptation of Robot Skills 159needed to endow systems with the apaities to adapt their aquired skills, expandingthe system's knowledge and ability to at in the environment.Traditionally available ontrol algorithms are not nearly versatile, robust or �exi-ble enough to ahieve the omplexity levels of the biologial systems whih are to beemulated [Peters et al., 2003℄. In order to bene�t from the full potential of humanoidrobots a learning approah is required [Shaal, 1999℄.One of the aims of this work is learning models of robot skills whih are thenused to build a knowledge base of the robot skills knowledge for a humanoid robotreprodution. To teah and learn the robot skills a LfD framework was implementedin Chapter 3. The motivations for adopting an Imitation Learning approah werestated in the previous hapters, the most important harateristis are that it providesintuitive and user-friendly methods to teah tasks to a robot by demonstrating theskills without requiring the user to have expert programming skills, it redues theost of developing automated planning and manual programming of robot ontrol,and speeding up the learning proess, as opposed to reinforement learning methods,reduing omplexity of searh spaes, giving prior knowledge of task performane.The fous of the LfD approahes is the development of algorithms that are generiin their representation of the skills and in the way they are generated. LfD methodsallow a human user to teah a robot how to aomplish a given task simply bydemonstrating the task and generalizing the demonstrated movements aross a set ofdemonstrations [Gribovskaya et al., 2010℄. The robot annot simply reprodue a skillby opying an observed behaviour, it must have the apability to generalize it. Oneommon approah for generalizing a skill onsists of reating a model of the skill basedon several demonstrations, performed in slightly di�erent onditions exploiting thevariability inherent to the various demonstrations [Calinon, 2009℄. Imitation Learningfouses on three important issues: e�ient motor learning; the onnetion betweenation and pereption; and modular motor ontrol in the form of movement primitives[Shaal, 1999℄.To ahieve the omplex behaviours, suh as those needed for a humanoid robot towork alongside humans, it would be neessary to have inlusive and omprehensiverepertoires of robot skills. For these purposes movement primitives, basi units of a-tion to omplete a goal, are promoted. The assumption that omplex movement skillsare omposed from smaller units of ation is well aepted for these approahes. Theinsight that human ativity is deomposed into building bloks of smaller elementaryations is an established belief whih an help to ope with the omplexity of motorskills learning for robots. There are many theories about motor primitives suggestinghuman motion be divided into its elementary trajetories [Fod et al., 2000℄.To learn suh basi units of ations is onsidered a useful approah for generatinglibraries of motor skills. Endowing a roboti system with a library of movementprimitives �lled with a su�ient number of skills an provide it with an adequaterepertoire of ations to deal with a vast range of situations.The motor ontrolleromponents of movement primitives ould be manually derived or learned. It isimportant to allow their generalization and appliability to di�erent senarios thatthe primitives be haraterized in parametri form and be provided with adequaterepresentations. Chapter 4 reviewed approahes to deal with omplex motions a



160 5. Generation and Adaptation of Robot Skillslibrary of movement primitives and presented the development of the knowledge basefor the storing and retrieval of the Robot Skills Models learned in Chapter 3 as basiprimitives of ation.Therefore, it is neessary to extend the lassial LfD approah of learning a skillmodel in a way that allows the adaptation of a robot previously learned motion skillsto new unseen ontexts.The Learning from Demonstration (LfD) approahes previously reviewed o�erednatural, fast and impliit means of teahing a robot new skills. However, despite itslear advantages, it would be impratial for the human operator to teah the robotthe skills for every needed task and for every foreseen situation, sine the numberof demonstrations the human must provide to the robot to generate a new modelof a skill ould turn it into a tiresome and time-onsuming proess and it wouldn'tbe possible to over every neessary task and every unforeseen situation. For thisreason, enhaning the LfD with the apaity to adapt and generate new skill modelsis important. Additionally, despite the fat that the LfD o�ers the apability togeneralize the learned model, the generalization is relatively limited to hanges ininitial onditions or to rather small perturbations during the exeution. To expandthe sope of a learned model to areas unexplored by the demonstration would requiredi�erent mehanism. Hene, to extend the lassial LfD approah of learning a skillmodel in a way that allows the adaptation of a robot previously learned motion skillsto new unseen ontexts is neessary.To reprodue a task adapted for an unseen ontext the robot is provided withknowledge of the state of the environment and the onstraints of the task extratedfrom its pereptual input and other high level orders it ould possess. Using both,the already learned model of a skill, and the extrated onstraints information of theurrent task, the model of the skill is adapted to reprodue the task. Figure 5.2,illustrates the proess for enhaning a lassial LfD approah to generalize a skill toallow adapting a robot's previously learned skills models. The traditional approah inLfD from [Billard et al., 2008℄ as represented by the top sheme in Figure 5.2 presentsa somewhat stati ontrol sheme, akin to an open loop ontroller, and it won't besu�ient to reprodue a task when the state of the environment is too dissimilar fromhow it was when the demonstrations were given to enode the model of the skill. Byadding environmental and task knowledge as input to the sheme, in the bottom ofFigure 5.2, the ontrol diagram ould be thought of as a lose loop ontroller, witha feedbak signal from the onstraints of the task and the environment, whih allowsthe model of a skill to be adapted aordingly to its ontext.Reprodution of robot skills, if they are to be general enough, needs to presentthe apaity for adaptation and to generate new skills when the urrent situationof the world and its onstraints of the task demand them. Working in dynamiallyhanging environments, it is neessary to adjust the desired trajetories appropri-ately, or to generate new ones by generalizing from previously learned knowledge[Shaal et al., 2007℄. The robot skills learned with the methodology desribed inChapter 3 would present stable trajetories that aurately reprodue the demon-strated motion dynamis, however, there is no guarantee that outside the area of thedemonstrations the reprodution of these trajetories would provide a meaningful or
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Fig. 5.2: Augmenting the LfD approah for the generalization of a skill to allowadapting a robot previously learn skills models. (top) Generalization ofa skill by extrating the statistial model aross multiple observations.(bottom) Adaptation of a learn skill to new ontext by extrating the taskonstraints with a new observation and using the environment informationto modi�ed previously learned models of the skill.proper behaviour in aordane to what would be expeted from the task. As anexample, onsider a ase in whih the robot has been taught motion skills in orderto grasp a up approahing from the left side; and later it's requested to grasp a uppositioned to its right, it would be the impulse of the robot, governed by its model ofthe skill, to approah the objet from the left as the demonstrations showed it. How-ever, suh behaviour would not only be unnatural to ahieve the task but potentiallyunsafe for the robot or other entities in the environment.The Robot Skills Models were learned by employing a Dynamial Systems (DS)approah. The DS framework allows to omply with the attrator dynamis of thedesired behaviour, modulating it with a set of non-linear dynami systems that forman autonomous ontrol poliy for motor ontrol. A DS approah was hosen be-ause it allowed ertain desirable properties. DS are intrinsially robust in the fae ofspatio-temporal perturbations. DS do not expliitly depend on time and are able tomodel arbitrary non-linear dynamis. DS an also be easily modulated to generatenew trajetories that have similar dynamis. By learning the skills under a probabilis-ti approah employing Gaussian Mixture Model (GMM) the parameters governingthe attrator dynamis of the motion are fully enoded into the parameters de�ningthe Gaussian funtions. The learned Robot Skills Models would form a set of basiprimitives of ation from whih a knowledge base of skills was built in Chapter 4.An approah based on movement primitives relies on possessing available se-quenes of motor ommands, exeuted in a ertain order, to aomplish a given



162 5. Generation and Adaptation of Robot Skillsmotor task. Movement primitives are biologial strutures that organize the under-lying mehanism of omplete movements [Fod et al., 2000℄. It is generally believedthat humans employ basi motor primitives as an underlying mehanism of biologialmotor ontrol. Evidene exists from human and animal experiments supporting thebelieve that sets of motor primitives are used to build a basis for voluntary motorontrol [Konzak, 2005℄.By working under a theory, based on the existene of basi primitives, from whihfull human motions are made, it seems lear that following the issue of how to reate,build and learn these basi units of ation primitives, the next question would be fo-used on how these primitives an be manipulated; how primitives an be ombined toform higher level movement primitives; how sequening and reognition of sequenesof movement primitives an be aomplished [Shaal, 1999℄. The idea is that ationsan be deomposed into sequenes of reusable primitives; primitives might be pre-served in memory and adequate primitives might be retrieved from it. Humans angenerate diverse ations by ombining behaviour primitives [Arie et al., 2012℄.To generate omplex human like motions from a learned set of basi primitivesunits, the Robot Skills Models, and be able to reprodue various omplex task be-haviours, methods for operating and manipulating upon the primitives must be de-veloped. The robot skills must be adaptable to onditions of its operating environmenteven when di�ering substantially from its original demonstrations. Also, the modelsof a robot skill must be updatable, when given new information for the representa-tion of a skill the system must allow for the models to be improved. Additionally,the ation primitives approah must be able to generate new skills by merging two ormore primitives into a new skill, multiple desired robot skills may be omposed fromsuperposition of various primitives. Another important property is the ombinationof the Robot Skills Models to generate new models that enompass a larger spetrumof the attrator dynamis. A �nal desirable operation over the basi set of primitivesskills onsist of sequening and transition between models of robot skills in order togenerate omplex behaviour with smooth transformation among the reprodution ofdi�erent skill motions.The bulk of the work in LfD or RPbD and movement primitives approahes hasbeen entred on the development and validation of algorithms that would allow thelearning and enoding of the skill motions, whih would onstitute the movementprimitives, to take plae. Little work has been foused on the development of teh-niques that would endow the system with the ability to operate upon its movementprimitives and generate new and more omplex behaviours. Yet some examples ofthese e�orts an be found.[Muelling et al., 2013℄ presented a framework to learn ooperative skills from in-teration with a human. First, a set of elementary movements are learned from ahuman teaher by kinaestheti teahing. Subsequently, the system generalizes thesemovements to a wider range of situations using our mixture of motor primitives ap-proah. The resulting poliy enables the robot to selet appropriate motor primitivesas well as to generalize between them.The work of [Shukla and Billard, 2012℄ foused on ombining several learned DS,with distint attrators, resulting in a multi-stable DS. Their work presented an



5.2. Generation and Adaptation of Robot Skills 163Augmented-SVM model, whih inherits region partitioning ability of well know Sup-port Vetor Mahine (SVM) lassi�ers and is augmented with novel onstraints de-rived from the individual DS.In [Khansari-Zadeh and Billard, 2012℄ a novel approah is presented to real-timeobstale avoidane based on DS, that ensures impenetrability of multiple onvexshaped objets. Obstale avoidane proeeds by modulating the original dynam-is. The modulation is parametrizable and allows to determine a safety margin andto inrease the robot's reativeness in the fae of unertainty in the loalization ofthe obstale.[Kulviius et al., 2012℄ foused on an approah for joining movement sequenesby modifying the learned DMP exempli�ed on handwritten appliation. The methodis based on the modi�ation of the original DMP formulation. The new method anreprodue the target trajetory with high auray regarding both the position andthe veloity pro�le and produes smooth and natural transitions in position spae, aswell as in veloity spae.In [Gomez et al., 2012a℄ a novel roboti learning tehnique based on Fast MarhingSquare is presented. The method assumes that the task taught to the robot anbe odi�ed into a path planning problem. Their method takes into aount theenvironment, sine it modi�es the path planning algorithms of the system instead ofmodifying the motion ontrol.The work of [Palm and Iliev, 2010℄ reords the operator's motions by a data-apturing system; they are then modelled via fuzzy lustering and a Takagi-Sugenomodelling tehnique. The resulting skill models use time as input and the operator'sations as outputs. The robot exeutes the reognized skill by using the orrespondingreferene skill model. Drasti di�erenes between learned and real world onditionswhih our during the exeution of skills by the robot are eliminated by using theBroyden update formula for Jaobians. This method was extended for fuzzy modelsespeially for time luster models.[Shaal, 1999℄ disussed a set of primitives for generating ontrol ommands forany given motion by modifying trajetories appropriately, or generating entirely newtrajetories from previously learned knowledge.[Calinon et al., 2012℄ derive a task-parametrized model that an adapt motion andimpedane behaviours in real-time with respet to the urrent position/orientationof frames. The proposed extension is built upon the produt properties of Gaussianfuntions.[Tani and Ito, 2003℄ investigated the self-organization of behavioural primitivesin a neural network model in the ontext of robot imitation learning. The modelis haraterized by the parametri biases whih adaptively modulate for embeddingdi�erent behaviour patterns in a single reurrent neural net, in a distributed way.Diverse behaviour patterns other than learned patterns were generated beause of self-organization of non-linear map between the parametri biases and behaviour patterns.[Arie et al., 2012℄ desribes a model dealing imitation learning generalization byfousing on the problem of ation ompositionality. A robot was trained with aset of di�erent ations onerning objet manipulations whih an be deomposedinto sequenes of ation primitives. Then the robot was asked to imitate a novel



164 5. Generation and Adaptation of Robot Skillsompositional ation, omposed of prior-learned ation primitives. The results showedthat the novel ation an be suessfully imitated by deomposing and omposing itwith the primitives by means of organizing uni�ed intentional representation hosted bymirror neurons, even though the trajetory level appearane show di�erene betweenthose observed and those self-generated.The robot would reeive from the di�erent modules of pereption and interationthe required appropriate ommands ordering the reprodution of a skill, and wouldextrat the onstraints of the task and its environmental on�guration to instantiatethe appropriate knowledge frames as desribed in Chapter 4. With this informationtaken from the knowledge base, together with the pertinent Robot Skills Models or-responding to the requested task, the module for the generation and adaptation ofrobot skills is alled to adapt the robot skills aordingly and to generate the taskmodels for the robot reprodution of the task, Figure 5.1. For the operation of themodule, two distint proesses are required. A �rst step alls for a skill model tobe adapted, if neessary, to omply with the onditions of the task in whih it willbe reprodued or to be updated with new information. A seond step requires thegeneration of a task model, allowing the reprodution of the enoded knowledge of theskills by the robot in order to perform a requested task. The versatility and usabilityof a robot skill approah depend on the apaity to manipulate the skills. These ma-nipulations of the skills must allow for the adaptation, update, merger, ombination,and transition between the Robot Skills Models as neessary.Methods for model ombination or joining an be found in the �eld of mahinelearning and pattern reognition. Performane improvement an be obtained by om-bining multiple models together in some way, instead of just using a single model inisolation [Bishop, 2006℄. One method involves the learning of di�erent models andthen using the average of the preditions made by eah model. An alternative formof model ombination is hoosing one of the models to make the predition as a fun-tion of the input variables, in this way di�erent models beome responsible for makingpreditions in di�erent regions of input spae [Bishop, 2006℄. These methods are verydependent on the deision proess. A way of softening the weights in the deisionproess an be done by moving to a probabilisti framework for ombining models.These methods are known as mixtures of experts; models an be viewed as mixturedistributions onditioned by the input variables. A mixture of experts an be given:
p(t|x) =

K
∑

k=1

πk(x)pk(t|x) (5.1)In whih the mixing oe�ients πk(x) are known as gating funtions and the individualomponent densities pk(t|x) are alled experts. The idea behind this is that di�erentomponents an model the distribution in di�erent regions of input spae and thegating funtions determine whih omponents are dominant in whih region. Thee�orts in LfD approahes and the theory of generating movement primitive robotiskills an only have a real implementation value for developing humanoid robotisystems if the models of the skill an be operated upon to generate new behavioursof inreasing levels of omplexity.



5.3. Operations with Robot Skills 1655.3 Operations with Robot SkillsA knowledge base of robot skills was developed in the previous hapter. TheRobot Skills Models in this work has been learned by employing a Dynamial Systems(DS) approah, built as basi primitives of movements enoding within the modelthe motion dynamis of a demonstrated skill. Autonomous dynamial systems wereproposed as an approah for representing movements as mixtures of non-linear di�er-ential equations with well-de�ned attrator dynamis [Ijspeert et al., 2001℄. The DSframework allows it to omply with the attrator dynamis of the desired behaviour,modulating it with a set of non-linear dynami systems that form an autonomousontrol poliy for motor ontrol.The DS framework provides a e�etive means to enode trajetories through time-independent funtions that de�ne the temporal evolution of the motions. The motiondynamis are estimated through a set of �rst order non-linear dynamial systemequations. It is assumed that the motion is governed by a �rst order autonomousordinary di�erential equation, ξ̇ = f(ξ), as in Eq. 3.3.A DS approah to skill learning an o�er a fast, simple and powerful formulationfor representing and generating movement plans learned from demonstration. The DSframework allows to omply with the attrator dynamis of the desired behaviour,modulating it with a set of non-linear dynami systems that form an autonomousontrol poliy for motor ontrol. DS provide e�ient and lean means for enodinga skill and ful�lling various desirable properties.The DS framework presents three advantages, i) DS an be easily modulated togenerate new trajetories that have similar dynamis, performing in areas that werenot overed during demonstrations, [Khansari-Zadeh and Billard, 2011℄; ii) DS areintrinsially robust and an adapt their trajetories instantly in the fae of spatio-temporal perturbations [Khansari-Zadeh and Billard, 2010a℄; iii)DS do not expliitlydepend on time indexing and provide losed loop ontrol and are able to modelarbitrary non-linear dynamis, [Gribovskaya et al., 2010℄.The onept of a dynamial system is quite general. Dynamial Systems aremathematial objets that unambiguously desribe how the state of some systemevolves over time [Beer, 2000℄. DS theory o�ers a wide variety of tools for visual-izing and analysing the temporal behaviour of suh systems. There are two typesof dynamial systems di�erential equations and iterated maps or di�erene equa-tions [Strogatz, 1994℄. Di�erential equations de�ne a vetor �eld, whih assigns aninstantaneous diretion and magnitude of hange to eah point in the state spae.The sequene of states generated by the ation of the dynamis is alled a solutiontrajetory. The set of all possible solution trajetories is alled the phase portrait.Of partiular interest is the possible long-term behaviour of a dynamial system.Over time, the state of many dynamial systems eventually ends up in a small subsetof the state spae alled a limit set. Two simple types of limits sets are equilibriumpoints and limit yles. For stable limit sets or attrators, all nearby trajetoriesonverge on the limit set, so that small perturbations away from the limit set willreturn there. In ontrast, any perturbation from an unstable limit set will not returnto that limit set, but will instead be arried elsewhere by the dynamis [Beer, 2000℄.



166 5. Generation and Adaptation of Robot SkillsThe appearane of phase portraits is ontrolled by the �xed points ξ̄ de�ned by
f(ξ̄) = 0 representing equilibrium point solutions [Strogatz, 1994℄. The qualitativestruture of the �ow an hange as parameters are varied; �xed points an be reatedor destroyed, or their stabilities hanged. These hanges in the dynamis are alledbifurations. Bifurations provide models of transitions and instabilities as someontrol parameter is varied [Strogatz, 1994℄.5.3.1 Stability ConernsA key matter when adopting a Dynamial System approah to modelling therobot skills for reating ontrol poliy of the movement primitives is the requirementto ensure the stability of learned DS [Khansari-Zadeh and Billard, 2011℄. Fallinginto an unstable behaviour or a divergene from the desired trajetory would be apotentially dangerous ourrene when ontrolling a robot, more speially a humanoidrobot whih may be performing together with other humans. Therefore, analysingthe behaviour of the system is essential, as is determining whether it is stable. StableDS would bene�t from inherent properties ruial to modelling movement primitivesrobot skills.The stability analysis of DS is usually around its equilibrium points. In thiswork the notation ξ̄ de�nes an equilibrium point, a point ξ̄ is an equilibrium point if
ξ(0) = ξ̄ initially and then ξ(t) = ξ̄ for all time, an equilibrium is de�ned to be stableif all su�iently small disturbanes away from it damp out in time [Strogatz, 1994℄.The equilibrium points an be determined by omputing the real roots of Eq 3.3. Thestability of a given equilibrium point ξ̄ an be de�ned as follows.

ξ = ξ̄ is a loally stable equilibrium point if for eah R > 0, there is r = r(R) > 0suh that if the initial state ξ(0) − ξ̄ < r, then the evolution of the system in timesatis�es ξ(t)− ξ̄ < R for all t > 0.
ξ = ξ̄ is a loally asymptotially stable equilibrium point if it is stable and r anbe hosen suh that if ξ(0)− ξ̄ < r, then it implies limt→∞ ξ(t) = ξ̄.
ξ = ξ̄ is a globally asymptotially stable equilibrium point if the asymptotistability holds for any initial point, limt→∞ ξ(t) = ξ̄, for all ξ(0) ∈ Rd.Studying the stability of DS an generally be divided into linear and non-linearsystems. An autonomous linear DS has the following general form:

ξ̇ = Aξ + b (5.2)where A ∈ Rd×d and b ∈ Rd are a onstant matrix and a vetor. The stabilityof linear dynamis in Eq. 5.2 is global asymptoti at the unique equilibrium point
ξ̄ = −A

−1
b if and only if the real part of all eigenvalues of the matrix A are stritlynegative. Eq. 5.2 orrespond to the linear terms of Eq. 3.24 for the GMR.Stability analysis of linear dynamial systems is well studied, in ontrast, there isno unique method to analyse the stability of non-linear DS, and theoretial solutionsexist only for partiular ases [Gribovskaya et al., 2010℄. The Lyapunov methods arethe most ommon and general approahes for studying the stability of non-linearDS. The stability analysis via the standard Lyapunov Stability theorem requires �rst



5.3. Operations with Robot Skills 167�nding a non-negative energy funtion V (ξ) ≥ 0, and seond verifying if it alwaysdereases in a neighbourhood around the equilibrium point ξ̄.The non-linear DS given by Eq. 3.3 is asymptotially stable at ξ̄, if a ontinuousand ontinuously di�erentiable Lyapunov funtion V (ξ) an be found suh that










V (ξ) > 0 ∀ξ ∈ Ω ⊂ Rd&ξ 6= ξ̄

V̇ (ξ) < 0 ∀ξ ∈ Ω ⊂ Rd&ξ 6= ξ̄

V (ξ̄) = 0&V̇ (ξ̄) = 0

(5.3)In this ase, the domain Ω is alled the stability domain or region of attration,and should orrespond to a level set of V (ξ). If the stability domain is expandedto the whole state-spae Ω = Rd and V (ξ) → ∞ as ‖ξ‖ → ∞ then ξ̄ is globallyasymptotially stable.[Khansari-Zadeh and Billard, 2011℄ algorithm SEDS was employed to learn theestimates for the DS, as desribed in Chapter 3. SEDS omputes the optimal valuesfor the parameter θ while ensuring the estimate f̂ to be globally stable in Rd givensu�ient stability onditions.An arbitrary non-linear DS given by Eq. 3.24 is globally asymptotially stable atthe target ξ̄ ∈ Rd by ensuring the following stability onditions,
{

b
k = −A

kξ̄

A
k + (Ak)⊤ ≺ 0

∀k = 1 . . .K as in Eq. 3.34where A
k and b

k are de�ned aording to Eq. 3.23, and ≺ 0 refers to the negativede�niteness of a matrix.A proof and details an be found on [Khansari-Zadeh and Billard, 2010a℄. Eq.3.34 provides us with su�ient onditions to make DS globally asymptotially stableat the target ξ̄. Suh a model is advantageous in that it ensures that starting fromany point in the spae the trajetory always onverges on the target.5.3.2 Generalizing to Unseen ConditionsAs we have reviewed adopting a DS framework was advantageous beause it of-fered several valuable properties inherent to the nature of the Dynamial Systems. DSould be modulated to generate trajetories that have similar dynamis, performing inareas that were not overed during demonstrations [Khansari-Zadeh and Billard, 2011℄.Generalization of the motion to an unobserved part of the spae results im-mediately from the appliation of the funtion to the new set of input variables[Gribovskaya et al., 2010℄. The ability to generate a trajetory from an arbitrary ini-tial position to the target with a relevant veloity pro�le is a strong point of enodingmotion with DS. This generalization proess onsists of exploiting the variability in-herent in the various demonstrations and to extrat the essential omponents of thetask. These essential omponents should be those that remain unhanged aross thevarious demonstrations [Calinon, 2009℄.DS an enode movements and replay them in various onditions, Figure 5.3present results of the generalization of the motion in di�erent starting onditions
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Fig. 5.3: Generalize the motion to di�erent starting onditions. (left) The result ofstarting one of the motion tested in Chapter 3, 5Curve, at di�erent startingpoints. (right) The result of starting one of the motion tested in Chapter3, Sine, at di�erent starting points.tested on the reprodution of a ouple of motions learned in Chapter?. Generalizationproperties allow the system to adapt a robot reprodution of the skill to hanges inthe environment relating to the position of the targets at the onset of motion.The DS do not de�ne a single trajetory but a family of solutions within theattrator landsape of our system, therefore adapting to di�erent starting positionsomes naturally under the DS framework, just as in the potential �eld approahes, Dy-namial Systems approahes in motor ontrol reate vetor �elds aording to whihmovement system is supposed to move. DS trajetory based thinking reates simpler,although less �exible, attrator landsapes, but sales easily to higher dimensions andenables mahine learning to shape the landsapes [Ijspeert et al., 2009℄.5.3.3 Robustness to PerturbationsAnother advantage of adopting a DS framework is its inherent robustness toperturbations. DS are intrinsially robust and an adapt their trajetories instantlyin the fae of spatio-temporal perturbations [Khansari-Zadeh and Billard, 2010a℄.A major strength of the DS approah is its ability to ope with perturbations inreal-time. As a perturbation is understood, the unexpeted hanges the position ofthe attrator or the robot's joints ould present during motion. The learned dynamiswith a position of an objet mapped into an attrator an suessfully trak the objet.Suh �exibility ombined with the guarantee of ultimately reahing the objet is one ofthe major advantages of the proposed method in omparison with traditional planners[Gribovskaya et al., 2010℄.The DS framework provides a robust robot ontroller in the fae of perturba-tions during the reprodution of a learned robot skill. Perturbations are produedby displaement of the target objet or of the robot trajetory during reprodutionattempts. The robot an smoothly adapt its generalized trajetory to handle dy-nami perturbations during the reprodution. We must distinguish between spatialand temporal perturbations. Temporal perturbations are produed when the robot
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Fig. 5.4: Robustness to a perturbation of the target position during reprodution.(left) The result of perturbation with one of the motion tested in Chapter 3,Ar, moving the target during exeution. (right) The result of perturbationwith one of the motion tested in Chapter 3, Angle, moving the targetduring exeution. Trajetories are drawn in red with di�erent startingpoints. A blak star marks the target position and the blak dotted line thedisplaement from the perturbation. The moment when the perturbationtakes plae is marked by a blak asterisk.
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Fig. 5.5: Robustness to a perturbation of the robot trajetory during reprodution.(left) The result of perturbation with one of the motion tested in Chapter 3,Ar, moving the robot during exeution. (right) The result of perturbationwith one of the motion tested in Chapter 3, Angle, moving the robot duringexeution. Trajetories are drawn in red with di�erent starting points.A blak star marks the target position. The displaement of the robottrajetory from the perturbation is marked by the red dashed line enlosedby blak irles at the moment of perturbation.



170 5. Generation and Adaptation of Robot Skillstrajetory is momentarily stopped beause of a safety issues or an objet blokingits path. Spatial perturbations typially derive from the dynami interation withan environment in whih an objet or robot's arm ould be displaed by an externalperturbation.Figure 5.4 presents results of the adaptation of the motion to a spatial perturba-tion in the position of the target tested on the reprodution of a ouple of motionslearned in Chapter 3. The moment when the perturbation takes plae is marked bya blak asterisk. The trajetories are instantly reovered from the perturbation anddon't display notieable hanges in their exeution towards their new target position.Figure 5.5 shows results of the adaptation of the motion to perturbations in the robottrajetory during exeution tested on the reprodution of a ouple of motions learnedin Chapter 3. The moment when the perturbation takes plae is marked by a blakirle enlosing the displaement of the robot trajetory marked by the red dashedline. The DS reovers its trajetory instantly from the perturbation and doesn'tdisplay notieable hanges in its exeution towards its new target position.Dynamial systems o�er a partiularly interesting solution to an imitation proessaimed at being robust to perturbations whih are robust to dynamial hanges in theenvironment [Billard et al., 2008℄. Learning the robot skills as DS whih are time-invariant and globally stable, the system is able to handle both temporal and spatialperturbations, while performing the motion as lose to the demonstrations as possible.A ontroller driven by a DS is robust to perturbations beause it embeds all possiblesolutions to reah a target in one single funtion [Khansari-Zadeh and Billard, 2010a℄.The system is generi regarding tasks it may reprodue; furthermore, it may workwith limited and inaurate information about the environment, as it does not requireany ostly replanning.5.3.4 Obstale AvoidaneWorking with humanoids in the natural environment requires that the robotisystems work in luttered environments, where they may fae several objets duringthe task exeution. Collision avoidane apabilities would have to be present for thesesystems.Obstale avoidane is a lassi problem in robotis and many approahes havebeen proposed to solve it. One may distinguish between loal and global methods, de-pending on whether the obstale in�uenes the behaviour either loally or everywhere.Global methods, suh as those dealt with by path planning algorithms, ensure �ndinga valid solution, if it exists. However, these methods annot o�er the reativity soughtfor swiftly avoiding obstales that appear suddenly [Khansari-Zadeh and Billard, 2012℄.In Arti�ial Potential Fields, obstales are modelled as repelling potential �eldswhih are designed to automatially push a ontrol system to irumnavigate themin an on-line reative way whih prevents the robot from olliding with the obstale.An appropriate repulsion fore should be omputed so that it repels the trajetorysu�iently away from the obstale while avoiding getting stuk in loal minima. Suhreative behaviour assumes that obstales may appear in an unforeseen and suddenway, suh that pre-planning is not possible or useful [Ijspeert et al., 2009℄



5.3. Operations with Robot Skills 171The approahes based on attrator dynamis are another variant of the potential�eld method, whih uses heading diretion, rather than the Cartesian position of therobot. The Dynami Potential Field approah extends the potential �eld prinipleby also onsidering the veloity along the path [Khansari-Zadeh and Billard, 2012℄.[Ijspeert et al., 2009℄ suggested a model for obstale avoidane with the use ofa oupling term in their DS approah. On the way to the goal state, an obstaleis positioned at o = [o1o2o3]
T and needs to be avoided. A suitable oupling term

Ct = [Ct,1Ct,2Ct,3]
T for obstale avoidane an be formulated as Ct = γRẏφexp(−βφ).The angle φ is interpreted as the angle between the veloity vetor ẏ and the di�erenevetor (o− y) between the urrent position and the obstale. R is a rotation matrixwhih auses a rotation of 90 degrees about the vetor r perpendiular to the planespanned by ẏ and (o− y).In [Khansari-Zadeh and Billard, 2012℄ a novel approah is presented to real-timeobstale avoidane based on DS that ensures impenetrability of multiple onvexshaped objets. Their approah indued a modulation on the generi motion dueto the presene of an obstale. First, start with an objet entred on ξo and providea onvex bounding volume formulation of the outer surfae of the obstale and de�ne

ξ̃ = ξ − ξo to simplify notation. A ontinuous funtion Γ(ξ̃), whih projets Rd into
R, has ontinuous �rst order partial derivatives and inreases monotonially. By on-strution, the relation Γ(ξ̃) = 1 holds at the surfae of the obstale. A modulationmatrix is given by M(ξ̃) = E(ξ̃)D(ξ̃)E(ξ̃)−1 The dynami modulation matrix M(ξ̃)propagates the in�uene of the obstale on the motion �ow. The e�et of the dynamimodulation matrix is maximum at the boundaries of the obstale, and vanishes forpoints far away from it [Khansari-Zadeh and Billard, 2012℄. The modulation matrixan be applied to the original dynamis given by f so as to have,

ξ̇ =M(ξ̃)f(ξ) (5.4)From [Khansari-Zadeh and Billard, 2012℄ a motion that starts outside the obsta-le, Γ( ˜ξ(0)) ≥ 1, and evolves aording to Eq. 5.5 does not penetrate the obstale.Therefore, the dynami modulation matrix M(ξ̃) an be used to deform a robot mo-tion suh that it does not ollide with an obstale. The magnitude of the modulationan be tuned by modifying the eigenvalues of the dynami modulation matrix.When in the presene of multiple obstales, the single modulation matrix is inef-fetive and should be modi�ed to inlude the e�et of all the obstales. Considering
K obstales with assoiated referene points ξo;k and boundary funtions Γk(ξ̃k), for
k = 1..K. the dynami modulation matrix for eah obstale an be expressed by
Mk(ξ̃k) = Ek(ξ̃k)Dk(ξ̃k)Ek(ξ̃k)−1. The ombined modulation matrix that onsidersthe net e�et of all the obstales is then given by,

M̄(ξ̃) =
K
∏

k=1

Mk(ξ̃k) (5.5)The modulation is parametrizable and allows to determine a safety margin. Forproof and further explanations see [Khansari-Zadeh and Billard, 2012℄. The approahshould be inorporated as part of the Robot Skills Models in future work.



172 5. Generation and Adaptation of Robot Skills5.4 Update of Robot SkillsIn previous hapters the tehniques to learn the models of robot skills and thedevelopment of a knowledge base to store and aess them to have a set of basiprimitive ations on whih to generate omplex human like motions have been pre-sented and developed. Now it is neessary to ome up with methods to operate uponthe Robot Skills Models. A �rst desirable manipulation over the learned robot skillswould naturally be the ability to update and re�ne the models in order to adapt theskill with new information. As outlined at the beginning of this hapter, learning andenoding the models of the robot skills for every oneivable senario the robot mayenounter would not be feasible, therefore, updating previously learned models is akey mehanism for generating new models and expanding the appliation and versa-tility of the robot skills. A robot skill must be updatable; when given new informationfor the representation of a skill the system must allow for the models to be re�ned.The update approahes are related to those e�orts to develop inremental learningtehniques. Unlike other approahes whih assume that data omes in bloks, theinremental learning approahes work for the ase when novel data points arrive oneby one. Inremental learning approahes that gradually re�ne the task knowledgeas more examples beome available pave the way towards LfD systems suitable forreal-time interations between humans and robots [Billard et al., 2008℄.Intuitively, a new model of the skill ould be generated by inluding the newdemonstrations Dnew of the skill with the previous dataset Dorig and just retrain themodel of the skill, with the omplete dataset D = Dorig + Dnew, as it was desribedin Chapter 3. This would produe a new model, yet, several issues arise. First, forthis approah to be possible it would be required that all the training informationfrom the demonstrations' dataset be stored in memory. Storing all this informationshould not be required. New available data must allow to re�ne a model of the mo-tion without the need for keeping the whole training demonstrations data in memory[Calinon, 2009℄. Seondly, trying to update the skill model with all the previousdemonstrations ould present a problem of diluting the in�uene at the new demon-strations if is paired with a muh bigger dataset. Intuitively, it an be seen that ifall the information that was available is the urrent GMM estimate, then a singlenovel point would never arry enough information to ause signi�ant hange in theGaussian omponents [Arandjelovi and Cipolla, 2005℄. Also, by using the ombineddataset of old and new demonstrations there ould be issues on the ompatibility ofthe reorded demonstrations, whih would need to be adjusted before training withthe possible loss of information.The system must be apable of updating and re�ning its model of a skill whenpresented with new relevant information for the skills, taking only the stored knowl-edge of the Robot Skill Model in memory by updating its learned parameters θ basedon the new demonstration.The problem of inrementally updating a GMM, taking only into aount newinoming data and a previous estimation of GMM parameters has been proposedfor on-line data stream lustering. [Song and Wang, 2005℄ suggested an approah toinrementally updating the estimate taking only the newly arrived data and the pre-



5.4. Update of Robot Skills 173viously estimated model. Their approah �rst reates a new GMM from the newinoming data, and then reates a ompound model by merging the omponents ofthe old and the new GMM. Their inremental Gaussian mixture model estimationalgorithm merges Gaussian omponents that are statistially equivalent. For eahluster in the new GMM, it is determined if there is a statistially equivalent ovari-ane and mean with any of the omponents of the old GMM, then a new omponentis reated by merging them. If not it will add the remaining omponents adjustingtheir weights aordingly. The main drawbak of the suggested approah is that it isomputationally expensive and tends to produe more omponents than the standardEM algorithm [Calinon, 2009℄. Also, they fail to exploit the available probabilistiinformation by failing to take into aount the evidene for eah omponent at thetime of merging [Arandjelovi and Cipolla, 2005℄.Other approahes suggest the use of the temporal oherene properties of datastreams to update the GMM parameters. [Arandjelovi and Cipolla, 2005℄ proposea method onsisting of a three-stage model update eah time a new data point be-omes available. First, model parameters are updated under the onstraint of �xedomplexity. Then new Gaussian omponents are postulated by model splitting andomponents are merged to minimize the expeted model desription length. Theirmodel assumes that data varies smoothly in time, whih allows the GMM parametersto be adjusted when new data is observed.[Calinon, 2009℄ proposes two approahes to deal with these problems, where theneed is for adjusting an already existing model when new data points are given. A �rstmethod proposed a reformulation of the problem in [Arandjelovi and Cipolla, 2005℄for a generi observation of multiple data points. The idea is that an adaptationof the EM algorithm in Eq. 3.21 by separating the parts dediated to the dataalready used to train the model and the one dediated to the newly available data,with the assumption that the set of posterior probabilities remain the same whenthe new data is used to update the model. The model is �rst reated with N datapoints ξj and updated iteratively during T EM-steps until onvergene to the set ofparameters (πk
T , µ

k
T ,Σ

k
T )

k
k=1. When a new demonstration is given, T̃ EM-steps areagain performed to adjust the model to the new Ñ data points ξ̃j, starting from aninitial set of parameters (π̃k

0 , µ̃
k
0, Σ̃

k
0)

k
k=1 = (πk

T , µ
k
T ,Σ

k
T )

k
k=1 and iterating until a newupdated model is estimated.It is important to note that for this approah to work, it is assumed that the umu-lated posterior probability does not hange muh with the inlusion of the novel datain the model; this is only true if the new data is lose to the model [Calinon, 2009℄.This restrition is important beause it annot always be guaranteed and more im-portantly most times it is not even wanted, sine the desirable re�nement of themodel requires su�ient departure from the original skill for the update proess tobe meaningful. To illustrate the result of this method Figure 5.6 shows the result ofupdating a learned model of a skill with a new demonstration.[Calinon, 2009℄ also presented an alternative to the above method using a stohas-ti proess to update the parameters. An initial GMM model (πk, µk,Σk)kk=1 is �rstreated using the EM algorithm in Eq. 3.21. When an update is required withnew given data a proess of GMR regression is performed over the learned model to
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Fig. 5.6: Diret inremental method update of a skill. (left) Model of the learnedskill, with demonstrations in blak. (enter) New demonstration, in ma-genta, over the learned skill model. (right) Updated model of the skill.
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Fig. 5.7: Generative method update of a skill. (left) Model of the learned skill, withdemonstrations in blak. (enter) Model of the learned skill, with the newdemonstration in magenta and the generated trajetories in red. (right)Updated model of the skill.stohastially generate a dataset from the model. Therefore a new dataset is reatedomposed of this generated demonstration and the new observed dataset; the GMMparameters of the updated model are then retrained with the EM algorithm. For thispurpose a learning rate α was de�ned, along with the number of samples, n = n1+n2used for the learning proedure, where n1 and n2 are respetively the number of ex-amples from the new observation and number of examples generated stohastiallyby the urrent model. The training set of n trajetories is used to re�ne the model byupdating the urrent set of parameters using the EM algorithm [Calinon, 2009℄. Thevalue for α ∈ [0; 1] an be set to a �xed learning rate or depend on the urrent numberof demonstrations used to train the model, also α an be omputed reursively foreah newly available demonstration.To illustrate the result of this method Figure 5.7 shows the updating a learnedmodel of a skill in the same way as the one that was presented for the previous methodin Figure 5.6.For the adaptation of a task model by updating a robot skill in this work amethod similar to the one presented above from [Calinon, 2009℄ is employed. Modelsof a skill must be updatable when given new information for the representation of a



5.5. Merger of Robot Skills 175Algorithm: Update the learned robot skillInput: Learned Robot Skill Model, MRS , with parameters θk = (πk, µk,Σk).1. Reord new demonstration trajetory for the update of the skill.2. Generate stohastially ngen trajetories from the urrent model by the GMR.3. Determine the parameter α = αk ∈ [0; 1]; k = 1..K4. Create a new update demonstration dataset {ξ, ξ̇}update5. Generate the new update model of the skill.6. ENDOutput: Updated Robot Skill Model, MRSupdate
, with parameters θkupdate = (πk, µk,Σk).Tab. 5.1: Proedure for updating a learned model of a robot skill.skill without having to store the training demonstrations data in memory. A RobotSkill Model, M̄RS, is �rst learned by means of the SEDS algorithm presented by[Khansari-Zadeh and Billard, 2011℄ as desribed in Chapter 3 with learned parame-ters θk = (πk, µk,Σk). We are onsidering only the ase when the model is re�ned afterreeiving one update demonstration for the skill, so therefore, the number of samples

n, used for the learning proedure would be n = ngen+1, with ngen being the numberof examples generated stohastially from the urrent model by the GMR. For ourmethod the new update demonstration dataset {ξ, ξ̇}update would be grouped into Klusters aording to the number of Gaussian funtions determined for the originalRobot Skill Model, and the parameter α would be de�ned as αk ∈ [0; 1]; k = 1..K,and it would determine a measure of the relative importane of the area in luster
k the update demonstration should have for re�ning the model over the stohastidemonstrations generated from the learned model. When generating the stohastidemonstrations sampling out of the GMR with the learned parameters θ of the robotskill random samples are taken starting around the given demonstration. To induemore weight on the update dataset or the generated dataset as determined by theparameter αk, data points of the generated dataset whih are too far removed fromthe update dataset aording to a threshold dependant of α will be disarded.To illustrate the result of this method Figure 5.8 shows the result of updatinga learned model of a skill. The proess for updating a learned Robot Skill Model issummarized in Table 5.1.5.5 Merger of Robot SkillsAs it has been stated throughout this hapter, e�orts at learning and generatingmovement primitives roboti skills an only have a real implementation value fordeveloping humanoid roboti systems if the models of the skill an be operated uponto generate new behaviours of inreasing levels of omplexity. It is neessary to ome
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Fig. 5.8: Update proess of a robot skill. Model of the learned skill with new demon-strations in magenta. Updated model of the skill. (top) this example showthe update of the skill for the same demonstration as the above examples,the parameter αk are de�ne to govern the in�uene of new data on theupdate proess. (bottom) Appropriate seletion of αk allows the updatedmodel to reprodue the urve at the top of the trajetory.



5.5. Merger of Robot Skills 177up with methods to manipulate the Robot Skills Models. Enoding models of therobot skills for every oneivable need the robot may �nd itself in is not plausible,hene, it is key for approahes to be able to generate new skills by merging di�erentskill primitives into a new skill. The ability to generalize skills and adapt themto a new situation is fundamental for the LfD onept; performing the task underdi�erent irumstanes from those present during demonstrations, given appropriateadaptation, an allow an aquired skill to arry out more omplex task than theteaher is apable of demonstrating [Khansari-Zadeh and Billard, 2011℄.The learned DS models enode spei� motion skills, whih an be seen as build-ing bloks used to generate more omplex motions. Multiple desired robot skills maybe omposed from sequening or superposition of various primitives skills. The mod-ularity of the DS approah is essential as it would allow to ontrol a wider repertoireof movements from a smaller set of basi skills [Shaal, 1999℄. Intuitively, one ouldonsider an approah to merging two or more models of a skill simply by adding andaveraging together their learned parameters θ = (π, µ,Σ) in order to obtain a new skillmodel through a linear superposition. The models would represent the distributions
f 1(ξ) and f 2(ξ) respetively as from Eq. 3.17,

f 1(ξ) =

N
∑

i=1

πiN i(ξ;µi,Σi)

f 2(ξ) =
M
∑

j=1

πjN j(ξ;µj,Σj)A weighted sum of these densities would give the merged model
f(ξ) = αf 1(ξ) + βf 2(ξ) (5.6)The weights α and β sale the prior of the omponents to give the new GMM, with

N +M omponents, by simply onatenating the desriptions of eah GMM,
f(ξ) =

N+M
∑

k=1

πkN k(ξ;µk,Σk)the �rst N omponents terms are spei�ed from f 1(ξ), while the remaining om-ponents ome from f 2(ξ). The prior πk are exatly the πi or πj of f 1, f 2 saled by
alpha or β aordingly, while the µk entres and Σk ovariane matrix are opiedfrom their soure GMM. While this approah may work in some ases it is importantto note that diret superposition of the skills does not allow to ontrol the mannerin whih the new model is generated. Also the non-linear sum of two or more stableDS would not neessarily generate a stable new model and speial attention shouldbe onsidered in this regard [Khansari-Zadeh and Billard, 2011℄.The work of [Hall et al., 2005℄ presents a modi�ed approah to merging a pair ofGMM to produe a third GMM ; this losely approximates the GMM whih would



178 5. Generation and Adaptation of Robot Skillsbe onstruted by a standard algorithm for �tting the data, having the onatenationof data sets of the two mixture models as input.
f(ξ1)⊕ f(ξ2) ≈ f(ξ1 : ξ2) (5.7)There are three main steps to their approah, �rst onatenating the models bytrivially ombining the GMM into a single model, as per Eq. 5.6, to produe amodel with M + N omponents. Then simplifying the GMM of the onatenatedmodel by merging omponents using a weighted summation of their parameters.[Hall et al., 2005℄ merged omponents by ombining their parametri desriptions,not by adding the density funtions. Finally, seleting the optimal number of om-ponents 1 ≤ K ≤M +N for the GMM that best explains the distribution.[Muelling et al., 2013℄ presented a framework to generalize learned motor primi-tives to a wider range of situations using a mixture of motor primitives approah. Theresulting poliy enables the robot to selet appropriate motor primitives as well as togeneralize between them. The goal was to aquire a library of movement primitivesfrom demonstrations and to selet and generalize among these movement primitivesto adapt to new situations. The primitives are assoiated with a set of parameters re-ferred to as the augmented state. A new movement is generated for a new augmentedstate seleting a primitive to use as omponents of the mixture of motor primitivesalgorithm [Muelling et al., 2013℄. The algorithm ativates omponents using a gat-ing network based on the augmented state and generates a new movement using theativated omponents.The mixture of motor primitives generates a new movement for the urrent sit-uation triggered by the augmented state by omputing the weighted average of allmovement primitives in the library, the resulting poliy f(ξ) generated by the algo-rithm is given by
f(ξ) =

L
∑

i=1

γi(δ)f i(ξ)

L
∑

j=1

γi(δ)

(5.8)where the funtion γi(δ) generates the weight of f i given the augmented state
ξ. The sum of all weights L

∑

j=1

γi(δ) form the gating network of the mixture of motorprimitives algorithm [Muelling et al., 2013℄. The gating network weights the move-ment primitives based on their expeted performane within the urrent ontext,ensuring only appropriate movement primitives an ontribute. The weights aremodelled by an exponential family distribution. The resulting motor poliy f(ξ)is omposed of several primitives weighted by their suitability in the given ontext ofthe task; the weights are adapted to the task based on the outome of previous trials[Muelling et al., 2013℄.In this work, in order to generate a new skill based on the merger of several RobotSkills Models, previously learned and stored in the knowledge base, we developeda method taking from the above approahes. First we review a ouple of useful
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Fig. 5.9: Proess of merging two robot skills to generate a new model. (left) Repre-sentation of the two learned models of the robot skill and their non-linearterms hk. (right) Representation of the new robot skill model generatedfrom the merger proess and its non-linear terms h̃k.mathematial properties from the SEDS formulation hosen to learn the skills,if f(ξ) is SEDS, and α > 0 ∈ R

ξ̇ = αf(ξ) is SEDSonsider M SEDS models f i(ξ), i ∈ 1..M

ξ̇ =
M
∑

i=1

αif i(ξ);αi > 0 is SEDS (5.9)
The models of the robot skills an be expressed as a non-linear sum of lineardynamial systems of the form

ξ̇ = f̂(ξ) =
K
∑

k=1

hk(ξ)(Akξ + b
k) as in Eq. 3.24Here, realling the expression of the non-linear weighting funtion hk(ξ), as inEq. 3.23, it an be found that it shares a similar formulation with the expression ofthe weights γi(δ) for the gating funtion of Eq. 5.8. The merger of the Robot SkillsModels an be arried out with a model ombination approah expressed in mixturesof experts model as from Eq. 5.1, in whih the mixing oe�ients πk(x) of the gatingfuntion are given by the non-linear weighting funtion hk(ξ), and the pk(t|x) densityis given by the linear DS A

kξ + b
k.The proess for the merging of robot skills would proeed as in the above ap-proahes; �rst, the GMM of the robot skills are joined into a single model. Thena new weighting funtion h̃(ξ) for the single model must be built out of the origi-nal weighting terms hk(ξ) from the merged models, ensuring the Gaussian with thebiggest weight in every region of the trajetory provides the largest in�uene over thenew GMM model in that region and that the new weighting funtion h̃(ξ) still meetsthe onstraint of the mixing oe�ient as in Eq. 3.22, 0 > hk(ξ) > 1 and∑ hk(ξ) = 1.
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Fig. 5.10: Merger of two learned GMM skill models to generate a new skill. (left)Learned models of the robot skill. (enter) Merging proess of the twomodels to generate a new one. (right) Merged skill model.Then a new weighting funtion h̃k(ξ) would be given by h̃k(ξ) = αk(ξ, h)hk(ξ) where
αk(ξ, h) is a salar funtion that weights the original hk(ξ) of the models, and ensuresthe onstraints of h̃(ξ). Figure 5.9 illustrates the proess of merging two robot skillsto generate a new skill model.Figure 5.10 illustrates the result of merging two robot skills to generate a newskill model. The proess for updating a learned Robot Skill Model is summarized inTable 5.3.5.6 Combination of Robot SkillsOperations over the models of the robot skills must inlude the apaity to gener-ate skills in order to allow arrying out more omplex task than those the teaher isapable of presenting during demonstrations. The Robot Skills Models must be om-binable into new models apable of generating skills, enompassing a larger spetrumof the attrator dynamis. One important gain from the ombination of robot skillsomes from inreasing the auray of the generalized behaviour. The onvergeneof the motion to the target is ensured, yet, due to the lak of information for pointsfar from demonstrations, a model may reprodue some trajetories that are not on-sistent with the usual way of doing the task. The presented behaviours of the robotmay not be optimal in these ases; however, suh results are inevitable, given thatthe information from demonstrations is inomplete and the inferene for points toofar from them is not reliable. The generation of a model by ombining robot skills isneessary in order to improve the task exeution.The more diret and intuitive approah would rely on providing the robot withmore demonstrations over regions not overed before. By showing the robot moredemonstrations and re-training the model with the new data, the robot should be ableto suessfully aomplish the task [Khansari-Zadeh and Billard, 2011℄. However,



5.6. Combination of Robot Skills 181Algorithm: Merger of the learned robot skillInput: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .1. Compute the new model as∑K

k=1
hk(ξ)(Akξ + b

k).2. Compute the parameters αk for the new model.3. Build the weighting funtion h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).4. Generate the new merged model of the skill.5. ENDOutput: Merged Robot Skill Model, MRSmerged
, given by ∑K

k=1
h̃k(ξ)(Akξ + b

k).Tab. 5.2: Proedure for merging learned models of a robot skill.this approah would not seem to be the most �exible and general, and also robotsperforming tasks in the real world annot reliably expet to have an available teaherto provide them with more demonstrations whenever their knowledge of a task doesn'tsu�e.The work of [Chatzis et al., 2012℄ reformulate GMR models, introduing the on-ept of quantum states, whih an be onstruted by superposing onventional GMRstates by means of linear ombinations; their approah is espeially suitable for learn-ing omplex demonstration trajetories. In [Shukla and Billard, 2012℄ the fous ison ombining several learned DS, with distint attrators, resulting in a multi-stableDS, as ould be the ase of di�erent attrators representing several grasp points ofa single objet. Their work presented an Augmented-SVM model, whih inherits re-gion partitioning ability of well know Support Vetor Mahine (SVM) lassi�ers andis augmented with novel onstraints derived from the individual DS. A DS omposedof multiple stable attrators provides an opportunity to enode multiple dynamis,direted towards di�erent attrators, into a single DS. Restriting the motion dynam-is to a single attrator onstrains onsiderably the appliability of these methods torealisti grasping problems. From a robotis viewpoint, a robot ontrolled using aDS with multiple attrators would be able to swith online aross grasping strategies[Shukla and Billard, 2012℄.The stability at multiple targets is an important onern; this problem has beenaddressed largely through neural networks approahes. For instane, Hop�eld net-works an o�er a powerful means of enoding several stable attrators in the samesystem. However, the dynamis to reah these attrators was not ontrolled for; norwas the partitioning of the state spae that would send the trajetories to eah at-trator. A naive approah to building a multi-attrator DS would be to �rst partitionthe spae and then learn a DS in eah partition separately this would however rarelyresult in the desired ompound system [Shukla and Billard, 2012℄. Due to the in�u-ene of non-linear dynamis, trajetories that initialize in one region ould ross theboundary and onverge to the attrator of the other region. In a real senario, ross-



182 5. Generation and Adaptation of Robot Skillsing over may take the trajetories towards unreahable regions. Also, trajetoriesthat enounter the boundary may swith rapidly between di�erent dynamis leadingto jittery motion [Shukla and Billard, 2012℄.To ensure the trajetories remain within the region of attration of their respe-tive attrators, an approah an be adapted in whih eah of the original DS ismodulated so that the generated trajetories always move away from the lassi�erboundary. [Shukla and Billard, 2012℄ developed a system that ensured strit lassi-�ation aross regions of attration for eah DS, losely following the dynamis ofeah DS and ensuring that trajetories in eah region reahed their desired attra-tors. [Shukla and Billard, 2012℄ presented the Augmented-SVM model for ombiningnon-linear DS through a partitioning of the spae. The resulting model behaves as amulti-stable DS with attrators at the desired loations.[Khansari-Zadeh and Billard, 2011℄ presents an embedding of di�erent ways ofperforming a task in one single model. As stated above, sometimes it may be ne-essary to exeute a single task in di�erent ways starting from di�erent areas in thespae and a single DS driving the motion is not su�ient. Their work uses SEDSto integrate di�erent motions into one single dynami. The robot follows distinttrajetories starting from di�erent points in the workspae. Two di�erent SEDSmodels, M̄1
RS,M̄

2
RS an be ombined just by onatenating their parameters, suhthat the parameter of the new model an de�ned as π =

[π1; π2]

(π1 + π2)
, µ = [µ1µ2] and

Σ = [Σ1Σ2]. While reprodutions loally follow the desired motion around eah set ofdemonstrations, they smoothly swith from one motion to another in areas betweendemonstrations [Khansari-Zadeh and Billard, 2010a℄. The proposed method o�ers asimple but reliable proedure to teah a robot di�erent ways of performing a task;however, a more omplex method is required in order to provide a better �t for themultiple dynamis and prevent possible interferene among models when swithingbetween di�erent dynamis in trajetories lose to the border of eah attrator region.In this work, in order to generate a new skill made of the ombination of severalRobot Skills Models previously learned and stored in the knowledge base, we developeda method taking from the above approahes. Two di�erent SEDS models are �rstombined by onatenating their parameters. Then, an area of in�uene for the DSattrator is de�ned based on the non-linear weighting funtion hk(ξ) of the SEDSmodels expressed as a non-linear sum of linear dynamial systems as in Eq. 3.24. Anew weighting funtion h̃(ξ) = αk(ξ, h)hk(ξ) for the single model must be built outof the original weighting terms hk(ξ), as in the merging of the models, however inthis ase the hk(ξ) terms must be strongly biased suh as that the in�uene over thetrajetory omes at any time from only one model, therefore, the αk(ξ, h) funtionmust have a ompletely di�erent form that for the merging of the robot skill models.Figure 5.11 and 5.12 illustrate the results for ombining two and three robot skillsto generate a new skill model. The proess for updating a learned Robot Skill Modelis summarized in Table 5.3.
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Fig. 5.11: Combining the dynamis of two skills into a single task model.
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Fig. 5.12: Combining the dynamis of three skills into a single task model.



184 5. Generation and Adaptation of Robot SkillsAlgorithm: Combination of learned robot skillInput: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .1. Calulate the prior π̃, as π̃ =

[π1;π2; ...;πn]

(π1 + π2)2. Calulate the mean µ̃, as µ̃ = [µ1µ2...µn]3. Calulate the ovariane Σ̃, as Σ̃ = [Σ1Σ2...Σn]4. Build the weighting funtion h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).5. ENDOutput: Combine Robot Skill Model, MRScombine
, given by ∑K

k=1
h̃k(ξ)(Akξ + b

k).Tab. 5.3: Proedure for ombining learned models of a robot skill.5.7 Transition between Robot SkillsA desirable operation over the basi set of primitive skills onsists of the sequeningand transition between robot skill models in order to generate omplex behaviourswith smooth transformation among the reprodution of di�erent skill motions.The simplest way to join several DS would be just to perform one robot skill untilit reahes the end point of the motion and then, ontinue with the reprodution ofthe next DS starting at that point; that is, the end point of the �rst DS is used as thestarting point of the seond DS and so on. This approah is very simple, but it learlyhas ertain drawbaks, mostly stemming from the unnatural slowing and restartingbehaviour that the lose-to-zero veloities at the end of the movement trajetory inthe original DS would produe.[Kulviius et al., 2012℄ foused an approah for joining movement sequenes mod-ifying the learned DMP exempli�ed in a handwritten appliation. The method isbased on the modi�ation of the original DMP formulation. The new method anreprodue the target trajetory with high auray regarding both the position andthe veloity pro�le and produes smooth and natural transitions in position spae, aswell as in veloity spae.Smooth transitions between theDS representing the robot skills ould be produedby modifying the parameters of the DS to generate a transritial bifuration at themoment the �rst DS reahes its attrator, pushing the system dynamis towards theattrator of the seond DS. In a transritial bifuration a �xed point interhanges itsstability with another �xed point as the parameter is varied [Strogatz, 1994℄. In thistype of bifuration an attrative stable �xed point is exhanged, when they ollide, sothe unstable �xed point beomes stable and vie versa. A robot skill would reproduethe trajetory as in a normal ase towards its target attrator, when the �rst motionis lose to reahing the attrator, the bifuration would hange the stable nature ofthe attrator in order to move the system from this state towards the target attratorof the following skill DS.



5.8. Summary of the Chapter 185These types of approahes, as well as others, are important ase studies. Per-forming di�erent tasks and exeuting di�erent robot skills with smooth, natural andstable transitions between them is an important goal for humanoid robotis.5.8 Summary of the ChapterThroughout this hapter a review of the algorithms developed for the generationand adaptation of the robot skills has been given. Humanoid robots working besidehumans in omplex dynami environments are required to perform a wide repertoire oftasks. E�orts to generate roboti skills an only have a real implementation value fordeveloping humanoid roboti systems if the models of the skill an be operated uponto generate new behaviours of inreasing levels of omplexity. Setion 5.2 presents areview of related approahes aiming at the adaptation of learned skill models and thedevelopments for the generation and adaptation of the robot skills. Setion 5.3 pre-sented dynamial properties inherent to the models of a robot skill, suh as robustnessto spatio-temporal perturbations, independene on time, and generalizable to unseeninitial onditions. Stability onditions required for generating stable DS representa-tions of the skill were reviewed as well as a method to expand appliability of theDS approah with mehanism for obstale avoidane. In this hapter, proesses bywhih, using the already learned model of a robot skill and the extrated onstraintsknowledge of the urrent task, the model of a skill an be adapted to reprodue a newtask were desribed. Di�erent modalities were developed and implemented that allowfor the adaptation and generation of new skill models based on the already learnedmodels of skills stored in the knowledge base. Di�erent modes are presented for theadaptation, update, merger, and ombination of the Robot Skills Models. Setion 5.4presented the adaptation of a task model by updating a robot skill. Updating pre-viously learned skills is a very important ability for humanoid robots, allowing themto inrease and improve their available skill set. A developed method for updatinga robot skill was presented in Table 5.1. Setion 5.5 presented the generation of atask model by merging robot skills. Skills an be generated by merging two or moremodels into a new skill. New models of a skills an be generated by merging two ormore models into a new skill in order to expand the robot skill set and inrease itsrange of ation. A developed method for merging robot skills was presented in Table5.2. Setion 5.6 presented the generation of a task model by ombining robot skills.Models of a skill an be ombined to generate new models that enompass a largerspetrum of the attrator dynamis and allowing to generalize the models of the skillsto regions outside their original demonstrations. A developed method for ombiningrobot skills was presented in Table 5.3. Setion 5.7 disussed the generation of a taskmodel by transitioning between robot skills. For humanoid robots to be apable ofworking suessfully in the apaity in whih they are envisioned, it is of vital im-portane that they present ample and robust skill sets. The ability to learn robotskills is a key aspet, yet learning by itself is not su�ient, the apaity to operateover the learned robot skill, suh as the merger, update and ombination of skills, isneessary.
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6. REPRODUCTION OF ROBOT SKILLS6.1 Outline of the ChapterThis hapter presents the reprodution of the generated task models by a hu-manoid robot platform operating under task onstraints. The robot reprodution ofskills follows the framework presented in Chapter 2, employing the systems developedfor learning robot skills in Chapter 3, the representation of robot skill in a knowledgebase in Chapter 4, and the generation and adaptation of robot skills in Chapter 5.Figure 1.3 shows the framework proposed throughout this work for the robot skills'adaptation of learned models to task onstraints. In this hapter the implementa-tion of the various systems developed in the framework for learning and adaptationof skills to task onstraints are also presented, see Figure 6.1. Finally, experimen-tal results and analysis validating the framework proposed throughout this work arepresented; di�erent evaluation senarios are desribed to test the performane of thevarious modules implemented in our framework and to provide separate validation forthe operation of the system for storing and retrieving robot skills from the knowledgebase; the system for generating and adapting the robot skills to the onstraints of thetask, and the evaluation of the omplete developed framework. The organization ofthis hapter is as follows:
• Setion 6.2 desribes the development of the proposed framework for learningand adaptation of the robot skills and the experimental set up for the validationof the framework. Here, the roboti platform used in this work is presented witha desription of its struture, joints and sensor distribution. Also, a desrip-tion of the evaluation senarios to test the performane of the framework andthe implemented modules is given. To validate the proposed framework andmodules, the experiments would be performed over di�erent senarios.
• Setion 6.3, presents the implementation of the learning system. The robot skilllearning module ollets the learning proesses and algorithms used for learningand enoding the models of the skills. The development and operation of themodule for learning the robot skills is desribed in this setion.
• Setion 6.4, presents the implementation of the knowledge base system. Therobot skill knowledge module ontrols the developed knowledge base for thestoring and retrieval of the learned models of the skills. A desription of thedevelopment and the proess for building and navigating the knowledge base isgiven in this setion.
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AlgorithmFig. 6.1: Deployment diagram for the proposed ognitive framework for learning andadaptation of robot skills. The framework is formed by a robot skill learn-ing module, a pereption and interation module, a robot skill knowledgemodule, a robot skill generation and adaptation module, and a robot skillreprodution module.

• Setion 6.5, presents the implementation of the task model generation and adap-tation system. The robot skill generation and adaptation module governs theproess by whih the learned model of a skill an be operated to reprodue anew task, inluding the adaptation, update, merger, ombination, or transitionof the skill models. The development and operation of the module for adaptingrobot skills is desribed in this setion.
• Setion 6.6, presents the implementation of the reprodution system. The robotskill reprodution module is in harge of produing the adequate ontrol signalsto the robot for the reprodution of robot skills. A desription of the develop-ment and operation of the module for the robot reprodution of skills is givenin this setion.
• Setion 6.7, presents the experimental results and analysis for validation of theproposed framework over the evaluation senarios desribed in the previoussetion of this hapter. Di�erent evaluation senarios are employed to test theperformane of the various modules implemented in our framework. Demonstra-tions are organized over three major senarios to provide separate validation forthe knowledge base system, the task model generation and adaptation system,and the omplete developed framework.6.2 Development of the Robot Skills FrameworkThe framework proposed in this thesis is meant to allow the following: for anoperator to teah and demonstrate to the robot the motion of a task skill it mustreprodue; to build a knowledge base of the learned skills knowledge allowing for its



6.2. Development of the Robot Skills Framework 189storage, lassi�ation and retrieval; to adapt and generate learned models of a skillto new ontexts for ompliane with the urrent task onstraints.The framework proposed here was developed as a ognitive model intended toprovide the robot with an essential ognitive ability for learning and adaptation ofskills. Though it is not a primary onsideration in this work, our framework anbe thought of as part of a level in the hierarhy of a more omplex arhiteture, oras a �rst stepping stone upon whih to inrementally build more omplex ognitiveproesses. The goal of the developed framework is to provide a minimum degree ofintelligene for the humanoid robot, that is, the ability to sense the environment,learn, and adapt its ations to perform suessfully under a set of irumstanes.The framework provides humanoid robots with systems that allow them to on-tinuously learn new skills, represent their skills' knowledge and adapt their existingskills to new ontexts, as well as to robustly reprodue new behaviours in a dynamialenvironment. The ognitive framework for learning and adaptation of robot skills ismade up of several modules, as is represented by the diagram on Figure 6.1. Theframework is formed by modules for the learning of robot skills, the pereption andinteration with the environment, the management and representation of skill knowl-edge, the generation and adaptation of skill models, and the reprodution of robotskills.The robot skill learning module ollets the learning proesses and algorithms usedfor learning and enoding the models of the skills. The pereption and interationmodule is in harge of proessing the outside information of the robot's workingenvironment to use in the other modules. The robot skill knowledge module ontrolsthe developed knowledge base for the storing and retrieval of the learned models ofthe skills. The robot skill generation and adaptation module govern the proess bywhih the learned model of a skill an be operated to reprodue a new task, whetherthe adaptation, update, merger, ombination, or transition of the skill models. Therobot skill reprodution module is in harge of produing the adequate ontrol signalsto the robot for the reprodution of robot skills.Roboti PlatformIn order to test the proposed systems the HOAP-3 Humanoid Robot was used as atest platform, Figure 6.2. The HOAP-3 was designed to resemble the human shape, ona small sale, with a omplete humanoid on�guration with two legs and arms, a headwith vision and sound apaities, and grip-able hands. The small humanoid robotHOAP-3 is about 60 m in height, and weighs about 8 kg, so that it beomes quiteeasy to ontrol and move while maintaining the whole stability [Pierro et al., 2009℄.The HOAP robots were designed for a broad range of appliations for Researh andDevelopment of robot tehnologies.In 2001 Fujitsu produed its �rst ommerial humanoid robot named HOAP-1,the �rst in its series of humanoid robots, HOAP stands for �Humanoid for OpenArhiteture Platform� [Riezenman, 2002℄, its suessor, HOAP-2 was announed in2003. It has a height of 48 m and weight of 6.8 kg. The model used in this work is anevolution from the previous HOAP and HOAP-2 robot family. The HOAP-3 robot
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Fig. 6.2: The HOAP-3 robot platform. HOAP robots were designed for a broadrange of appliations for Researh and Development of robot tehnologies.HOAP-3 is about 60 m in height, and weight about 8 kg. It an performwalks on �at terrain, sumo movements and daning and grasp thin objets.was announed in 2005, adding movable axes for the head and hands, CCD ameras, amirophone, a speaker and LEDs to show expression. HOAP an suessfully performwalks on �at terrain, sumo movements and daning and grasp thin objets, suh aspens, brushes, et.The ontrol arhiteture operates on RT-Linux mounted on a embedded PC-104omputer, Pentium 1.1 GHz proessor with 512 Mb of RAM memory and a CompatFlash drive of 1 Gb apaity. The ommuniations with the robot platform ouldbe done via a USB interfae or by means of an on board Wi-Fi IEEE802.11g om-muniation. The robot eletronis are mounted on the robot's bak and protetedwith a bakpak asing. Additionally, a ontainer on the robot's hest allows for arehargeable 24V NiMH battery to be loaded on to it, the battery pak allows forapproximately a 30 min autonomy operation.The HOAP-3 struture is made out of a total of 28 degrees of freedom (DOF),powered by DC motors for the legs, waist and arms DOF, and servo motors for theoperation of the hands and legs. The distribution of the DOF is as follows:
• 6 DOF for eah robot arm, 4 DOF for the arm, 2 DOF for the hand.
• 6 DOF for eah leg.
• 3 DOF in the head, for the pith, yaw, and roll.
• 1 DOF for the waist.In addition the robot platform sensory system is equipped di�erent sensors en-dowing the robot with:
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Fig. 6.3: The HOAP-3 robot dimensions and distribution of joints and sensors a-pabilities. The HOAP robot is equipped with 28 DOF, additionally it havea gyrosope, an aelerometer, and various fore sensors, and two ameras.
• Posture sensors (a gyrosope sensor and aeleration sensor).
• Contat sensors (fore sensor in every orner of eah foot).
• Grip sensors (fore sensors in the thumbs).
• Vision sensors (Two USB ameras in the head).Figure 6.3 shows HOAP-3 robot struture and sensor distribution. Its strutureand sensor system allows to try di�erent ontrol arhiteture, thought to be used ina ollaborative system.Pereption SystemA pereption system was developed for the operation of the HOAP-3 robot. Thepereption system onsists of a stereo vision system, making use of both robot am-eras, and an interation system, making use of a human-robot interfae for high-levelommuniation with the robot.Sine the HOAP-3 robot platform is equipped with two ameras, stereo vision isused when it is possible, given the disposition and angle of view of ameras. Whenobjets annot be pereived by both ameras, i.e. inside the workspae area of arms(lose to robot), the estimations are made by monoular vision.Reognition of the objets is based on blob detetion by olor �ltering and areaomparison. Objets are reognized based on their olor properties and blob size.
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Fig. 6.4: Stereo vision with ameras disposed in reti�ed on�guration.First of all the images are �ltered by olors. The olor segmentation method onsistsof seleting a prism for eah hannel in the HSV olor domain. The pixels are olorlabelled and similar regions are grouped into blobs. Sanity heks are applied to everyblob to avoid wrong detetions and orrespondenes. For example, the dimension ofevery blob is heked and when they are too small, suh blobs are rejeted. Anotherimportant sanity hek is the horizon view, whih onsists of alibrating maximumheight of objets in the amera plane. When blobs are not in the feasible zone forgrasping, they are �ltered out. When the blobs satisfy sanity heks and math withthe olor properties of some objet, they are onsidered as the detetion of an objet.Beause the humanoid platform is equipped with two ameras emulating humaneyes, these inputs an be used for estimating depth information. The typial steps fordetermining depth using a two-amera vision system, stereopsis, are i) alibration ofameras, ii) establishment of orrespondenes between features of both ameras andiii) reonstrution of 3D oordinates of detetions in the sene. The basis of stereopsisis epipolar geometry, whih states that the line onneting optial entres of bothameras, baseline, intersets the image planes in the epipoles. A simpli�ed ase ofstereopsis is the reti�ed on�guration of ameras, whih redues the dimensionalityof searh spae for a orrespondene from 2D to 1D. This on�guration onsists ofboth image planes being parallel, and hene, the baseline also being parallel to imageplanes, sending the epipoles to in�nity. In addition, epipolar lines of all possibledetetions oinide with the images' rows, and orrespondenes between detetionof both images an be found by mathing pixels linewise. Considering the reti�edon�guration, depth an be reovered by using the notion of disparity, Figure 6.4.The stereo vision system implemented in the robot uses the weighted enter of theolor labelled blobs. The epipolar line is stated as the weight average of blobs usingthe number of pixels of the blobs as the weight fator.The human-robot interfae is user friendly and it gives an intuitive way for anon-expert user to interat with the humanoid robot HOAP-3. Main funtionalitiesin the HRI user interfae are the graphial ontrol omponent, allowing the operatorto move the robot in several diretions at di�erent speeds, rotate it and stop it.And the high-level button ontrols whih allow the operator to request the robot toperform several high-level ations. The overall performane of the algorithms in the
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Fig. 6.5: Desription of experiment A.1 in the knowledge base senario. (upper-left) World and objet frames are instantiate from the robot view. (upper-right) As it explores the sene new objets are added, and information forexisting ones are updated. Out of view objets (grayed out) remain in theknowledge base and their position are hanged to a relative value re�etingtheir expeted loation. (bottom-left) Robot is tasked with �nding thered ball, and defaults to looking for it starting in its last known loation.(bottom-right) Robot ontinues its searh looking for the red ball until itis found in a new position or it is not found and the objet instane isremoved from the knowledge base.pereption system is not an element of this thesis, and the seletion of the pereptionsystem omponents was made on the riteria of availability and easy integration withthe rest of the framework. For further explanations of the pereption system see[Pierro et al., 2012a℄.Desription of Knowledge Base SenarioHere we provide a general desription of a demonstrator for the evaluation of theknowledge base senario performane. Quantitative evaluation of knowledge proess-ing systems is hardly possible sine many of its features are di�ult to re�et innumbers. However the system an be evaluated in a qualitative form. Several exper-iments were onduted to prove the validity of the system and to test the operationof the developed knowledge representation and the knowledge base module.A �rst experiment involves the HOAP-3 robot operating in a kithen setting. TheHOAP-3 robot would stand in front with a top view, from the ameras in its head, ofan assortment of objets ommonly expeted in a kithen or dinner sene, i.e., ups,plates, forks, knifes, et., see Figure 6.5. The available objets ome from a toy set andwere hosen so their size and shape an �t properly with HOAP-3 robot struture;also, the available objet present bright, solid olors failitating the reognition ofobjets by their olor properties in the pereption system.This experiment would go as follows, the HOAP-3 robot would look around the
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• The pereption system: for detetion and traking of objets in the table.
• The knowledge base system: for instantiating the di�erent frames in the knowl-edge base aordingly.Figure 6.6 shows a shemati view of the overall knowledge base senario experimentdesribed above. The pereption system, through the vision system, is in harge ofanalysing the environment of the robot as aptured with the robot ameras, reog-nizing objets that are present and omputing their loation. The knowledge basesystem would reeive this information from the pereption system and would instan-tiate objet frames from the reognized objets present, and build the knowledgerepresentation of the sene in the knowledge base. As the robot moves around, theenvironment or the sene is hanged by adding, moving, or removing objets theontents on the knowledge base are updated.This senario is meant to provide proof of onept of how frames in the knowledgebase are instantiated from the pereption of the environment and how the knowledgebase maintains and upkeeps its knowledge representation over time in a hangingenvironment. Further development of this senario would add more funtionality in



6.2. Development of the Robot Skills Framework 195
Fig. 6.7: Desription of experiment A.2 in the knowledge base senario. At thebeginning the task an be started by either piking the up or the spoon.(left) The HOAP-3 robot starts the task by grasping the blue up. (enter-left) With the up and the spoon in its hands the robot performs the ationskill to put the spoon inside the up. (enter-right) Finally, the HOAP-3robot plaes the blue up on the sauer plate. (right) State of the knowledgebase at some step during exeution. From the Task and World Events theAtive View Event is built to drive the ation exeution.the following subsetions to highlight the operation of other systems in the developedframework.A seond experiment would have an agent and the HOAP-3 robot interating toomplete a simple task. The task in this ase requires the robot to pik up a upand a spoon in eah hand and then to put the spoon inside the up; then �nally itwould put down the up in front of it. The agent would provide the robot with theup and spoon objets so it an pik them up; also the agent would indiate to therobot where to put down the up, see Figure 6.7.Exeution of the demonstration ould vary depending on the ations of both thehuman agent and the HOAP-3 robot. At the start of the demonstration the robotis given the task event frame knowledge for the desired behaviour ontaining theknowledge of the 4 ation skills needed to omplete the ation, pik spoon, pik up,plae spoon in up, plae up down. Extrating the adequate ation would depend onthe agent interation and the ontent of the rest of the knowledge base. The purposeof this demonstration is to validate the performane of the developed knowledge basein a dynami interation with an agent where the invoation of an ation skill isontrolled by the representations in the knowledge base as desribed in Chapter 4.This demonstration highlights the operation of the knowledge base and how therepresentations of objet, ation, task event, world event and ative view event framesare used to ommand the robot exeution of the desired task. There are 4 modulesinvolved in the operation of this senario:

• The pereption system: for detetion and traking of the objets.
• The learning system: for teahing the robot a set of robot skills.
• The knowledge base system: for representing the objet, ation, task event,world event and ative view event frames, used to ommand the robot exeutionof the desired task.
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Fig. 6.8: Shemati view of the Knowledge Base Senario experiment A.2.
• The robot reprodution system: for ontrolling the robot exeution.Figure 6.8 shows a shemati view of the overall knowledge base senario experimentdesribed above. The pereption system handles the interation with the user and thedetetion of objets in the environment. The knowledge base system would reeive thisinformation from the pereption system and would instantiate the frames and builtthe knowledge representation of the sene in the knowledge base. The knowledge basesystem would selet and ativate an ation skill when the onditions in the knowledgerepresentation a�ord suh ation. One an ation is seleted, the HOAP-3 robotontroller would exeute the robot ommands required for the skill reprodution.This demonstrator senario is meant to provide proof of how ation exeutionis invoked by the state of the representation frames present in the knowledge base.Further development of this senario would add more funtionality in the followingsubsetions to highlight the operation of other systems in the developed framework.Desription of Skill Generation and Adaptation SenarioIn this subsetion, a general desription of a demonstrator for the evaluation ofthe performane of the robot skill generation and adaptation senario is provided.To this end, several experiments were onduted to prove the validity of the systemand to test the operation of the developed robot skill generation and adaptationmodule. Experiments were designed to test the performane of the di�erent robotskills' operations desribed in Chapter 5. The demonstrators in this subsetion werehosen as very simple senarios in whih to have proving ground in whih to testdi�erent robot skills and skill generation and adaptation mehanisms.As a �rst senario, we'll onsiderer a table tennis robot task. In this setting theHOAP-3 humanoid robot would stand equipped with a table tennis paddle, from atable tennis toy set, of an appropriate size and handle shape to �t the HOAP frameand the grasp apabilities of its hands, see Figure 6.9.
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Fig. 6.9: Desription of experiment B.1 in skill generation and adaptation senario.HOAP-3 robot performs di�erent tennis shots: (left) HOAP-3 robot per-forms a forehand shot. (enter) HOAP-3 robot performs a smash shot.(right) HOAP-3 robot performs a forehand-smash shot generated from themerger of the forehand and smash shots.The limitations of the robot systems and vision traking do not allow for realtime reprodution of a robot table tennis game, however that is not the intended goalof the demonstrator. The fous in this experiment would be on the learned RobotSkill Models and on the operation of the algorithm in Chapter 5 for the merger ofrobot skills in order to generate new, more omplex, skills given the robot's additionalation for performing tennis shots from the ones that are previously learned by therobot.The HOAP robot is required to exeute di�erent tennis shot ations to hit a tabletennis ball moved towards the robot. Originally 3 robot skills' models are taught tothe HOAP-3 robot to hit an approahing ball oming from its left, right, or above,to provide the robot with the skills to perform a forehand, a bakhand, or a straightsmash shot. To expand the robot skill set, two learned skill models are merged toobtain a new Robot Skill Model. In this ase a forehand and a bakhand will bemerged with the smash shot skill to generate two more skills for forehand-smash andbakhand-smash shots.This demonstrator highlights the operation of the proposed algorithms in Chapter5 for the merging ofRobot Skills Models. There are 4 modules involved in the operationof this senario:
• The pereption system: for the detetion and traking of the table tennis ball'sposition.
• The learning system: for teahing the robot a set of skills for reproduingdi�erent tennis shots.
• The generation and adaptation system: for generating new robot skills from themerger of two learned models of a skill.
• The robot reprodution system: for ontrolling the robot skill exeution of atennis shot.
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Fig. 6.10: Shemati view for experiment B.1 in the robot skill generation and adap-tation senario.Figure 6.10 shows a shemati view of the overall generation and adaptation senarioexperiment desribed above. This senario is a demonstrator for the merger of robotskills presented in Chapter 5. First, demonstrations are given, reorded with a Mi-rosoft Kinet sensor, to the learning module to enode the models of the robot skillsfor the forehand and smash tennis shots. Then the learned robot skills are fed to theskill merger algorithm to generate a new robot skill model for a forehand-smash shotfrom the merger of the two previous skills. Finally, the model of the skill is given tothe HOAP-3 robot ontroller for the exeution of the skill.This demonstrator senario is meant to provide proof of onept of how the gen-eration and adaptation system an operate over previously learned robot skills forgenerating new, more omplex, skill ations and for inreasing the sope of operationin the given available skills to expand the range of task whih an be performed bythe HOAP-3 humanoid robot. Further development of this senario would strive tobring more funtionality in the following subsetions to highlight the operation ofother systems in the developed framework.A seond demonstrator was designed to test the performane and evaluate the de-veloped methods for the update and ombination of Robot Skill Models as desribedin Chapter 5. To validate the proposed methods for generating new skills from previ-ously learned models, by updating or ombining the Robot Skills Models a very simplesenario was hosen in whih the robot would be required to grasp a plasti up, fromthe kithen toy set used in the previous senario, see Figure 6.11.The ontemplated task requires that the robot be able to grasp the plasti uploated in any possible plae in a �upboard�, whih onsists of two shelves, a bottomand a top shelf. The HOAP-3 robot must be able to grasp the up, as long as it isinside the robot arm's workspae, in any of six possible general loations in relationto the robot arm; three on the bottom shelf and three on the top shelf, for example,a up ould be plaed at the left-bottom, right-bottom, enter-bottom, or left-top,right-top, enter-top, of the robot. Initially, only the skills for learning to grasp theup plaed on the bottom shelf are taught to the robot by the methods desribed inChapter 3. The omplete task would be unahievable with the robot skills learned sofar, sine the skill reprodution would not generalize well to the target's new position



6.2. Development of the Robot Skills Framework 199

Fig. 6.11: Desription of experiment B.2 in skill generation and adaptation senario.The HOAP-3 robot must grasp a up plaed at any position in eitherof the two shelves of the "upboard" senario. Initially only skills forgrasping the up in the bottom shelf are taught to the robot. To generalizethe skill to the target's new position at the top shelf the skills learnedto grasp the up at the bottom shelf must be updated. To generalizeaross the whole working spae the three models of the robot skill, forright-, left- and enter-, are ombined into a single model of the attratordynamis. (top-row) Robot is taught a grasp skill motion for the upplae in the bottom shelf. By the update of the robot skill a new modelis generate to allow the HOAP-3 robot to grasp the up plae at thetop shelf. (bottom-row) By the ombination of various robot skills theHOAP-3 robot an grasp the up plae at its right, enter or left, usinga single model of the skill.on the top shelf. To grasp the up, plaed on the top shelf, at either side of the robotthe skills learned to grasp the up on the bottom shelf must be updated to generatethe required new robot skill models. Finally, to generalize aross the whole workingspae the three models of the robot skill, for right-, left- and enter-, are ombinedinto a single model of the attrator dynamis. Figure 6.11 illustrates the senario.This demonstrator highlights the operation of the proposed algorithms in Chapter5 for the update and ombination of Robot Skills Models. There are 3 modules involvedin the operation of this senario:
• The learning system: for teahing the robot a set of skills for reproduingdi�erent grasp ations.
• The generation and adaptation system: for generating new robot skills from the
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• The robot reprodution system: for ontrolling the HOAP-3 exeution of therobot skills.Figure 6.12 shows a shemati view of the overall generation and adaptation senarioexperiment desribed above. This senario is a demonstrator for the ombinationof the robot skills method presented in Chapter 5. First demonstrations are given,reorded by kinaestheti teahing, to the learning module to enode the models of therobot skills for grasping trajetories at the possible loations, left, right and in front ofthe robot. Then the learned robot skills are fed to the skill ombination algorithm togenerate a new robot skill model from the ombination of the previous skills. Finally,the model of the skill is given to the HOAP-3 robot ontroller for exeution of theskill.This demonstrator senario is meant to provide proof of how the generation andadaptation system an operate over learned robot skills for inreasing the sope ofavailable skills for the performane of the HOAP humanoid robot. Further develop-ment of this senario would add more funtionality in the following subsetions tohighlight the operation of other systems in the developed framework.Desription of Robot Skill Reprodution SenarioAs a �nal evaluation a ouple of general demonstrators' senarios were imple-mented for the validation of the robot skill reprodution and to test the ompletedeveloped framework for the learning and adaptation of robot skills. Several experi-ments were onduted to prove the validity of the system and to test the operation ofthe developed framework. Experiments were designed, requiring the humanoid robotto reprodue di�erent Robot Skill Models throughout the unfolding of the task inorder to test the performane of the overall system and the operation and interation
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Fig. 6.13: Desription of experiment C.1 in the robot skill reprodution senario.HOAP-3 robot performs di�erent tennis shots, as learned and generatedfrom the previous experiment. (left) HOAP-3 robot performs the fore-hand smash shot. (right) HOAP-3 robot performs a bakhand-smashshot. The knowledge base selets the appropriate ation to exeute theproper tennis shot out of the instantiated frames knowledge.of the di�erent modules in the framework for learning skills, representing knowledge,generation and adaptation of models and robot skill reprodution.As a �rst senario we'll review the table tennis robot task desribed in the skillgeneration and adaptation senario. The setting is the same as before with the HOAP-3 humanoid robot equipped with a table tennis paddle, and a set of learned robotskills to perform di�erent tennis shots, namely a bakhand, a forehand, and a smashshot, plus the generated merged forehand-smash and bakhand-smash shots. Thepurpose of this senario is to prove the viability of the developed representations andknowledge base system in Chapter 4 for seleting the appropriate robot skills for atennis shot to hit the table tennis ball from its available ation frames and pereivedworld state knowledge.With the HOAP robot, paddle in hand, in a resting position, the pereption systemdetets a table tennis ball that is moved towards the robot. The system omputes therelevant information from reognition of the ball, and extrats from the knowledgebase, the appropriate learned robot skill models to reprodue the ation to hit theball under the urrent irumstanes, see Figure 6.13.This demonstrator highlights the operation of the pereption system and theknowledge base system to instantiate the proper frames in the knowledge base and ex-trat from this information the needed Robot Skills Models. Additionally, it is meantto highlight as well, the operation of the systems for generation and adaptation andfor robot reprodution of the Robot Skills Models. There are 5 modules involved inthe operation of this senario:

• The pereption system: for detetion and traking of the table tennis ball.
• The learning system: for teahing the robot a set of skills for reproduingdi�erent tennis shots.
• The knowledge base system: for seleting the appropriate robot skills for atennis shot out of the instantiated frames knowledge.
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Fig. 6.14: Shemati view for experiment C.1 in the robot skill reprodution se-nario.
• The generation and adaptation system: for generating new robot skills from thelearned models of a skill.
• The robot reprodution system: for exeuting the robot skill for an appropriatetennis shot.Figure 6.14 shows a shemati view of the overall skill reprodution senario experi-ment desribed above. This senario is a demonstrator for the evaluation of the robotskill reprodution, and the operation of the omplete developed framework, with themain fous on the performane of the knowledge base system to extrat from itsinformation, the needed skill models for the robot's suessful exeution. For thissenario, demonstrations are �rst given to the learning module, reorded with a Mi-rosoft Kinet sensor, to enode the models of the robot skills for three tennis shots,forehand, bakhand, and a smash. Subsequently, the learned robot skills are stored bythe knowledge base system. During operation, a table tennis ball will move towardsthe HOAP-3 robot, with the pereption system and the knowledge base system, theinformation of the position and trajetory of the ball is used to reover and selet theneeded robot skills for ation reprodution and perform the proper tennis shot skillin the urrent situation.This demonstrator senario is meant to provide proof of onept of how the knowl-edge base system reovers and selets robot skills for ation reprodution based on theinstantiated knowledge frames, stored and represented by the developed knowledgebase. Together with the previous experiment, evaluating the generation and adapta-tion system, the proposed demonstrator validates the performane of the developedframework to learn, store and adapt the robot skill for exeuting di�erent ations,omplying with the task onstraints, with the HOAP-3 humanoid robot.As a �nal experiment we'll revisit the kithen or dinner table senario and expandthe demonstrators presented in the previous setions. In this senario the HOAP-3robot is required to omplete a setting up a dinner servie task behaviour in on-juntion with a human agent. The purpose of the demonstrator is to test the overall
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Object cSpoonFig. 6.15: Desription of experiment C.2 in the robot skill reprodution senario.HOAP-3 robot sets a �dinner servie� onsisting of a fork, a knife, a sauerplate, a up and a spoon. (top-row) Still aptures from the HOAP-3 robotperforming in the robot skill reprodution senario. (bottom-row) Stateof the knowledge base at the exeution step from the top-row. Objetsand ations not in the Ative View Event are grayed out. Objets andAtions key to the urrent robot reprodution are highlighted in red.operation of the developed framework, as well as to validate the performane of everyindividual module and interation between themselves.The sequene of exeution of the task ould vary depending on the ations of boththe human agent and the HOAP-3 robot. The plan for the demonstrator requiresthe robot to set up a �dinner servie� onsisting of a fork, a knife, a sauer plate,a up and a spoon, see Figure 6.15. Robot skills to grasp the di�erent objet aretaught to the robot by the methods desribed in Chapter 3. Exeution of the taskis instigated by the agent when putting on the table a yellow pither objet. Therobot would set the rest of the objets on the table, their positions in relation to thepivot pither objet. The objets to plae are provided to the robot by the agent,and ould be in any possible plae, therefore the learned Robot Skill Models must alsobe updated, merged, and ombined by the methods desribed in Chapter 5 as in thesenario in the previous setion. The invoation of robot ation skills is ontrolled bythe representations in the knowledge base desribed in Chapter 4 as in the senarioin previous setions.This demonstrator highlights the operation of the individual modules as well asthe overall performane of the overall framework for learning and adaptation of skillsto task onstraints; involving the pereption of objets and interation with the agent,the learning of various robot skills, the representation of knowledge in the knowledgebase, the generation and adaptation of the skill models and the adequate reprodutionof the robot skills. There are 5 modules involved in the operation of this senario:

• The pereption system: for detetion the objets involved in the task.
• The learning system: for teahing the robot a set of robot skills.
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Fig. 6.16: Shemati view for experiment C.2 in the robot skill reprodution se-nario.
• The knowledge base system: for representing the objet, ation, task event,world event and ative view event frames used to ontrol the robot exeution.
• The generation and adaptation system: for the update and merger of learnedmodels of a skill and the ombination of di�erent learned skill models into singlemodels of the attrator dynamis.
• The robot reprodution system: for exeuting the robot skill for an appropriateompletion of the task.Figure 6.16 shows a shemati view of the overall skill reprodution senario ex-periment desribed above. This senario is a demonstrator for the evaluation of therobot skill reprodution and the overall operation of the omplete developed frame-work; involving the usage of the pereption, the learning, the knowledge base, theadaptation, and the reprodution systems. For this senario, various demonstrationsof skills, reorded with the HOAP-3 robot, are �rst given to the learning module,to enode the models of the robot skills for the di�erent ations required for the�dinner servie� task. Subsequently the learned robot skills are stored by the knowl-edge base system. During operation, the user would provide objets to the robot,by plaing them in its ation �eld, both of vision and manipulation. The pereptionsystem would handle the interation with the user and the detetion of objets inthe environment. The knowledge base system would reeive this information fromthe pereption system and would instantiate the frames and build the knowledge rep-resentation of the sene in the knowledge base. Through this interation with theuser and the environment, the knowledge base system would selet the orrespondingskills to ativate them as the onditions in the knowledge representation a�orded suhations. One the neessary robot skills are seleted, the generation and adaptationsystem would be in harge of building the appropriate task model satisfying, the de-sired ommand and onstraints of the environment for reproduing the appropriateskill ation. Finally the HOAP-3 robot ontroller would exeute the robot ommandsrequired for skill reprodution.



6.3. Learning the Robot Skills 205This demonstrator senario is meant to provide proof of onept of how the knowl-edge base operates to instantiated frames from the pereption of the environment,and how the knowledge base maintains and upkeeps its knowledge representation overtime in a hanging environment, as well as how ation exeution is invoked by thestate of the representation frames present in the knowledge base. Additionally, thedemonstrator senario provides validation for the generation and adaptation systemand how it operates over learned robot skills for inreasing the sope of available skillsfor the performane of the HOAP humanoid robot.6.3 Learning the Robot SkillsThe apability to learn and teah a robot the neessary robot skills is learly aruial part of the developed framework. Therefore the robot skill learning modulehas a entral importane in our framework. In Chapter 3 the methods employedfor learning the models of a robot skill have been desribed. In this setion thedevelopment and operation of the robot skill learning module will be presented.Humanoid robots working alongside humans must deal with ontinuously hang-ing environments and a huge variability of tasks; therefore, algorithms for learningand extrating important features of task ations are fundamental. The robot skilllearning module is naturally responsible for allowing the humanoid robot to learn themodels of robot skills. This requires the module to provide the mehanism needed forgathering the demonstration data from a teaher agent and for enoding the motionsinto a model of the robot skill. The robot skill learning module ollets motion datafrom demonstrations, proesses it and builds the demonstration data set that feedsthe learning algorithms. The SEDS algorithm is employed to learn an estimate ofthe motion through a set of �rst order non-linear multivariate dynamial systemsin a statistial approah. Figure 3.8 illustrates the ontrol �ow for the operation ofthe robot skill learning module. The learning systems are required to aquire skillsand developed task knowledge of how to at in order to provide a robot with a suf-�ient number of skills that permit it to perform autonomously in an unstruturedenvironment.The robot skill learning module ollets the learning proesses and algorithms usedfor learning and enoding the models of the skills. There are three subsystems in thismodule; a subsystem for gathering demonstration data; a subsystem for buildingan estimate of the demonstration with the learning algorithm; and a subsystem forenoding the robot skill model. Figure 6.17 shows the deployment diagram for therobot skill learning module.The subsystem for gathering demonstration data is made up of three proesses. At�rst a teaher agent input data is olleted, Chapter 3 presented di�erent modalitiesfrom whih the teaher demonstration ould be olleted. Seondly, a preproessingstep is performed to transform the olleted data to ensure orrespondene with therobot system. A �nal third step proess the raw data from the previous step to buildthe demonstration data set as required to feed the learning algorithm. The operationof the subsystem for gathering demonstration data is handled by an external proes-
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Fig. 6.17: Deployment diagram for the robot skill learning module. There existthree subsystems in this module, a subsystem for gathering demonstrationdata, a subsystem for building an estimate of the demonstration with thelearning algorithm, and a subsystem for enoding the robot skill model.sor with di�erent implementations for the reording of the teaher demonstrations.Three modalities were presented in Chapter 3. For the teleoperation of the robot bymeans of kinaestheti teahing, the robot enoders are used and eah joint motionis reorded at a rate of 1000Hz, and saved in an appropriate �le, storing the datafor a given demonstration; these are then re-sampled to a �xed number of points toproess the raw data into the required demonstrations dataset. For the OpenRavesimulated environment, the proess goes as before, but a simulated model of the robotis implemented and it is used instead of the real robot sensor. For the reording ofvisual demonstrations, a Mirosoft Kinet sensor is used, a software system was im-plemented to make use of the skeleton traking apabilities provided by the OpenNIapi, the motions of a teaher in front of the sensors are reorded, later the teaherreorded joints are transformed to math the orresponding robot joints.The learning algorithm subsystem handles the learning of the robot skill as de-sribed in Chapter 3; the algorithm for the building of the demonstration with SEDSan be found in Table 3.3. The subsystem for enoding the robot skill model is inharge of preparing and expressing the learned estimates of the motions as RobotSkill Models for the rest of the framework. The learning algorithm proess is arriedout o�-line. The implemented system is derived from the SEDS library provided by[Khansari-Zadeh and Billard, 2011℄. The �le with the reorded demonstration data ispreviously provided by the subsystem for gathering demonstration data. A �rst pre-proessing step is arried out to build the adequate dataset needed by the algorithm.The MATLAB numerial omputing environment is used for the implementation ofthe learning algorithm subsystem in our framework, implementing the GMM, GMR,and SEDS algorithms. A model is obtained with the θ parameters enoding the robotmotion dynamis. In the �nal step a �le is outputted, storing the learned Robot SkillModels.
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Fig. 6.18: Deployment diagram for the robot skill knowledge module. There existthree subsystems in this module, a subsystem for the data entry to theknowledge base, a subsystem for the knowledge base data storage, and asubsystem for the knowledge base data management.6.4 Navigating the Robot Skill Knowledge BaseIn Chapter 4 the knowledge base for the storing and retrieval of the learned mod-els of the skills was desribed. In this setion the development and the proess forbuilding and navigating the knowledge base is given. For a roboti system to performdi�erent skills and tasks in a hanging and unstrutured senario, it is important tohave mehanisms to organize the aquired knowledge in a manner that allows it tobe retrieved in order to use it to drive its ations. The robot skill knowledge moduleis in harge of managing the knowledge base and the proessing of the knowledgerepresented within it. This requires the module to provide the mehanism by whihaquired knowledge about objets, ations and events of the task and the state of theworld is represented in the knowledge base, and also how this knowledge is operatedto extrat from it neessary information for the robot's suessful ompletion of itstasks. Figure 4.8 illustrates the ontrol �ow for the operation of the robot skill knowl-edge module. Developing appropriate strutures in whih to organize the aquiredknowledge, to allow the retrieval of it to use it in ful�lling the system goals is key ifhumanoid robots are to be apable and �exible enough to handle the hallenges ofworking alongside humans in omplex natural environments.The robot skill knowledge module governs the operation of the knowledge base andthe instantiation and maintenane of the di�erent frames in the developed knowledgerepresentational struture. Task and World Event Frames are instantiated, from theinformation provided by the pereption module, and the Ative View Event Frame



208 6. Reprodution of Robot Skillsis built from them with the onstraints of the task. There are three subsystems inthis module, a subsystem for the data entry to the knowledge base, a subsystemfor the knowledge base data storage, and a subsystem for the knowledge base datamanagement. Figure 6.18 shows the deployment diagram for the robot skill knowledgemodule.The knowledge base data entry subsystem works as a middleware between theknowledge base data storage subsystem and the robot skill learning module for up-loading robot skills models and ation, objet and task lasses for storage into theknowledge base. The knowledge base holds all neessary information for reprodutionof the skills in the environment; knowledge of the task would be distributed amongthe representation of objets, ations and events of the task. Operations of the knowl-edge base data entry subsystem are made o�-line. Entries into the knowledge baseare made to stored the needed frames for the task. Robot Skill Models are generatedas explained in the Robot Skill Learning Module and stored in the knowledge base.The objets and task frames entries are made beforehand by a human operator toensure the appropriate knowledge for the task exeution is stored in the knowledgebase. Some approahes exist for on-line autonomous generations of this knowledge'sdata strutures, suh as in the RoboEarth projet [Waibel et al., 2011℄, whih ouldbe studied for future implementation.The knowledge base data storage subsystem works as a database olleting andorganizing the robot skill knowledge as per the representational struture disussedin Chapter 4. Entries in the knowledge base are implemented using the XML markuplanguage, following the struture and tag labels as neessary for the di�erent knowl-edge frames as presented in Chapter 4. The physial implementation of the knowledgebase is on an aompanying PC outside of the robot main system. Communiationswith the robot on-board omputer are arried out using a WLAN network.The knowledge base data management subsystem is at the heart of the robotskill knowledge module. The knowledge base data management subsystem handlesthe operation and performane of the knowledge base, presented in Chapter 4; theknowledge of the environment and goals taken form the pereption module is rep-resented in terms of the World Event Frame and Task Event Frame, with Objetand Ation Frames representing knowledge about available objets and ations re-spetively. From the knowledge of these frames an Ative View Event Frame of thefoused knowledge promoting the agent's exeution is built. Looking up the knowl-edge base storage for the given objet and ation a�ordane frames yields the neededmodels of the skill, M̄RS, required by the module for its operation. In the knowledgebase data management subsystem, searh and reasoning operations over the storedknowledge are arried out. The implementation of the knowledge base data manage-ment subsystem was made using SWI-Prolog and the Python high-level programminglanguage. A YARP layer was implemented for the ommuniations between the robotskill knowledge module and the rest of the systems.
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Fig. 6.19: Deployment diagram for the robot skill generation and adaptation mod-ule. There exist three subsystems in this module, a subsystem for extrat-ing data from the knowledge base, a subsystem for operating upon therobot skill with the adaptation algorithm, and a subsystem for generatingthe task models.6.5 Generating the Robot Skills Task ModelsThe robot skill generation and adaptation module is a vital part of the developedframework. In Chapter 5, the algorithms developed for the generation and adaptationof the robot skills were desribed. In this setion the development and operation ofthe robot skill generation and adaptation module will be presented. For humanoidsto ope with working in ontinuously hanging environments and performing a widevariability of tasks, it is imperative to endow them with mehanisms that support theadaptation of their skills and behaviours to generate new ones �tting their ontext.The robot skill generation and adaptation module is in ontrol of handling the pro-ess by whih learned models of a skill are adapted for an unseen ontext. The robotskill generation and adaptation module is provided with knowledge of the state of theenvironment and the onstraints of the task extrated from the robot skill knowledgemodule; using both, the already learned model of a skill, and the extrated onstraintsinformation of the urrent task, the model of the skill is adapted to reprodue thetask. Figure 5.2 illustrates the ontrol �ow for the operation of the robot skill gen-eration and adaptation module. Mehanisms are needed to endow systems with theapaities to adapt their aquired skills expanding the system's knowledge and abilityto at in the environment.The robot skill generation and adaptation module supervises the proess by whihthe learned model of a skill an be operated to reprodue a new task, inluding theadaptation, update, merger, ombination, or transition of the skill models. There arethree subsystems in this module, a subsystem for extrating data from the knowledgebase, a subsystem for operating upon the robot skill with the adaptation algorithm,and a subsystem for generating the task models. Figure 6.17 shows the deployment



210 6. Reprodution of Robot Skillsdiagram for the robot skill generation and adaptation module.The subsystem for extrating data from the knowledge base is made up of twoproesses; �rst it reovers data from the robot skill knowledge module and seondly itdistributes appropriately this data to the rest of the subsystems for their operations.This subsystem implements a middleware between the knowledge base and the restof the systems.The adaptation algorithm subsystem handles the proess of operating upon thelearned robot skills, a �rst step from the information reeived from the previoussubsystem would help it deide whih type of method is required for adaptation;afterwards the hosen algorithm would work on the given robot skill models as de-sribed throughout Chapter 5. The adaptation algorithms were implemented usingthe MATLAB numerial omputing environment.The subsystem for generating the task models is in harge of preparing and ex-pressing the adapted Robot Skill Models in a form suitable for robot reprodution.As a �nal step, a �le is outputted storing the omputed task model.6.6 Reproduing the Robot Skills Task ModelsObviously all e�orts in our framework would be useless if the robot were notequipped with proper mehanisms for the motor ontrol of the robot skill reprodu-tion. The robot skill reprodution module is in harge of produing the adequateontrol signals to the robot for the reprodution of robot skills. In this setion, thedevelopment and operation of the robot skill reprodution module will be presented.The robot reprodution module is assigned with the task of providing suitable on-trollers that onvert kinemati variables into appropriate motor ommands. Therobot skill reprodution module is given as input from the previous modules in theframework; the model of a robot skill as a GMM, as explained in Chapter 3. The �rststep is to ompute the desired target value ξ̇ through the GMR proess, as given inChapter 3. This would ompute the desired target values for referene of the HOAProbot ontrol system. Figure 6.20 presents the ontrol strategy of the robot skillreprodution module, for details see [Pierro et al., 2009℄.This sheme onsiders several bloks. One a ommand has been reeived, therobot distinguishes if it is a ommand for the walking generation or for the armsmovement. The walking patterns of the robot have been designed based on the the-ory of the 3D Linear Inverted Pendulum Mode presented in [Kajita et al., 2001b℄.[Monje et al., 2008℄ presents studies for the posture stability ontrol. If the reeivedommand requires a movement of the arms, as in the ase of a grasping task, theseletion of the suitable arm is �rst onsidered. Finally, the trajetory of the arm isevaluated online through the algorithm of kinemati inversion [Siiliano et al., 2009℄,one the ommand provides the distane and the orientation from the objet. The ori-entation referene for the objet is alulated with the support of the unit quaternionpresented in [Chiaverini and Siiliano, 1999℄.In order to deide the best arm to perform the grasping, the reahable workspae isdivided into three areas: in partiular, the two areas that an only be reahed by one
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Fig. 6.20: Control strategy of the robot skill reprodution module.

Fig. 6.21: Workspae of Hoap-3 arms. Zone of servie of right arm is depited inblue while red are represent the zone reahable by left arm.
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Fig. 6.22: Deployment diagram for the robot skill reprodution module. The modulehas three subsystems, a subsystem for omputing the regression of themodel with GMR to obtain the desired target ommands, a subsystemfor produing the adequate ontrol signals from the target ommands,and a subsystem to ommuniate the ontrol signals to the robot andmonitor the HOAP-3 robot exeution.of the arms and the workspae that an be reahed by both arms. Figure 6.21 showsthe three areas. Sine there is only one arm that an reah the �rst two areas, wedon't have to deide anything. In the ase of work areas that an be reahed by botharms, the system should deide the one whose manipulability is higher, onsideringthe de�nition of manipulability stated in [Siiliano et al., 2009℄
(q) =√det

(J (q)JT (q)) (6.1)where J is the Jaobian matrix of the orresponding arm and q the joint positions ofthat arm.The robot skill reprodution module ontrols the exeution of robot skills. Themodule has three subsystems, a subsystem for omputing regression of the modelwith GMR to obtain the desired target ommands, a subsystem for produing theadequate ontrol signals form the target ommands, and a subsystem to ommuniatethe ontrol signals to the robot and monitor the HOAP-3 robot exeution. Figure6.22 shows the deployment diagram for the robot skill reprodution module.The HOAP-3 ontrol systems is in harge of omputing the appropriate ommandto ontrol the exeution in real-time of the humanoid robot, the ontrol system hasbeen presented above in Figure 6.20. The robot ommand subsystem handles theommuniations from the developed framework and its subsystems and the real robotagent for the atual reprodution and exeution by the HOAP-3 robot. The physialimplementation of the robot ontrol system is made on three PCs; an on-board PCimplements the robot ontrol systems; an auxiliary PC implements the knowledge andlearning systems; and a laptop omputer implements the ?? and pereption systems.A YARP layer was implemented for the ommuniations between proesses.



6.7. Experimental Evaluation 2136.7 Experimental EvaluationPreviously, in Setion 6.2, a series of experimental evaluation senarios weredesribed. The evaluation senarios were designed with the intent to present ademonstration of the overall performane of the framework developed through thiswork and the operation of its di�erent modules. The evaluation of roboti systems,and knowledge base robotis systems in partiular, is a ompliated issue in whihthere are not readily available standardized evaluations or established benhmarks[Tenorth and Beetz, 2013℄. The experimental evaluations presented in this setionare aimed at providing proof of onept for the developed framework. Here the majorfous of interest lies not in the measurement of performane and e�ieny metrisbut in the validation of the viability of the proposed system and the apabilities of theframework in dealing with a range of di�erent and inreasingly omplex situations.The demonstration will test the operation of the humanoid robot and the devel-oped framework as it is required to omplete distint tasks. Di�erent senarios arepresented in order to highlight how the omponents of our framework ontribute toahieving realisti tasks, and that the implementation of the apabilities for learning,knowledge manipulation and adaptation of skills are fundamental for the developmentof viable humanoid robots.Several experiments were onduted to validate the proposed systems. A �rstsenario evaluates the performane of the pereption and knowledge base modules. Alater senario deals with the performane of the robot skill generation and adaptationmodule. The �nal senario is made to evaluate the performane of the robot skillreprodution and the omplete developed framework for learning and adaptation ofrobot skills.Evaluation of Knowledge Base SenarioThe �rst demonstrators were devised for testing the operation of the knowledgebase senario. The aim of the knowledge base senario is to demonstrate how thehumanoid robot employs the knowledge base module for the instantiation and upkeepof information from its environment pereption and the objets that are present init, as they are relevant for its task. It also presents the performane of knowledgebase modules for storing Robot Skill Models and for retrieving and invoking the skillsknowledge from the knowledge base when the information is needed to perform therobot skill in the ompletion of a task.Two main experiments were arried out with the HOAP-3 humanoid robot in thissenario, as desribed in Setion 6.2. In the �rst demonstrator a humanoid robotwould look around its environment as a human agent moves and manipulates variousobjets under the robot's �eld of view. The robot would instantiate and upkeepthe objet's knowledge as they beome present and modi�ed through the humanagent interation with the environment, keeping up to date information of the knownobjets to answer queries from the human agent about the state of ertain objets.The seond demonstrator presents a humanoid robot with the diretive to ompletea given task. The knowledge of the task and world state in the knowledge base would



214 6. Reprodution of Robot Skills

Fig. 6.23: Knowledge Base Senario Experiment A.1: di�erent snapshots from theexeution of the task in the demonstrator. The robot looks around theenvironment keeping in the knowledge base information of the objetsstate. The human agent moves and takes in and out of view the di�erentobjets at will. At di�erent stages of the demonstrator the robot is askto loate an objet.a�ord the robot the possibility of ompleting its task by extrating the neessary robotskill models to perform the required skill motions needed to suessfully omplete thedesired task.For the �rst demonstrator, the HOAP-3 robot looks around the sene as thepereption system reognizes objets and instantiates or upkeeps their objet framesin the knowledge base. Objets in the environment are taken in and out of the robot�eld of view or moved around the sene; also the robot would be asked to fous ondi�erent objets throughout the demonstration as its task diretive is hanged by theagent. Figure 6.6 shows a shemati view of the �rst demonstrator experiment inthe knowledge base senario. The fous of this demonstrator is on instantiation andupkeeping of objet frames in the knowledge base.Figure 6.23 shows di�erent snapshots from the exeution of the task in the �rstdemonstrator. The experiment exeution in this demonstration senario would de-velop as follows, the experiment starts with the HOAP-3 robot standing looking downat a table in front of it. The human agent arranges di�erent objets on the table forthe robot to reognize. In the �rst step the HOAP-3 robot sans the sene fromleft to right, instantiating objets it an reognize. After the san step is ompletedin the subsequent steps, the human agent rearranges any number of objets, whileadditionally, the robot is asked to loate one of the objets. In this stage the robotwould look up the objet's last known loation information from the knowledge baseand begin to look for the objet from there; assuming the requested objet is onethat the human agent moved around. In this state the robot's main fous is to loatethe requested objet while a bakground proess is still in harge of instantiating andupkeeping the rest of the objets in the robot �eld of view. The robot would eitherloate the objet or omplete one san of the sene and assume the objet has beenremoved and delete its instane from the knowledge base. The human agent would
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Fig. 6.24: Knowledge Base Senario Experiment A.1: di�erent snapshots from thepereption system during exeution of the task in the demonstrator.repeat this for various objets during the experiment. In Figure 6.23 the robot is �rstseen looking for the red ball whih it loates and later the yellow `egg' whih it an't�nd.Figure 6.24 presents the operation of the pereption system during the exeution ofthe demonstrator experiments. Reognition of the objets is based on blob detetionby olor �ltering and area omparison. The performane of the omputer visionalgorithms is not an element of this thesis, and the seletion of the pereption systemomponents was made on the riteria of availability and easy integration with therest of the framework. In general, the pereption system works adequately for whatit is needed, and there were only problems reognizing the knife and spoon objets;see enter images in Figure 6.24, that were too bright and didn't aurately re�ettheir olours making them invisible for the reognition algorithm.Figure 6.25 presents the operation of the knowledge base system during the exeu-tion of the demonstrator experiments. As new objets are being reognized, instanesof the objets are reated in the knowledge base storing information of their proper-ties, in this ase their olour and loation. When objets are moved by the humanagent interating with the environment, objets' instanes of the knowledge base up-date their information. The system fouses on objets that are in its urrent �eldview and that are important to its goals. The Figure 6.25 shows the ontents of theknowledge base; in the lower row images they orrespond to the state of the systemat the moment of the images from the pereption system in the above row. Objets'instanes for objets that are out view are grayed out and their loation property ishanged to a relative value to re�et loss of ertainty of their position; this value isthen used as an indiation of where to expet the objet to be and the starting pointto begin an exploration to look for it. Objet instanes for objets that are key tothe robot goal are shown in blue; here the robot was asked to �nd the red ball, theseond image, and the yan up, the fourth image. When an objet an't be foundagain in the environment, in this ase the yellow `egg' in the third image, its objet
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Fig. 6.25: Knowledge Base Senario Experiment A.1: di�erent snapshots from theknowledge base system exeution of the task in the demonstrator.instane is removed from the knowledge base.The goal of this demonstrator senario is to show how frames in the knowledgebase are instantiated from the pereption of the environment and how the knowledgebase maintains and upkeeps its knowledge representation over time, in a hangingenvironment. The apaity to manage the knowledge of the environment is an im-portant a�air for humanoid robots. While for industrial robotis or robots workingin ontrolled environments where knowledge of objets and events around them areknown and an be planned for in advane, for a humanoid robot working in a dy-nami setting the state of the environment an have almost an unlimited number ofon�gurations and an hange unexpetedly at any moment. The knowledge basesystem allows the robot to build representations of objets in its environment and tokeep trak of hanges that may our. Also the knowledge base system is needed tohelp overome some faults from the pereption system and the problem of not alwayshaving available omplete and reliable information from the environment.For the seond demonstrator the HOAP-3 robot and a human agent interat toomplete a simple task requiring the robot to pik up a up and a spoon in eah handand then to put the spoon inside the up; then �nally it puts down the up in frontof itself. Exeution of the demonstration ould vary depending on the ations of boththe human agent and the HOAP-3 robot. Figure 6.8 shows a shemati view of theseond demonstrator experiment in the knowledge base senario.Figure 6.26 shows di�erent snapshots from the exeution of the task in the seonddemonstrator. The experiment requires for the HOAP-3 robot to omplete the taskof putting a spoon inside a up and putting the up down on a plate. Completion ofthis task has di�erent steps, piking up the up, piking up the spoon, plaing thespoon inside the up and plaing the up on top of the plate; seletion of whih skillsis exeuted and when depends on the environment state and the interation with thehuman agent. Exeution of the experiment would develop as follows: �rst the robot
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Fig. 6.26: Knowledge Base Senario Experiment A.2: di�erent snapshots from theexeution of the task in the demonstrator. Depending on the state of theenvironment and the human agent interation the robot perform di�erentrobot skills.piks up the spoon in its left hand, then the human agent brings the up near tothe robot's workspae, depending on the position of the up, the robot would eitherinvoke from the knowledge base the �pik up up� or �plae spoon� skills. Eventuallythe robot's right hand is in possession of the up with the spoon inside it, and theknowledge base invokes the exeution of the skill motion for putting the up down onthe plate. In Figure 6.26 the robot an be seen exeuting di�erent skills.Figure 6.27 presents the operation of the pereption system during the exeutionof the demonstrator experiments. Objets are reognized based on their olour prop-erties and blob size. From the images it an be seen that some problems an takeplae when the human agent or the robot platform arm enter the amera's �eld ofview, as olusions and false reognitions an happen. Typially, these issues an betaken are of by the blobs' size and area inonsisteny with expeted objets' prop-erties, or by their failed instanes being removed from the knowledge base sine theironstant movement made them disappear too quikly for them to a�et the operationof the system.The operation of the knowledge base system during the exeution of the demon-strator experiments an be seen in Figure 6.27. The knowledge base presents infor-mation for the environment and the task exeution. The task frame holds knowledgeof the ations to arry out by the robot for the exeution of the task. Ations high-lighted in blue re�et the urrent invoation of that ation's knowledge for the robotreprodution of the skill. Ations that have been ompleted are deativated and high-lighted in grey. The seletion and ativation of whih skill motion to arry out next,is ompletely determined by the skill initial onditions being mathed to the state ofthe environment. Therefore, the sequene of exeution of the task is ontrolled by the
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Fig. 6.27: Knowledge Base Senario Experiment A.2: di�erent snapshots of the ex-eution of the demonstration illustrating the operation of the pereptionsystem and the knowledge base system.human agent as it interats with the robot and the environment and failitates theobjets and onditions needed for the robot to ful�l the task. A potential problem isdetermining whih ation has preedene when many of them an satisfy their ondi-tions at the same time. The tasks onsidered in the demonstrator didn't present thisissue, sine the robot's limited workspae prevented the onditions for piking up theup and plaing the spoon to be satis�ed at the same time. This issue has not beenfully explored so far, and as a �rst simpli�ation preedene is determined by theorder of the ations in the task frame as determined by the programmer of the task;although not satisfatory for every senario, this solution is probable enough for manyommon tasks. The use of some form of long time planner ould be e�etive to solvethis issue by assigning preedene by determining how the deision of performing oneation over another ould a�et the exeution of the task several steps ahead.The goal of this demonstrator senario is to show how ation exeution is invokedby the state of the representation frames present in the knowledge base. Figure 6.28presents a storyboard of the performane of the system during the exeution of thedemonstrator experiments with snapshots taken at various stages. A knowledge baseapproah for robots working in unstrutured environments, where the exeution ofthe task annot be sripted beforehand is fundamental if they are to be able to worksuessfully. Without suh a system the robot would be un�t to respond to anyunforeseen deviation from the plan, and be largely ine�etive to perform in all butthe most ideal of situations. The knowledge base system allows the robot to keep
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Fig. 6.28: Knowledge Base Senario Experiment A.2: di�erent snapshots duringthe exeution of the demonstration. The top row and the bottom rowrepresent two di�erent reprodution of the experiment.trak of the environment and the state exeution of the task, this provides the systemwith �exibility to deal with di�erent states at a partiular point with out losing fousof the global task objetive.Evaluation of Skill Generation and Adaptation SenarioHere the demonstrators are oriented to the evaluation of the performane of therobot skill generation and adaptation senario. The aim of the skill generation andadaptation senario is to demonstrate how the operations of the humanoid robotan be expanded from an original set of learned robot skills by operating over theRobot Skill Models as presented in Chapter 5, in order to generate new models ofrobot skills. In this senario the performane of the learning module for learningand enoding Robot Skill Models is presented �rst. The human agent would providedi�erent teahing demonstrators to the robot, gathered from the methods desribed inChapter 3 to build a �rst set of skill models. Seondly, the methods for merger, updateand ombination of Robot Skill Models are validated by applying them in di�erentsituations allowing the humanoid robot to ahieve its task objetives, unreahablewith its original skill set, by employing newly generated robot skills.Two main experiments were arried out with the HOAP-3 humanoid robots inthis senario, as desribed in Setion 6.2. In the �rst demonstrator, a humanoidrobot is equipped with a table tennis paddle and taught to perform di�erent tennis
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Fig. 6.29: Generation and Adaptation Senario Experiment B.1: di�erent snapshotsfrom the exeution of the task in the demonstrator. Reording of theteaher demonstrations for the forehand and smash shot skill with a kinetamera (the kinet images are mirrored). HOAP-3 robot reprodution ofthe learned forehand and smash shot skill.shots, then additional tennis shots skills are generated by the merger of di�erentlearned skill shots. For the seond demonstrator, the humanoid robot is required tograsp an objet from various possible initial loations, while being taught to performthe skill motions to grasp it for only a limited number of loations. The ompletetask would be unahievable with the limited robot skills set learned at �rst sine theskill reprodution would not generalize well to every target's loation. To generalize,aross the whole working spae models of the robot skill are ombined into a singlemodel of the attrator dynamis.For the �rst demonstrator in this senario the HOAP robot is required to exeutedi�erent tennis shot ations to hit a table tennis ball. Originally, robot skills' modelsare taught to the HOAP-3 robot to hit an approahing ball, providing the robot withthe skills to perform a forehand shot and a straight smash shot. To expand the robotskill set, the two learned skill models are merged to obtain a new Robot Skill Model fora forehand-smash shot. Figure 6.10 shows a shemati view of the �rst demonstratorexperiment in the generation and adaptation senario.Figure 6.29 shows di�erent snapshots from the exeution of the task in the �rstdemonstrator. The experiment exeution in this demonstration senario would de-velop as follows: �rst, a human teaher is reorded exeuting demonstrations forthe forehand and smash tennis shot skill motions. The teaher demonstrations arereorded with the use of a kinet amera traking the skeleton of the user during thedemonstration. Robot Skill Models are enoded from the demonstrations followingthe SEDS learning mehanism reviewed in Chapter 3. With the learned robot skills,the robot is given the apaity to suessfully perform a forehand tennis shot andstraight up smash shot skill motion.Figures 6.30 and 6.31 summarizes the proess of enoding the tennis shot skillmotions presented above. The �gures show a 3D reprodution of the learned skillstrajetories, the training data from the reorded demonstrations of the skill and theenoded SEDS models of the robot skill.In order to expand the robot skill set and inrease its range of ation for the table
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Fig. 6.32: Generation and Adaptation Senario Experiment B.1: Generating theforehand-smash shot skill from the merger of the learned forehand andsmash shot skill models. HOAP-3 robot reprodution of the forehand-smash shot skill.tennis task, the two learned skill motions are merged through the methods presentedin Chapter 5. Figure 6.32 illustrates the proess of generating the forehand-smashskill model from the merger of the forehand and smash robot skills learned in Figures6.30 and 6.31. Being apable of expanding a robot set of learned skills is learly animportant issue as robots will be asked to perform an inreasing number of ativitiesand learning and programming every possible skill into the robot is infeasible. Asstated in the previous hapters, the properties of the learned Robot Skill Modelsenoded with the SEDS method form Khansari will hold for the merged Robot SkillModels generated here. Learning the robot skills with SEDS as a model of the motionsdynamis has several desirable properties that have been stated before in previoushapters. This allows the robot to have an enoded model, generalizing the dynamisof the motion, that an respond to perturbations on the exeution of the task andhanges to the initial onditions.The seond demonstrator requires that the HOAP-3 robot grasps a up objetloated in any possible plae in a �upboard�, whih is made up of two shelves, abottom and a top shelf. The HOAP-3 robot must be able to grasp the up, as longas it is inside the robot arm's workspae, in any of six possible general loations inrelation to the robot arm: three on the bottom shelf and three on the top shelf.At �rst, the only skills learned by the robot are for grasping the up plaed on thebottom shelf. To grasp the up, plaed on the top shelf, at either side of the robot,the skills learned to grasp the up on the bottom shelf must be updated to generatethe required new robot skill models. Figure 6.12 shows a shemati view of the seonddemonstrator experiment in the generation and adaptation senario.The experiment exeution in this demonstration senario would develop as follows:�rst a human teaher is reorded exeuting demonstrations for grasping a plasti upobjet loated on the bottom shelf of a �upboard�. The teaher demonstrations are
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Fig. 6.33: Generation and Adaptation Senario Experiment B.2: teahing and learn-ing the skill motion for grasping a up in the bottom shelf of the �up-board�.
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Fig. 6.34: Generation and Adaptation Senario Experiment B.2: updating the skillmotion for grasping a up in the top shelf of the �upboard�.reorded by means of kinaestheti teahing, with a human agent moving the HOAP-3robot arm through the demonstration of the skill. Figure 6.33 shows the proess ofteahing and learning the skill motion in the �rst demonstrator. Robot Skill Models areenoded from the demonstrations following the SEDS learning mehanism reviewedin Chapter 3. The desired goal is for the robot to have the apaity to suessfullygrasp the up out of the �upboard� regardless of its possible position inside it. Thatis, the up ould be plaed to the left, right or in front of the robot on either the top orbottom shelf. Trying to generalize the learned skill for grasping on the bottom shelfto perform a grasp on the top shelf would not be suessful. To grasp the up whenplaed on the top shelf, the learned Robot Skills Models must be updated, employingthe method presented in Chapter 5. Figure 6.34 shows the proess of updating theskills of the bottom shelf grasping for performing the grasp skill for plaements of theup on the top shelf of the �upboard�.Figure 6.35 summarizes the proess for generalizing the learned skill for graspingthe up objet out of the �upboard� regardless of its possible loation. The �gureshows the performane of the system during the exeution of the demonstrator exper-iments suessfully grasping the up when plaed to the left-bottom, right-bottom,enter-bottom, left-top, right-top, enter-top, of the robot.In order to expand the robot skill set and inrease its range of ation to enompass
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Fig. 6.35: Generation and Adaptation Senario Experiment B.2: di�erent snapshotsfrom the exeution of the task in the demonstrator. Grasping the upwhen plaed to the left-bottom, right-bottom, enter-bottom, left-top,right-top, enter-top, of the robot.a larger spetrum of the attrator dynamis, the Robot Skills Models must be ombin-able into new models. This allows more omplex tasks than those presented duringdemonstrations to be arried out, generalizing the models of the skills to regions out-side their original demonstrations. To generalize the skill aross the whole workingspae of the shelves in the �upboard�, the three models of the robot skill, for right,left and enter, grasping motion on a shelf, are ombined into a single model of theattrator dynamis. Figure 6.36 illustrates the omplete behaviour of the generatednew skills models. For humanoid robots to be apable of working suessfully in theapaity in whih they are envisioned, it is of vital importane that they present am-ple and robust skill sets. The ability to learn robot skills is a key aspet to ahievingthis, yet learning by itself is not su�ient; the apaity to operate over the learnedrobot skill, suh as the merger, update and ombination of skills, is neessary. Updat-ing previously learned skills is a very important ability for humanoid robots, allowingthem to inrease and improve their available skill set. Combining di�erent robot skillsallows the expansion of the sope of appliation of the learned skills and generalizesthem to new ontexts. One important gain from the ombination of robot skills omesfrom inreasing the auray of the generalized behaviour. The generation of a modelby ombining robot skills is neessary in order to improve the task exeution.Evaluation of Robot Skill Reprodution SenarioFor the �nal senario, two general demonstrators were implemented for validatingthe omplete developed framework for learning and adaptation of robot skills. Thegoal for the robot skill reprodution senario is to demonstrate the operation and inte-gration of all the overall systems in the framework for the performane of a humanoidrobot in a omplex unsripted environment interating with a human agent.
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Fig. 6.36: Generation and Adaptation Senario Experiment B.2: ombine skillmodel allows to enompass a larger spetrum of the attrator dynamis.Di�erent exeutions of the task grasping the up at di�erent loations.Two main experiments were arried out with the HOAP-3 humanoid robot in thissenario, as desribed in Setion 6.2. In the �rst demonstrator we omplete the tabletennis senario from the previous subsetion. Here, the HOAP-3 robot would standequipped with a table tennis paddle waiting for an approahing ball to hit with anappropriate tennis shot skill. For the seond demonstrator the previous senariosinvolving the HOAP-3 robot employing kithen objets are expanded. Here, therobot is required to omplete a setting up of a dinner servie task behaviour withassistane from a human agent.For the �rst demonstrator in this senario the HOAP robot is expeted to simulatea game of table tennis. The humanoid robot stands, paddle in hand, expeting a tabletennis ball to be moved towards it. The pereption system would reognize the balland extrat the appropriate learned robot skill models to reprodue the ation fromthe knowledge base. Figure 6.14 shows a shemati view of the �rst demonstratorexperiment in the robot skill reprodution senario.Figure 6.37 shows a set of di�erent snapshots aptured during the exeution ofthe task in the �rst demonstrator. A suessful exeution of the experiment in thisdemonstrator would develop as follows: the HOAP-3 robot starts the experimentstanding at a rest position, with a table tennis paddle in its right hand, waiting foran approahing ball to hit with an appropriate tennis shot skill. The limitations ofthe pereption and of the robot itself don't allow for a real-time reprodution of thetask, therefore, the ball is handled by a human agent who approahes it to the robot



6.7. Experimental Evaluation 227at a ontrolled speed. The pereption system reognizes the ball at a ertain distanefrom the HOAP-3 robot position, sine providing omplete aurate estimation ofthe ball's position when moving is not possible by the pereption system, we simplifythings and divide the spae into quadrants and make a rough estimate of what theball �nal position will be, based on whih quadrant the ball was travelling in at thereognizing step.After the pereption system reognizes the ball an instane of the ball objet isreated on the knowledge base. Sine the preise position of the ball is not needed,the ball objet instane holds only the estimate for whih quadrant the ball is in.The knowledge base also holds the task event frame for the demonstrator onsistingof the Robot Skill Models for performing the tennis shots. There are 4 Robot SkillModels in the task event frame from the skill learned in the previous senario, wehave a forehand and smash shot skill, and also from the previous senario we havea forehand-smash shot skill generated from the merger of the other two skill models.One additional skill was learned for the demonstrator for the performane of a bak-hand shot employing the same methodology as it was for learning the other RobotSkill Models. When the ball is reognized by the pereption system rossing one ofthe quadrants the appropriate skill ation is invoked from the task event frame for therobot reprodution. Figure 6.37 shows the HOAP-3 robot performing the di�erenttennis shot skills as it interats within the demonstrator; the entral image is at theonset of the motion, and the right image is at the end of the motion; the left imagedepits the state of the system leading to the reprodution of the tennis shot skill. Forthe experimental run illustrated by Figure 6.37 the `point' begins with the HOAP-3robot returning a bakhand shot (�rst row), followed by two suessful forehand shots(only one is depited, seond row), then the HOAP-3 robot performs a smash shot(third row), and �nally the `point' onludes with a forehand-smash shot return fora sore of �love, 15�.The seond demonstrator requires the robot to set a �dinner servie� onsisting ofa fork, a knife, a sauer plate, a up and a spoon, in onjuntion with a human agent.The purpose of the demonstrator is to test the overall operation of the developedframework, as well as validating the performane of every individual module andinteration between themselves. The sequene of exeution of the task ould varydepending on the ations of both the human agent and the HOAP-3 robot. Figure6.16 shows a shemati view of the seond demonstrator experiment in the robot skillreprodution senario.Figure 6.38 depits a storyboard of the performane of the seond demonstratortaken from several snapshots, aptured from the exeution experiment. A standardrun-through the demonstration senario would develop as follows: �rst the robotis given the task of setting up �dinner servie� at the table in front of it, and allneessary robot skill ations and task event frames are stored in the knowledge base.The task begins with the robot standing in front of the empty table. The �nal set-upof the table requires a plate to be plaed in the enter, a up is plaed on top of theplate, and a spoon is plaed inside the up, a fork and knife �ank the plate at its leftand right sides respetively. Completing the task requires the performane of severaldi�erent skills, the seletion of whih skill is to be arried out by the robot at eah
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Fig. 6.37: Robot Skill Reprodution Senario Experiment C.1: di�erent snapshotsfrom the exeution of the task in the demonstrator.



6.7. Experimental Evaluation 229time omes from the ations being a�orded to the robot by the environment, throughthe interation with a human agent, in the knowledge base. Therefore, the sequeneof exeution of the task is governed by the human agent as it is him who hooses theorder in whih to provide the robot with the needed objets. Certain items, however,have preedene over others, i.e. the plate must be plaed on the table before theup, sine the up goes on top of it.The �rst objet to be plaed on the table is a `red' ontainer box, from whihthe HOAP-3 robot piks up the objets, when available. A human agent would thenhoose from the pool of objets of the task one objet to be plaed by the robot,and would set it on the ontainer box, Figure 6.38 top left image shows the instanewhere the human agent sets the �rst objet for that run of the task, in that ase aplate. The HOAP-3 robot pereption would reognize the objet in the ontainer box,when this happens an objet frame instane is reated in the knowledge base, andthe ation frames in the task event frame are heked out to �nd whih, if any, mathis invoking onditions from the urrent state of the world frame, in order to beginreprodution of a skill. One an ation is hosen, the Robot Skill Model parameters
θ = {π, µ,Σ} are reovered from the knowledge base system and provided to therobot skill reprodution model for performing the atual reprodution of the skill, asin the GMR proess desribed in Chapter 3. The robot will pik up the given objetand arry out the required operations with it to plae the objet where ever it willbe appropriate.The rest of the task will ontinue in this way, with the human agent initiatingthe performane of ation skills to an objet as determined by his interation withthe robot agent by presenting it with the objets. Figure 6.38 shows the HOAP-3robot performing a di�erent skill from this interation in ompleting the setting up�dinner servie� task. From left to right, starting at the top row, the human agent�rst presents the robot with the yellow plate, then the robot piks the plate up, therobot transports the plate to the position where it must be plaed, and �nally therobot puts the plate down on the table; a little assistane is required by the humanagent in that instane as the robot on�guration of the wrist DOF makes it di�ultfor the robot to orientate the plate for dropping it gently on the table. The seondrow begins with the human agent presenting the robot with the fork; then the robotpiks it up, the robot then swithes the fork to its left hand, and �nally drops it onthe table. The third row begins with the human agent presenting the robot with theknife, then the robot piks it up, the robot then transports it to the position where itmust be plaed, and �nally the robot puts the knife down on the table at the side ofthe plate; a little assistane is also required from the human agent. The fourth rowdepits the operations with the spoon objet whih goes the same as with the fork;the skill ations to handle them are the same, exept for the �nal step in whih thespoon is not set down on the table as it needs to go inside the up. The �fth rowbegins with the robot piking up the up from the human agent; it then transportit towards its left, and transport the spoon towards the up; �nally the robot plaesthe spoon inside the up and return to rest with the up with the spoon in its righthand. The �nal row depits the HOAP-3 robot performing the skill ation to plaethe up on top of the plate and omplete the task experiment.
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Fig. 6.38: Robot Skill Reprodution Senario Experiment C.2: di�erent snapshotsfrom the exeution of the task in the demonstrator.



6.8. Summary of the Chapter 2316.8 Summary of the ChapterThroughout this hapter the development and implementation of the frameworkand the di�erent modules that ompose it have been desribed. Also, the experimen-tal senarios are desribed and results and analysis are presented for the validationof the framework proposed throughout this work. Di�erent evaluation senarios weredeveloped to test the performane of the various modules implemented in our frame-work and to provide separate validation for the operation of the system. Setion 6.2desribed the development of the framework as well as the experimental set up forvalidating it, and the roboti platform used in this work, omplete with a desriptionof its struture, joints and sensor distribution. In Setion 6.3 the implementation ofthe robot skill learning module was desribed. Setion 6.4 presented the implementa-tion of the knowledge base system. In Setion 6.5 the development and operation ofthe robot skill generation and adaptation module is desribed. Setion 6.6 presentsthe implementation of the robot skill reprodution module in harge of produing theadequate ontrol signals to the robot for the reprodution of robot skills. Finally inSetion 6.7, a desription of the experimental results and analysis for validation ofthe proposed framework over the evaluation senarios is given. Di�erent evaluationsenarios are employed to test the performane of the various modules implemented inour framework. Demonstrations are organized over three major senarios to provideseparate validation for the knowledge base system, the generation and adaptationsystem, and the omplete developed framework.
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7. DISCUSSION AND FUTURE WORKWork on this thesis �rst started under the sope of a European projet for thedevelopment of humanoid robots for ollaborative working environments. It thenontinued, through various other projets, always linked to the issues and hallengesof designing and reating humanoid robots whih are apable enough of working andaiding their human partners during its everyday tasks. The prime motivation of thiswork, and of the humanoid robotis �eld in general, is in the development of humanoidrobots, and their ontrol mehanisms, with omparable skills and behaviours to thoseof humans. The main idea being that human-like robots would be favoured to performin the real world and that the use of humanoid robots that an give support inperforming human daily ativities would signi�antly help people in work sites, homesand in dangerous or emergeny situations.Before this vision an beome a reality, many important hallenges need to beaddressed. These hallenges enompass a whole range of issues from loomotion andmotor ontrol, to pereption, interation and ognitive behaviour and intelligene.In Chapter 2 a review of the developments and hallenges in humanoid robotisresearh, and of di�erent proposals for intelligent agents' arhitetures for robotisystems, was presented. There is muh work to be done to improve the apabilitiesof humanoid robots for loomotion, pereption, interation, ognitive behaviour andompetene at performing tasks. Progress in all of these aspets is vital and separatee�orts at improving eah one of these issues is of ruial importane; however, truebreakthroughs in the development of fully funtional humanoid robots an only ourwhen advanes in all of these issues an be done onurrently.The �eld of robotis has ertainly seen some advanes in these issues over theyears, with great usage of robotis for industry, surveillane, entertainment and man-ufature appliations. However, the performane of humanoid robotis remains hin-dered by these issues, in partiular the requirement for intelligent ognitive behaviour.Humanoid robots must present intelligent, natural, preditable and reasonable be-haviours, and development of intelligent ontrols to resemble this is a major hallenge.Researh into ognitive arhitetures onstitutes a solid basis for building intelligentsystems, but even though some attempts in the �eld have been made for providingognitive proesses for humanoid robots, there are not fully developed ognitive ar-hitetures readily available with the apabilities of endowing robots with the neededfuntional intelligene. The ognitive approahes are entred on the mehanism thatallows for the generation of thought and the interior workings of ognition; this allsfor an organization of intelligene in terms of ognitive models. Models of ognitionmust be embodied proesses that apture the unfolding of ognition in time, mindfulof the assoiated sensory and motor surfaes embedded in the environment.



234 7. Disussion and Future WorkOne major ontribution of this work is the development of a framework, as pre-sented in Figure 2.6, for a ognitive model for the generation and adaptation of learnedrobot skill models for omplying with task onstraints. In the developed frameworka knowledge base of the skills is built with the models of the skills learned throughdemonstrations. During the exeution, the onstraints of a requested task are ex-trated from the pereptual system from the working environment and the models ofan appropriate skill are retrieved from the skills knowledge base. With all availableinformation, a new adapted task model is generated for reprodution.The framework developed in this work was proposed as a ognitive model intendedto provide the robot with an essential ognitive ability for learning and adaptation ofskills. Though it is not a primary onsideration of this work, our framework an bethought of as one module level in the hierarhy of a more omplex arhiteture, oras a �rst stepping stone upon whih to inrementally build more omplex ognitiveproesses. The goal of the developed framework is to provide a minimum degreeof intelligene for the humanoid robot. The ultimate goal of the �eld, as statedbefore, alls for fully funtional humanoid robots apable of performing any type oftask as a human agent would, and apable of working, ollaborating and interatingwith humans, sharing the same spae, tools, and ativities. This vision requires forrobots to present full level ognitive and intelligent arhitetures, however, urrentdevelopments are not yet even nearly lose to these apaities, and our disussionneeds to start at some point in a basi funtional level of intelligene. The reviewof intelligene, on Chapter 2, lead to reognizing as a minimal desirable level ofintelligene for our humanoid robots the ability to sense the environment, learn, andadapt its ations to perform suessfully under a set of irumstanes.The developed framework provides humanoid robots with systems that allow themto ontinuously learn new skills, represent their skill's knowledge, and adapt theirexisting skills to new ontexts, as well as to robustly reprodue new behaviours ina dynamial environment. The ognitive framework for learning and adaptation ofrobot skills is made up from several modules, inluding modules for the learning ofrobot skills, the pereption and interation with the environment, the managementand representation of skill knowledge, the generation and adaptation of skill models,and the reprodution of robot skills.A skill in our ontext has been de�ned as a motor trajetory motion learned by theagent, an aquired ability for the exeution of a task. Imitation Learning approaheswere used to teah a robot how to aomplish a given task. To learn the skills motiona time independent model of the motion dynamis was estimated through a set of�rst order non-linear multivariate dynamial systems. Despite Imitation Learninglear advantages, it would be impratial to teah the robot skills for every task andsituation, therefore, it was neessary to extend the approah in a way that allows theadaptation of previously learned motion skills to new ontexts. The models of a skillare adapted to generate a new task by operating over the given robot skill models.The system must be able to store and latter retrieve and use their knowledge oflearned skills. The knowledge base holds all neessary information for reprodutionof the skills in the environment. Knowledge of the task is distributed among therepresentation of objets, ations and events of the task and the state of the world.



7.1. Disussion on Learning Robot Skills 2357.1 Disussion on Learning Robot SkillsThe ability to learn robot skills is one of the most important for developing hu-manoid robots. While programming robots to perform a series of required tasks isertainly possible for industrial robotis, humanoid robots are required to perform awide repertoire of tasks working beside humans in omplex dynami environments,making a learning approah a neessity. Learning systems are required to aquireskills and develop task knowledge of how to at. Algorithms for learning and extrat-ing important features of task ations are fundamental in order to build intelligentbehaviours. Chapter 3 reviewed the �eld of Learning from Demonstration (LfD) andthe proess and methods used for learning and enoding the models of the robotskills. LfD formulates user-friendly methods by whih a human user an teah arobot how to aomplish a given task, simply by demonstrating this task, and gener-alizing the demonstrated movements aross a set of demonstrations. Also, di�erentmethodologies for gathering the demonstrations were reviewed, various tehniques forteahing and building the demonstrations datasets were presented like, kinaesthetiteahing, visual demonstrations, motion apturing systems to reord demonstrations,or generating robot trajetories with virtual reality or simulated environments.For teahing and learning the di�erent sets of skills LfD algorithms and modalitieswere implemented and evaluated. In this thesis the robot skills were learned in aDynamial System approah. The approah is based on learning time independentmodels of the motion dynamis estimated through a set of �rst order non-linearmultivariate dynamial systems.Through the work on this thesis, a number of Imitation Learning tehniques havebeen studied and implemented in teahing and learning with the robot, the di�erentsets of skills employed in the rest of the framework. Three algorithms to learn thedynamis of demonstrated motions were studied. A �rst approah was implementedlearning the skills with multivariate Gaussian funtions; however, this formulationould not guarantee the learning of a stable estimate of the dynamis. The BMmethod was implemented next; this method ould produe a model of DS with loalasymptoti stability at the target. Finally the SEDS method was reviewed with twoobjetive funtions: SEDS-likelihood and SEDS-MSE. The SEDS formulation to learnthe underlying dynamis of a motion an guarantee that estimates of the dynamisare globally asymptotially stable at the target.Methodologies used for the reprodution of the learned motion dynamis of therobot skills were reviewed, omparing the performane of the methods presentedthrough this work. Validation was performed of the performane of the methods wereompared aross the demonstrated motions, the estimates of several 2-D and 3-Dmotions were learned. For learning the Robot Skill Models through the experimentspresented in this work, the SEDS-likelihood was employed. Learning the robot skillswith SEDS as a model of the motions dynamis has several desirable properties thathave been outlined before in other hapters. This allows the robot to have an enodedmodel generalizing the dynamis of the motion, that an respond to perturbations onthe exeution of the task and hanges to the initial onditions.



236 7. Disussion and Future WorkFuture WorkThis work reviewed various topis in the area of learning robot skills and ImitationLearning. A module was suessfully implemented allowing the robot to learn skillsfrom demonstrations. However, there remain some issues and pertinent onsequentstudies as follows:
• Di�erent tehniques were examined for gathering the teahers' demonstrationsin this work, an interesting possible topi requires the study of how demonstra-tions of the same skill reorded by di�erent tehniques an be used jointly forthe training of a robot skill with an LfD algorithm.
• Also, more in-depth studies and omparisons of the tehniques for gatheringdemonstrations with a user experiened fous on mind would be relevant andhelpful for deiding the mehanism by whih a skill would better be demon-strated to the teaher.
• The role of the teaher and how the quality of the provided demonstrationsin�uenes and determines the robot behaviour has not been fully explored.
• This work reviewed several learning algorithms and settled on using the SEDS-Likelihood algorithms sine it had better overall results and failitated imple-mentation. However, many di�erent algorithms exist in the literature, any oneof them with their strengths and weaknesses. Mehanism for determining whihalgorithms ould be better suited for the learning of a skill out of the demon-strated data would be an interesting topi for future researh.
• Employing di�erent learning algorithms in the same system naturally ompli-ates the interations that di�erent skills, with di�erent enodings, ould havewith the rest of the system. This leads to the need to researh mehanisms bywhih di�erent enodings of a skill ould be transform from one to another.
• An interesting topi of researh, not su�iently explored, in this work is howthe information enoded within the model of a robot skill an be used for theategorization and reognition of skills.7.2 Disussion on Representation of Robot SkillsFor a roboti system to perform di�erent skills and tasks in a hanging and un-strutured senario, it is important to endow them with a framework in whih toorganize their aquired knowledge in a manner that allows it to be retrieved it inorder to use it to deal with the urrent ontext onstraints. In Chapter 4, a knowl-edge base of skills was developed and implemented. The knowledge base allows forthe storage, lassi�ation and retrieval of learned models of skills. A knowledge baseis populated with robot available skills, learned by demonstration, for later repro-dution. A method for the representation of the knowledge of the skills and taskonstraints needed for reprodution was developed.



7.2. Disussion on Representation of Robot Skills 237The learned motion primitives an be used as a way of having omprehensiverepertoires of robot skills. Chapter 4 reviewed similar approahes aimed at buildingrepertoires of basi robot motor skills whih an represent a basi set of elementarymovement primitives. Most of these approahes generally o�ered little advie on howthe library of skills ould be used to selet and adapt the primitives to deal withdi�erent onditions, or their mehanisms for representing their knowledge.An important hallenge for robotis, and partiularly for robots ating on un-strutured dynami environments, is in dealing with internal representation and un-derstanding of the world. The embodied view of ognition all for representations tobe limited, physially grounded to the environment and oriented towards a partiularuse. Approahes from arti�ial intelligene and logi base reasoning see the worldmore as disrete time experienes. Yet the state and ation representations are dy-nami. The robot ations and thinking must be proesses of interating hange in theenvironment. The dynamial system theory approah is an appropriate alternative tothe traditional formats of representations. Dynamial systems an store knowledgeand have this stored knowledge in�uene their behaviour.The prinipal aim for the humanoid robot is to take ations, as situated agents,that are appropriate to their irumstanes. Fitting representations are essential forthis goal. Thinking in terms of ations, and objets, is not only intuitive but alsoonvenient for a representational undertaking in robotis. Objet and ations areat the basis of robot performane. However, representational attributions must alsoinlude information about the world and situations, events and goals, for e�etivesituated performane. Our representations inluded information about objets andations, the world and situations, events and goals, for e�etive situated performane.A struture built on frames has been adopted in this work. The knowledge of theenvironment and goals is represented in terms of World Event Frames and TaskEvent Frames, with Objet and Ation Frames representing knowledge about availableobjets and ations respetively. From their knowledge, an Ative View Event Frameis built from the foused knowledge promoting the agent's exeution.Future WorkThis work has introdued many issues in the framework of knowledge and repre-sentations for robot skills. Some possible onsequent studies are as follows:
• Work on this thesis has tried to build a omprehensive set of skills knowledge,however, the sets we are able to build are still limited ompared to what a robotworking in a real world situation would be able to develop over time. Furtherresearh is needed for topis of deision making and on�it resolution over theseletion of a proper path, when there are two or more viable hoies for ation.
• The topi of reasoning is a very large subjet and there are several di�erentapproahes and appliations for reasoning with robotis. While studying themwas outside the sope of this thesis, future works would bene�t from a ompar-ative study of reasoning approahes and the appliation of di�erent methods asthey are best suited to a situation.



238 7. Disussion and Future Work
• A further point of researh is on investigating how to handle inaurate orunreliable pereptions and information in the system and mehanism by whihthe knowledge base ould reover from erroneous and false assumptions.
• Work on this thesis has not foused on the reation or obtaining of plans, butassumed general plans to be already in the system and loaded into the taskevent frames; instead it has foused on mehanisms for the robot exeution ofthe tasks' ations. Future work must review the proess by whih humanoidrobots an learn, reate, hoose and modify their plans of ations.
• There are various di�erent approahes to related topis foused on the manage-ment of knowledge by roboti systems. An interesting topi of future researh isthe study and omparison of these systems; in partiular the ones that may beused to omplement the framework developed in this work, suh as KnowRobor RoboEarth, whih ould lie at a higher, more abstrat level of the ognitivehierarhy while our framework lies at a lower level of ation exeution.7.3 Disussion on Generation and Adaptation of Robot SkillsHumanoid robots are required to perform a wide repertoire of task working besidehumans in omplex dynami environments. Learning mehanism are important forbuilding up this type of repertoire of robot skills; however, despite the lear advantagesof LfD approahes it would still be impratial for the human operator to teah therobot the skills for every neessary task and for every foreseen situation. E�ortsto generate roboti skills an only have a real implementation value for developinghumanoid roboti systems, if the models of the skill an be operated upon to generatenew behaviours of inreasing levels of omplexity. Therefore, extending the LfDapproah of learning a skill model in a way that allows the adaptation of a robotpreviously learned motion skills to new unseen ontexts is neessary.The algorithms developed for the generation and adaptation of the robot skillswere reviewed in Chapter 5. In that hapter, the proess by whih the model of askill an be adapted to reprodue a new task using the already learned model of arobot skill and the extrated onstraints knowledge of the urrent task was desribed.Di�erent modalities were developed and implemented that allow for the adaptationand generation of new skill models based on the already learned models of skills,stored in the knowledge base. Di�erent modes are presented for the adaptation,update, merger, and ombination of the Robot Skills Models.Models of a skill must be updatable; when given new information for the repre-sentation of a skill, the system must allow for the models to be improved. Updatingpreviously learned skills is a very important ability for humanoid robots, allowingthem to inrease and improve their available skill set.Skills an be generated by merging two or more models into a new skill; multipledesired robot skills may be omposed from superposition of various models. Newmodels of a skill an be generated by merging two or more models into a new skill inorder to expand the robot skill set and inrease its range of ation.



7.3. Disussion on Generation and Adaptation of Robot Skills 239In order to expand the robot skill set and inrease its range of ation to enom-pass a larger spetrum of the attrator dynamis, the Robot Skills Models must beombinable into new models. This makes it possible to arry out more omplex tasksthan those presented during demonstrations, generalizing the models of the skills toregions outside their original demonstrations. One important gain from the ombina-tion of robot skills omes from inreasing the auray of the generalized behaviour.The generation of a model by ombining robot skills is neessary in order to improvethe task exeution.For humanoid robots to be able of working suessfully in the apaity they areenvisioned, it is of vital importane that they present ample and robust skill sets.Being apable of expanding a robot set of learned skills is learly an important issueas robots will be asked to perform an inreasing number of ativities and learningand programming every possible skill into the robot is infeasible. The ability to learnrobot skills is a key aspet in ahieving this; yet learning by itself is not su�ient,the apaity to operate over the learned robot skill, suh as the merger, update andombination of skills is neessary.Future WorkThroughout this work we have explored many di�erent issues for the generationand adaptation of robot skills. Some promising, derivable topis for future researhare as follows:
• Reovering and handling safely interruptions, abrupt distortions, or miss exe-utions during skill reprodution is an important issue whih has not been fullyexplored during this work.
• For the evaluations performed during this work, a relative limited set of skillswas used in whih disriminating among robot skills was not an issue. Animportant topi for future researh is evaluating how an the system selet theproper skill primitives out of di�erent ompeting robot skills.
• The methods developed in this work for the update, merger and ombinationwere evaluated o�-line. Future work must fous on evaluating the viability ofperforming the developed methods in real time exeution.
• The methods developed in this work for operating on the robot skills rely onheuristi methods with a human input in seleting ertain appropriate param-eters. Future researh must evaluate methods by whih the system ould au-tonomously determine the proper parameters for the desired performane.
• Sequening and transition operations between robot skill models in order togenerate omplex behaviours with smooth transitions is an important issue forfurther exploration.



240 7. Disussion and Future Work7.4 Disussion on Reprodution of Robot SkillsIn this work a framework has been developed for the generation and adaptation oflearned models of a skill for omplying with task onstraints. The framework is meantto provide humanoid robots with systems that allow them to ontinuously learn newskills, represent their skills' knowledge, and adapt their existing skills to new ontexts,as well as to robustly reprodue new behaviours in a dynamial environment. Theframework for learning and adaptation of robot skills is made up from several modules,as represented by the diagram on Figure 6.1. The framework is formed by modules forthe learning of robot skills, the pereption and interation with the environment, themanagement and representation of skill knowledge, the generation and adaptation ofskill models, and the reprodution of robot skills.The development and implementation of the framework and the di�erent modulesthat ompose the framework have been desribed throughout this work. A modulefor the robot skill learning based on the LfD paradigm was implemented. There arethree subsystems in this module; a subsystem for gathering demonstration data; asubsystem for building an estimate of the demonstration with the learning algorithmSEDS ; and a subsystem for enoding the robot skill model. A module for the knowl-edge base system was also implemented. There are four subsystems in this module; asubsystem for the data entry to the knowledge base; a subsystem for the data extra-tion from the knowledge base; a subsystem for the knowledge base data storage; anda subsystem for the knowledge base data management. Operation and developmentof the robot skill generation and adaptation module was also desribed. There arethree subsystems in this module; a subsystem for extrating data from the knowledgebase; a subsystem for operating upon the robot skill with the adaptation algorithm;and a subsystem for generating the task models. A robot skill reprodution module,in harge of produing the adequate ontrol signals to the robot for the reprodutionof robot skills, was implemented. This module has three subsystems; a subsystemfor omputing the regression of the model with GMR to obtain the desired targetommands; a subsystem for produing the adequate ontrol signals form the targetommands; and a subsystem to ommuniate the ontrol signals to the robot.Chapter 6 presented the pratial experimentation and evaluation of the repro-dution of skills in the proposed framework. The experimental senarios are desribedand results and analysis are presented for the validation of the framework proposedthroughout this work. Di�erent evaluation senarios were developed to test the per-formane of the various modules implemented in our framework and to provide sep-arate validation for the operation of the system. Demonstrations are organized overthree major senarios to provide separate validation for the knowledge base system,the generation and adaptation system, and the omplete developed framework. Theproposed framework was demonstrated with a ommerial humanoid robot HOAP-3,endowing it with the apaity to learn skill models from a teaher demonstrationand to store them in a knowledge base, and adapt the learned models of a skill toreprodue the required skills in di�erent ontexts.



7.4. Disussion on Reprodution of Robot Skills 241Future WorkThe work arried out in this thesis has led to the development and implementationof a framework for the learning and adaptation of robot skills evaluated in the HOAP-3 humanoid robot. But some minor issues remain and other questions have arisenduring the development proess:
• To validate the developed framework we use the HOAP-3 robot. The HOAP-3provides a readily available humanoid testing platform, however, the HOAP-3robot still has many limitations. First, while its small size failitates the robotsstability and ontrol it severely limits the manipulation apabilities and range ofoperation of the HOAP-3 robot. It is also unequipped to handle most objets,either beause of its size, shape or weight, limiting the atual number of tasksthe robot is able to perform.
• Developments in humanoid robotis have been marred by many of the sameproblems; di�erent issues severely limit their operation. Current performanelevels of humanoid roboti platforms are far from the expeted goal of a robotipartner working alongside its human o-workers. Though many advanes havebeen made, there is still muh work to be done.
• Through this work many hallenges in relation to humanoid robotis have beenoutlined. Perhaps the most important standing hallenge is in relation to work-ing on the integration of solutions for all the di�erent hallenges at the sametime. A �nal answer for these hallenges must ome by working from the groundup on solutions that foster eah other in generating the desired behaviours.
• One major problem for the development of humanoid robots is the need for therobots to repliate behaviours and performanes like those of humans. Thesedi�ulties are not only in relation to the mehanial hallenges, but also in theproblem of omprehending human behaviour. There is no lear ut understand-ing about the mehanism by whih humans' ognitive proesses develop. Thislak of knowledge and understanding of the internal workings of human intelli-gene makes reproduing these behaviours an extremely ompliated hallenge.Work on robotis, arti�ial intelligene and ognitive siene must work outfrom theories and reasonable assumptions and ontinuously review and updatethem as ontinuous developments shed new light on the problem.
• The framework developed in this work aims at providing the robot with essentialognitive abilities for the learning and adaptation of skills. The framework hasbeen devised as a bottom level module that ould be part of the hierarhy in amore omplex system, with the goal of providing a minimum funtional degreeof intelligene for a humanoid robot whih would be ontinuously inreasedas the system develops further in a bottom-up approah. Future work willonstantly fous on augmenting the framework ognitive apaities to generatebetter, more intelligent behaviours.
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• By hoosing to start from a bottom level de�nition of intelligene many assump-tions and simpli�ations are made; this limits the possible sope of performanefor the robots while reduing the omplexity of the systems. These issues mustbe handled and solved in future work as we ontinue to improve the system andmake it apable of performing ever more omplex behaviours.
• The skill learning module provides e�etive means for teahing the robot thedesired skills. However, the teahing proess is not as smooth and streamlinedas it ould aspire to be, and a ertain level of pratie and familiarity with therobot platform is required from the teaher in order to be e�ient at provid-ing demonstrations. Future work must onentrate on topis of human-robotinteration to improve the demonstration approah.
• The pereption module implemented in this work was very simple; it fousedonly on reognizing objets by their olor and size. This of ourse is verylimited; performane was also less reliable with hanging lightning onditions.Future work must develop the pereption system further, or better yet work tointegrate existing more advane solutions with the rest of our framework.
• The skill knowledge module a�ords the robot mehanisms by whih to seletskills to reprodue in di�erent ontexts. The implemented system is apableof performing under the demonstrated senarios. However, these demonstra-tions are still limited in terms of the number of possible hoies and situationsthey have to handle. Future work must provide omprehensive evaluations ofapabilities and limitations of the skill knowledge module in a larger range ofsenarios.
• The skill adaptation module proves funtional for the requirements under thedesigned demonstrated senarios. However, the module in its urrent implemen-tation requires supervision from the operating user, future work must alwaysinrease the degree of autonomy for the overall system. Also, future work wouldbene�t from testing and user evaluations employing di�erent users with varyinglevels of expertise.
• The implemented skill reprodution module allows satisfatory ontrol of therobot performane in reproduing various task. Future work is required to en-hane the performane of the robot reprodutions, partiularly for improvingexeution speed and providing more natural, human-like, movements. Addi-tionally, future work must test and implement the developed framework on thefull sale humanoid robot platform TEO being developed at Universidad CarlosIII de Madrid.
• A �nal important point for future researh is in the integration of our frameworkwith other existing approahes. Working on developing our system under theROS (Robot Operating System) software framework would be an advantage sineROS is quikly beoming a go to standard for robotis development and manyexisting ROS enabled solutions are available.
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