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ABSTRACT

A major goal in robotics research is to develop human-like robotic systems capa-
ble of interacting and collaborating with humans. The ultimate goal is for a robotic
platform capable of performing, autonomously, in the unstructured scenario of hu-
man’s natural environment. Humanoid robots must carry out any number of tasks
which their human operators could reasonably expect from them during the normal
development of a typical working day. Working alongside humans means dealing
with continuously changing environments and a huge variety of tasks, thus the robots
should have the ability to continuously learn new skills and adapt their existing skills
to new contexts. Therefore, humanoid robots need to display intelligent behaviour.
Key attributes required to consider the behaviour of an agent as intelligent are the
abilities to learn and acquire knowledge based on its experience, the capacity to un-
derstand or comprehend current relevant features in the environment, the capacity
for reasoning and, also the ability to adapt.

A framework for humanoid robots needs to provide a minimum degree of intelli-
gence, that is, the ability to sense the environment, learn and, adapt its actions to
perform successfully under a given set of circumstances. Humanoids must be pro-
vided with systems that allow them to continuously learn new skills, represent their
skill’s knowledge, and adapt their existing skills to new contexts, as well as robustly
reproducing new behaviours in a dynamic environment in order to cope with working
in continuously changing environments and performing a huge variety of tasks.

In our context a skill is defined as a motor trajectory motion learned by the
agent, an acquired ability for the execution of a task. A robot skill is a complex
action movement, reproducible when appropriate, and generalize to different contexts.
Learning systems are required to acquire skills and develop task knowledge of how
to act. Algorithms for learning and extracting important features of task actions
are fundamental in order to build intelligent behaviours. The Imitation Learning
approach formulates user-friendly methods by which a human user can teach a robot
how to accomplish a given task, and generalize the demonstrated movements across
a set of demonstrations. To learn the skills motion, a time independent model of
the motion dynamics is estimated through a set of first order non-linear multivariate
dynamical systems. We employ SEDS algorithm to learn a global dynamical estimate
of the motion, through a set of first order non-linear multivariate dynamical systems
in a statistical approach, as movement primitives.

Despite the Imitation Learning approache’s clear advantages, it would still be
impractical for the human operator to teach the robot the skills for every needed task



and for every foreseen situation, since the number of demonstrations the human must
provide to the robot to generate a new model of a skill could turn it into a tiresome and
time-consuming process; furthermore, it wouldn’t be possible to cover every required
task and every situation. Therefore, it is necessary to extend the classical Imitation
Learning approach to learning a skill model in a way that allows the adaptation of a
robot previously learned motion skills to new unseen contexts. The models of a skill
are adapted to generate a new task by a merger, transition, combination or update
operation over the given robot skill models.

To reproduce a task adapted for an unseen context the robot must be given knowl-
edge of the state of the environment and the constraints of the task. Using both, the
already learned model of a skill, and the extracted constraints information of the cur-
rent task, the model of the skill can be adapted to reproduce the task. The robotic
systems must be able to store and later retrieve and use their knowledge of learned
skills. The aim would be to have a knowledge base of the robot available skills for
reproduction. The knowledge base needs to hold all necessary information for repro-
duction of the skills in the environment. Knowledge of the task would be distributed
among the representation of objects, actions and events of the task and the state of
the world.

This work is centred on the major idea of future robotic systems, more specifi-
cally humanoid robots, that are capable of interacting with humans in their homes,
workplaces, and communities, providing support in several areas, and collaborating
with humans in the same unstructured working environments. The aspiration is to
have humanoid robots acting as robot companions and co-workers sharing the same
space, tools, and activities.

Our focus is on topics concerning the learning, representation, generation and
adaptation, and reproduction of robot skills. In this work a framework is proposed
for the learning, generation and adaptation of robot skill models for complying with
task constraints. The proposed framework is meant to allow: an operator to teach
and demonstrate to the robot the motion of a task skill it must reproduce; to build
a knowledge base of the learned skills, allowing for their storage, classification and
retrieval; to adapt and generate learned models of a skill, to new contexts, for com-
pliance with the current task constraints.



RESUMEN

Uno de los objetivos principales en la investigacion en robotica es el desarrollo
de sistemas roboticos humanoides capaces de interactuar y colaborar con humanos.
La meta final es desarrollar una plataforma robotica capaz de trabajar, de forma
autonoma, en el entorno no estructurado del dia a dia de los humanos. Los robots
humanoides deben realizar un sinfin de tareas, que su operador humano pueda re-
querir, durante el desarrollo normal de un dia de trabajo. Trabajar junto a los
humanos significa hacer frente a cambios continuos en el entorno y una gran variedad
de trabajos, por lo tanto los robots deben tener la capacidad para aprender nuevas
habilidades constantemente y para adaptar las habilidades ya aprendidas a nuevos
contextos. Por ellos, los robots humanoides necesitan presentar un comportamiento
inteligente. Atributos clave para considerar el comportamiento de un agente como
inteligente son la capacidad para aprender y adquirir conocimientos basado en la expe-
riencia, la capacidad para entender y comprender caracteristicas relevantes presentes
en el entorno, la capacidad para razonar, y también la capacidad para adaptarse.

Un sistema para robots humanoides debe proporcionar un minimo nivel de in-
teligencia, i.e., la capacidad de percibir el entorno, aprender, y adaptar sus acciones
para desempenarse exitosamente bajo un conjunto de circunstancias. Robots hu-
manoides, para poder afrontar los desafios de trabajar en entornos cambiantes real-
izando una gran variedad de tareas, deben estar provistos de sistemas que les permitan
aprender nuevas habilidades, representar el conocimiento de sus habilidades, y adap-
tar sus habilidades a nuevos contextos, asi como también reproducir robustamente
nuevos comportamientos en un entorno dinamico.

Una habilidad en nuestro contexto se define como una trayectoria motora apren-
dida por el agente, una capacidad adquirida para la ejecucién de una tarea. Una
habilidad robot es un movimiento de accién complejo reproducible cuando sea nece-
sario, y generalizada para diferentes contextos. Sistemas de aprendizaje son necesarios
para adquirir habilidades y generar el conocimiento de la tarea sobre como actuar. Al-
goritmos de aprendizaje, y de extraccion de caracteristicas importantes de una tarea
son fundamentales con el fin de construir comportamientos inteligentes. El Apren-
dizage por Imitacion formula métodos mediantes los cuales un usuario humano puede
ensenar a un robot como ejecutar una tarea, y generalizar los movimientos a par-
tir de demonstraciones. Para aprender los movimientos de una habilidad un modelo
independiente del tiempo de la dindmica del movimiento se estima mediante un con-
junto de sistemas dinamicos de primer orden multi-variable. El algoritmo SEDS se
emplea para aprender una estimacion dinamica global del movimiento, en un enfoque
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estadistico, como una primitiva de movimiento.

A pesar de las claras ventajas del Aprendizaje por Imitacion, resulta de todas
formas poco préctico para un operador humano ensenar al robot las habilidades re-
queridas para cualquier tarea y para toda situacion previsible, ya que por el nimero
de demonstraciones que el humano debe dar al robot para generar un nuevo modelo
se convertiria en un proceso costosos y tedioso. Por lo tanto es necesario extender el
modelo clasico de Aprendizaje por Imitacion para aprender un modelo de la habili-
dad de forma tal que permita la adaptacion de los modelos previamente aprendidos
por el robot a nuevos contextos. Los modelos de una habilidad son adaptados para
generar una nueva tarea por una operacion de fusion, de transiciéon, combinacion o
actualizacion sobre los modelos de habilidad robot dados.

Para reproducir una tarea adaptada a un nuevo contexto el robot necesita tener
conocimiento sobre el estado del entorno y las restricciones de la tarea. Utilizando
tanto el modelo de una habilidad ya aprendido como las restricciones de la tarea
extraidas del entorno, el modelo de una habilidad robot puede ser adaptado para
realizar la tarea. Es necesario que el sistema robdtico permita guardar, y luego
recuperar, y usar el conocimiento de las habilidades aprendidas. El objetivo seria
tener una base de conocimientos de las habilidades del robot disponibles para la
reproduccion. La base de conocimientos debe contener toda la informacion necesaria
para la reproducciéon de las habilidades en el entorno. El conocimiento de la tarea se
distribuye entre la representacion de los objetos, acciones y eventos de la tarea y el
estado del entorno.

Este trabajo se centra alrededor de la idea global de los sistemas roboéticos del
futuro, en particular de los robots humanoides, que deben ser capaces de interactuar
con los humanos en sus hogares, lugares de trabajo y comunidades, prestando apoyo
en varias areas y colaborando con los seres humanos en su entorno de trabajo. La
aspiracion es tener robots humanoides actuando como companeros de trabajo que
compartiendo el mismo espacio, herramientas y actividades que los humanos.

Nuestra atencidon se centra en temas relacionados con el aprendizaje, la repre-
sentacion, la generacion y la adaptacion, y la reproduccion de habilidades robot. En
este trabajo se propone un sistema para el aprendizaje, la generacion y adaptacion
de modelos de habilidad del robot para cumplir con las restricciones de la tarea.
El sistema propuesto permite: ensenar y demostrar al robot el movimiento de una
habilidad que debe reproducirse; construir una base de conocimientos de las habil-
idades aprendidas lo que permite su almacenamiento, clasificacion y recuperacion;
generar y adaptar modelos de habilidades ya aprendidos a un nuevo contexto para el
cumplimiento de las restricciones de la tarea actual.
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1. INTRODUCTION

Work on this thesis focuses on the development and implementation of techniques
that allow humanoid robots the ability to continuously learn new skills and adapt
theirs existing skills to new contexts. For this goal it is proposed to follow a framework
that allows, i) for an operator to teach and demonstrate to the robot the motions of
a skill it must reproduce; ii) to build a knowledge base representation of the learned
skills allowing for its storage, classification and retrieval; iii) generate and adapt
learned models of a skill, to new contexts, for compliance with the current task
constraints.

Long before the work of Karel Capek gave us the word Robot, which first appeared
in “R.U.R. (Rossum’s Universal Robots)” in 1920, the idea of automated machinery,
capable of performing a variety of functions and tasks, and of working and serving
humans, has been a part of the collective imagination of mankind. Various examples
of attempts to build such automatons can be found, from the earlier endeavours of the
ancient Greeks and Arab civilizations, to the work of influential thinkers like Leonardo
da Vinci’s robot, ¢. 1495, etc. The current vision of robotics in society stems from
television, films and science fiction; however, technological advances throughout the
20th century have allowed for the development of robotic solutions, in industrial and
manufacturing applications, to become a reality. It is the author’s vision, that in
perhaps a not too distant future, there will be a world in which humanoid robots
and humans will work and interact side by side, sharing the same space, tools, and
activities.

This chapter lays out the motives and goals for our research and presents the
background of the topic as a basis for the remainder of the document. Section [T
presents the issues and motivations that inspired the work on this thesis. Section
presents the aim and objectives pursued in this work. Section [[.3] presents the
contributions of this thesis. In Section [[L4] the outline for the remainder of this work
is described.

1.1 Motivations

Since the 1980s, robots have been progressively introduced in the industry for the
automation of manufacturing processes performing precise and repetitive tasks, han-
dling delicate or dangerous substances, lifting heavy objects, etc. Robotic systems
have enjoyed wide applications in several areas such as the automotive, chemical,
electronics and food industries. As technological developments in robotics science
have advanced, the range of robotic applications has expanded from its initial dom-
inant industrial settings into more day to day aspects of the human world. The
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next generations of robots will need to be able to interact with humans at homes,
in the workplace, and in the community, providing support in several areas, such
as, services, entertainment, education, healthcare, manufacturing, and assistance
[Siciliano and Khatib, 2008|.

One major goal in robotics research is to develop human-like robotic systems capa-
ble of interacting and collaborating with humans in the same unstructured working
environments. Humanoid robots are particularly suitable for these duties because
they are able to interact with the environment using the same tools designed for
humans, and can collaborate with humans in several ways |[Ambrose et al., 2000],
[Monje et al., 2008|. Also, it is believed [MacDorman and Cowley, 2006|, that the
most human-like of robots will be best equipped for reciprocal relationships with hu-
man beings. Since humanoid robots are designed to resemble a human shape and
to possess human capabilities, they would be ideally suited for performing tasks and
to safely share the same space and activities with people without the need to adapt
the environments and with a higher level of acceptance and a more intuitive way for
interaction between human operators and the robotic agents. We envision a world
where humanoid robots and humans would work, collaborate and interact together,
sharing the same space, tools, and activities.

From the first full-scaled humanoid robot, WABOT-1 developed by Waseda Uni-
versity [Sugano and Kato, 1987], and the series of robotic prototypes from Honda, E-
series 1986-1993, P-series 1993-1997 |Hirai et al., 1998|, steady progress can be seen
in the development of humanoid robots. Recent years have seen an increase in re-
search of humanoid robots such as the WABIAN-2 from the University of Waseda
[Ogura et al., 2006], ASIMO of Honda [Sakagami et al., 2002], the HRP-2 from the
National Institute of Advanced Industrial Science and Technology of Japan (AIST)
|[Kaneko et al., 2004a], the development of the iCub robot |Isagarakis et al., 2007],
for research into human cognition and artificial intelligence at the Italian Institute
of Technology, the Robonaut project at NASA’s JSC |[Ambrose et al., 2000], Robo-
naut 2 was moving aboard the International Space Station on October 2011, the first
humanoid robot in space |[Diftler et al., 2011, Boston Dynamics PETMAN anthro-
pomorphic robot which can move dynamically like a real person |Raibert, 2010], the
HOAP robot series of Fujitsu [Riezenman, 2002| or the RH series of humanoid robots
|Arbula et al., 2009, [Martinez et al., 2012|, designed at the Universidad Carlos III
de Madrid.

Figure [[LT], presents some of the most relevant developments in humanoid robotics
research. The field of humanoid robots has presented important advances over the
years. Yet many challenges still remain before robots can be fully integrated as part
of everyday human activities, especially when thinking about humanoid robots, which
must naturally be expected to deal with a wide range of movements and tasks; the
inherent complexities associated with the need to operate in the real world must
also be taken into consideration. In order to overcome some of these challenges,
humanoid robots must be provided with the capabilities to interact autonomously
and intelligently with humans and the environment. They must also be able to learn
and adapt their behaviour to achieve goals and react to changes in a complex and
evolving range of different situations.
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Fig. 1.1:

Historical developments in the field of humanoid robotics.

Top row (left to right): WABOT-1 of Waseda University (1973), ASIMO
of Honda (2000), NASA Robonaut-2 (2010).

Middle row (left to right): WABIAN-2 Waseda University (2006), HRP-2
from AIST (2002), iCub from IIT (2004).

Bottom row (left to right): PETMAN of Boston Dynamics (2010), TEO
from Universidad Carlos III de Madrid (2012), HOAP-3 of fujitsu (2005).
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A humanoid robot needs to be provided with intelligence, that is, the ability to
sense the environment, make decisions and take actions, to recognize objects and
events, represent knowledge, reason and plan for the future and to act successfully
under a large variety of circumstances. Key attributes required to consider the be-
haviour of an agent as intelligent are the abilities to learn and acquire knowledge
based on its experience, the capacity to understand or comprehend current relevant
features in the environment, the capacity for reasoning, and also the ability to adapt.
In order to have humanoid robots acting fluently in the world, interacting with dif-
ferent objects and people, they must be able to adapt their motor control to dynamic
changes in their interaction with the world. Robot systems must be continuously
self-adapting [Brooks, 1996]. An intelligent agent is one that is flexible to chang-
ing environments and changing goals, learns from experience, and makes appropriate
choices given perceptual limitations and finite computation |[Poole et al., 1998|. Intel-
ligence requires an interconnecting system that enables the various system elements
to interact and communicate with each other, integrating perception, reason, learn-
ing and behaviour generation |Albus, 1991|. [Langley et al., 2009] identified, from
a robotic systems point of view, the different functions of cognition as perception,
learning, motor control, reasoning, problem solving, goal orientation, knowledge rep-
resentation and communication. Control architectures for intelligent humanoid robots
need to consider these systems. A framework for humanoid robots needs to provide a
minimum degree of intelligent behaviour, that is, the ability to sense the environment,
learn, and adapt its actions to perform successfully under a given set of circumstances.

Learning systems are required to acquire skills and develop task knowledge of how
to act. Algorithms for learning, and extracting important features of task actions,
and exhibiting altered behaviour because of what has been learned, are fundamental
in order to build intelligent behaviours. For humanoid robots to work with humans in
unstructured environments, the robot must be able to perform dynamically changing
tasks that require great adaptations to react to new constraints. The programming of
specialized controllers for every single task and situation that could be encountered
would not be a practical approach. To develop the capacities expected from future
humanoid robots, flexible and generic control methods that can adapt to various
tasks and robot’s constraints are necessary. Robot Programming by Demonstration
(RPbD) |Billard et al., 2008|, also known as Imitation Learning or Learning from
Demonstrations (LfD) [Argall et al., 2009, has appeared as one way to respond to
this growing need for intuitive control methods.

The Imitation Learning approaches focus on the development of algorithms that
are generic in their representation of the skills and in the way they are generated. Im-
plementing LfD methods offers the possibility of making learning faster, in contrast
to tedious reinforcement learning methods or trial-and-error learning. LfD formulates
user-friendly methods by which a human user can teach to a robot how to accom-
plish a given task, simply by demonstrating this task [Gribovskaya et al., 2010], and
generalizing the demonstrated movements across a set of demonstrations. LfD fo-
cuses on three important issues: efficient motor learning; the connection between
action and perception; and modular motor control in the form of movement primi-

tives [Schaal, 1999|. To reproduce a skill in a new situation, the robot cannot simply
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Fig. 1.2: Generalization of a skill in Robot PbD by extracting the statistical model
across multiple observations. Adapted from |Billard et al., 2008]

copy an observed behaviour; it must have the capability to generalize. In LfD, one
common approach for generalizing a skill consist in creating a model of the skill based
on several demonstrations, performed in slightly different conditions |Calinon, 2009].
The goal is on exploiting the variability inherent to the various demonstrations and
to extract the essential components of the task. Figure illustrate this process.

Observing multiple demonstrations can help to generalize a skill by extracting
the task requisites. Current approaches to generalizing skills can be broadly di-
vided between two trends. Firstly, symbolic level representation, described by the
sequential or hierarchical organization of a discrete set of primitives that are prede-
termined or extracted with predefined rules. Secondly, trajectory level representation,
described by temporally continuous signals representing different configuration prop-
erties changing over time |[Calinon, 2009|. One trend of research followed in this
work investigates how statistical learning techniques deal with the high variability
inherent to the demonstrations |[Calinon et al., 2007, using Gaussian Mizture Models
(GMM) to encode a set of trajectories, and Gaussian Mizture Regressions (GMR)
to retrieve a smooth generalized version of these trajectories and associated variabil-
ities, allowing learning non-linear dynamics of the motions as movement primitives
|Gribovskaya et al., 2010].

The Learning from Demonstration (LfD) approaches offer natural, fast and im-
plicit means of teaching a robot new skills. But even then, the number of demonstra-
tions the human must provide the robot with, in order to generate a new model of
a skill could turn it into a tiresome and time-consuming process; and it would also
become impractical for the human operator to teach the robot every necessary task
and every foreseeable situation. Hence, it will be important to enrich this approach
with the capacity to generate new skill models. Also, though LfD offers the capability
to generalize a learned model, this generalization is somewhat limited to changes in
initial conditions or to relatively small perturbations during the execution. Therefore,
it is necessary to extend the classical LfD approach of learning a skill model in a way
that allows the adaptation of a robot previously learned motion skills to new unseen
contexts. Some very important questions need solving in this field: Is there a basic
set of primitives? How can new primitives be learned, and old primitives be combined
to form higher level movement primitives? How can sequencing and recognition of

sequences of movement primitives be accomplished? [Schaal, 1999].
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Fig. 1.3: Propose framework for the generation and adaptation of learned models of
a skill for complying with task constraints. A knowledge base of skills mod-
els, learned through demonstration, is built. From the perception of the
world state the constraints of a requested task are extracted. A skill model
is retrieve from the knowledge base a new adapted task model is generated
for reproduction using the current task constraints and the models of a
skill in the knowledge base.

1.2 Aim of this Thesis

For robots, working alongside humans means dealing with continuously changing
environments and a huge variety of tasks which they are expected to perform. Thus
humanoid robots should have the ability to continuously learn new skills and adapt
the existing skills to new contexts. As stated in the previous section, for future
humanoid robots the ultimate goal is for a robotic platform capable of performing,
autonomously, in the unstructured scenario of humans natural environment, be this
by itself or sharing the workspace with a human. Humanoid robots must realize
any number of task which could be reasonably expected from them by their human
operators during the normal development of a typical working day.

It is necessary for humanoid robots to display a sufficient level of intelligent be-
haviour; this must include the capacity to perceive and understand, to choose wisely,
and to act successfully under a large variety of circumstances [Albus, 1991]. Hu-
manoid robots, in order to cope with working in continuously changing environments
and performing a huge variability of tasks, must be provided with systems that allow
them to continuously learn new skills and adapt their existing skills to new contexts,
as well as to robustly reproduce new behaviours in a dynamic environment.

To advance in the achievement of this vision, though still a long way from the
ultimate goals of a perfect humanoid, we propose to follow a framework that allows:
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Fig. 1.4: Robot skill modelled with a mixture of Gaussian functions. The robot
skill trajectory in the bottom figure is modelled by 4 Gaussian functions
drawn with the 3-sigma ellipses with their centres at their respective means
1, the magnitude and direction of the ellipses are given by the eigenvec-
tors and eigenvalues of the covariance matrix ¥ modelled in the learning
process to follow the shape of the skill trajectory. The top figure shows
the corresponding Gaussian distributions of the 4 Gaussian components in
the robot skill model. The figure is shown in a two dimensional plane for
arbitrary state variables &, and &s.

e An operator to teach, and demonstrate, to the robot the motion of a task skill
it must reproduce.

e To build a knowledge base of the learned skill models allowing for their storage,
classification and retrieval.

e To adapt and generate learned models of a skill, to new context, for compliance
with the current task constraints.

Our propose framework is illustrated in Figure [L3l

A Skill in our context is defined as a motor trajectory motion learned by the
agent, an acquired ability for the execution of a task. A robot skill is a complex action
movement reproducible when appropriate, and generalized to different contexts.

To learn the skills motions, a time independent model of the motion dynamics
is estimated through a set of first order non-linear multivariate dynamical systems.
Iljspeert et al., 2002| propose an approach to Imitation Learning, and on-line tra-
jectory modification, by representing movement plans based on a set of non-linear
differential equations with well-defined attractor dynamics. We follow a framework
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presented on |Gribovskaya and Billard, 2009|, that allows learning of non-linear dy-
namics of motion in manipulation tasks and generating dynamical laws for control
of position and orientation, and employed |Khansari-Zadeh and Billard, 2011] algo-
rithm to learn global dynamical estimate of the motions through a set of first order
non-linear multivariate dynamical systems in a statistical approach.

We build a model estimate of our robot skill, M, from a set D of N-dimensional
demonstrated data points, {¢;, éi}?:o, where £ is a state variable describing the state of
the robot system. The motion is governed by a first order autonomous ordinary differ-
ential equation, & = f (&,0). Following a statistical approach an estimate f is defined
through a Gaussian Mizture Model (GMM). The robot skill is modelled by the pa-
rameters 0 of f determined by f = {N(&;0Y), -, NK(€;05)}, where 0 = {m, i, £}
of the N Gaussian define the prior, mean and covariance matrix, parameters of the i
Gaussian component, and K is the total number of Gaussian functions required to es-
timate the motions dynamics. After training, to recover the expected output variable
€ a Gaussian Mizture Regression (GMR) process is used [Gribovskaya et al., 2010].
Figure illustrates the encoding the dynamics of a motion with a mixture of Gaus-
sian functions.

In order for the robot to be able to perform various different actions a repository
of the available skills is necessary. The aim is to populate a knowledge base of the
robot learned skills for reproduction. The knowledge base needs to hold all necessary
information for reproduction of the skills. The tasks the robot is requested to carry
out are considered to be of the form ( robot pick blue ball ), { robot place cup on plate
), and so on. in which a Task is described requesting an operation upon an object
for the execution of a goal oriented skill action. Complex sets of behaviours can be
built by a planned sequencing of tasks.

One intuitive way in which to represent elements in the knowledge base is over two
principal directions of objects and actions. However, objects and actions alone do not
provide sufficient and complete information for a robot situated in its environment
to be capable of performing its task adequately. For instance, for a single behaviour
there could be more than one available pairing of ( object, skill model ), leading to
ambiguities. At least one more direction for representations would seem necessary,
such as a description of the state of the environment. To resolve this problems it is
suggested to consider two more representational directives, one for the task goal, and
one for the configuration of the current state of the world, mainly objects position
and relationships between themselves, the robot and a human operator.

In this way, a Task could be represented by the phrase “Do an Action (A),
To an Object (O), For achieving Goal (G), When State of the World is
(W)”. Therefore, the tuple formed by ( Do = Action(A), To = Object(0), For =
Goal(G), When = World State(W) ) holds all necessary information for the robot
reproduction of a task. The framework in Figure L3 would allow the robot to extract
the knowledge about objects, goals, and the current state of its working environment
from the received perceptual input. The robotic system would be able to retrieve an
appropriate Skill from the knowledge base by finding the answer to the phrase “Do
Action (A) ... 7 for its current constraints when being presented with the triple
(Object, Goal, World State).
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Fig. 1.5: Representation of the skills in the knowledge base. Example of a robot
skill model, represented by a Cartesian trajectory, being selected from the
current constraints of the task given by the object, goal and world state.

As an example let us consider a simple case in which a humanoid robot is requested
to place a spoon inside a cup, and place the cup on top of a saucer plate, as if it
would be serving a cup of tea or coffee. Therefore to complete this request the robot
would be required to perform several tasks, such as grasping the cup and placing
the cup on top of the saucer plate. Each of these tasks has an Object (Spoon, Cup,
Plate), a Goal (Grasp, Pick, Place), and World State in which the task must be
performed. The robot knowledge base would have different models of skills allowing
it to perform different actions which may permit the robot to fulfil various tasks in
different situations. To successfully complete the given tasks a fitting Action must be
executed by the robot retrieving from its knowledge an appropriate model of a skill
for the constraints given by the Tasks (Object, Goal, World State).

Imagine for instance the execution of the ( robot place spoon inside cup ) tasks.
To perform the task it is assumed that the spoon object has already been picked by
the robot and is in one of its hands, so the target object for the task is the cup (Object
: cup). The goal of the task is to attain a state in which the spoon has been placed
inside the cup, so (Goal : place spoon). To complete the task goal the robot could
have learned and stored different skill models in its knowledge base, each appropriate
to successfully executing the task in different states. Therefore the state of the world
must be evaluated next, let’s assume it could be one of two states; (Ws1) in which
the cup is on the table inside the robot’s arms workspace, and a (Ws2) in which the
cup is grasped in the robot’s other hand. And that for the current execution of the
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Fig. 1.6: Adaptation of a learn skill to new context by extracting the task constraints
with a new observation. The Robot Programming by Demonstration ap-
proach for generalization of a skill is extended to allow adapting previously
learn skills models.

task the robot finds its environment to be (World State : Ws2). In order to select
the right skill model, i.e., the Action to perform, the knowledge base is inspected to
retrieve the skill model corresponding to the triple (cup, place spoon, Ws2). Figure
shows the representation of skills in the knowledge base. The tasks described
in this example are very simple and their reproduction only requires a single skill.
However, more complex tasks could require linking two or more skills together.

Having already stored in the knowledge base a set of robot skill models, learned
by different demonstrations of the skills to form a basic set of motion primitives, to
reproduce a task the robot is provided with knowledge of the environment and the
task constraints extracted from its perceptual input in the knowledge base. Using
both, the already learned model of a skill, and the extracted constraints information
of the current task, the model of the skill is adapted to reproduce the task. Figure
[L6] illustrates the process of adapting a learned skill in an unseen context.

The robot would receive from the different modules of perception and interaction
the required appropriate commands ordering the reproduction of a skill and would
extract the constraints of the task and its environmental configuration to instantiated
the appropriate knowledge structures in the knowledge base of the robot’s skills. With
this information taken from the knowledge base, together with the models of the skills
corresponding to the requested task, the module for the generation of task models
is called to adapt the robot skills accordingly and generate the task models for the
robot reproduction of the task.

A desirable application for the learned skill models would be in building libraries
of so called movement primitives that can be readily available for later reuse by the
robot, when a situation requires it. A basic or primitive skill can be understood as
sequences of motor commands executed in order to accomplish a certain movement
action. To generate complex human like motions from a learned set of primitive skills,
methods for operating and manipulating the primitives must be developed. The robot
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Fig. 1.7: Generation of a new model of a skill by combining two previously learned
skill models. Two or more basic models of a skill can be combined (left)
to generate a new complex model of a skill (right) for complying with the
constraints of the current task. The figure is shown in a two dimensional
plane for arbitrary state variables &, and &. The top and side panels
shows the corresponding Gaussian distributions of the robot skill models
for the & (top) and &, (side) state variables.

skills must be adaptable to conditions of its operating environment, they must also
be updatable when given new information. Additionally, new skills must be generate
by merging two or more simpler skills into a new skill or by combining models to
generate new models. Also, working with a set of basic or primitives skills must give
the ability to create sequences and transitions between robot skill models to generate
complex behaviours.

Joining multiple models can provide improvements in performance, different meth-
ods can be found for the combination of models in the field of machine learning and
pattern recognition [Bishop, 2006]. Methods include using the average predictions
made by different learned models, selecting one model out of several, to make the
prediction as a function of the input variables. In this way, different models become
responsible for making predictions in different regions. Also, probabilistic methods
known as mixtures of experts, the models can be viewed as mixture distributions
conditioned by the input variables, the idea behind this is that different components
of the learned models of skills can model the new skill distribution in different re-
gions of input space, and will also look to determine the functions that decide which
components are dominant in which region. Figure [[7 illustrates the process.
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1.3 Contributions

The work that lead to this thesis centred around the major idea of future robotic
systems, more specifically humanoid robots, that are capable of interacting with hu-
mans in their homes, workplaces, and communities, providing support in several areas,
and collaborating with humans in the same unstructured working environments. The
aspiration is to have humanoid robots acting as robot companions and co-workers
sharing the same space, tools, and activities.

Work on this thesis focuses on topics concerning the learning, representation,
generation and adaptation, and reproduction of robot skills. The main contributions
presented in this thesis are:

1. The proposition of a framework for the learning, generation and adaptation of
skill models to comply with task constraints, Figure [L3l The goal of the devel-
oped framework is to provide a minimum degree of intelligence for humanoid
robots to allow them to work and collaborate with humans. The framework pro-
vides humanoid robots with systems allowing them to continuously learn new
skills, represent skill’s knowledge, and adapt existing skills to new contexts, as
well as to robustly reproduce new behaviours in a dynamical environment.

2. The application and evaluation of different Learning from Demonstration algo-
rithms and modalities. Through the work on this thesis, a number of Imitation
Learning techniques have been studied and implemented in teaching and learn-
ing with the robot, the different sets of skills employed in the rest of the frame-
work. Methodologies used for the reproduction of the learned motion dynamics
of the robot skills were reviewed, comparing the performance of the methods
presented through this work.

3. The development and implementation of a knowledge base. The knowledge
base represents knowledge of objects, actions, world state and task goals. Our
representations includes information about objects and actions, the world and
situations, events and goals, for effective situated performance. A method for
the representation of the knowledge of the skills and task constraints needed for
reproduction has been developed.

4. The development and implementation of modalities that allows for the adapta-
tion and generation of new skill models. The development of humanoid robotic
systems requires that models of the skill can be operated upon to generate
new behaviours of increasing levels of complexity. Different modes were devel-
oped and implemented that allow for the adaptation and generation of new skill
models based on the already learned models of skills.

5. The evaluation of different scenarios to test the performance of the various
modules implemented in our framework and to provide separate validation for
the operation of the system. The proposed framework was demonstrated with
a humanoid robot HOAP-3.
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1.4 Outline

This document is divided into 5 chapters, in addition to this introductory one,
and a final chapter of discussion and conclusion bringing the total to 7 chapters. The
chapters, and the topics they address, are organized as follows:

Chapter [2] In this chapter a state of the art review is presented on the challenges
of intelligent humanoid robots and on different proposals for robot architectures, in
planner based, behaviour based and cognitive execution architectures. At the end, a
general description of the framework proposed in this thesis is also given.

Chapter [B] This chapter discusses the learning by demonstration framework use
in this thesis. A review of the LfD algorithms employed for learning the skills models,
as well as the state of the art on the field is given.

Chapter 4 This chapter discusses the representation of skills knowledge. The
method developed for the representation, storage, classification and retrieval of skills
knowledge from the knowledge base is described throughout every section of this
chapter. The structure and the organization of the knowledge base is developed.

Chapter [B] This chapter discusses the process for the adaptation and generation
of skills models. The process for adapting a learned robot skill to the task constraints
is described. The algorithms developed for generating and adapting a skill are de-
tailed throughout the chapter.

Chapter [6] This chapter discusses the reproduction of skills in the proposed frame-
work. A detailed description of the implementation process of the framework is given.
The experimental study and validation of the framework showing the adaptation of
learned models of a skill, to comply with a current task constraint, is presented.

Chapter [0 The last chapter, discusses the contributions of this thesis and de-
scribes current and future work.
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2. INTELLIGENT ARCHITECTURES
FOR HUMANOID ROBOTS

2.1 Outline of the Chapter

This Chapter presents a review of developments, open issues and challenges in
the field of humanoid robotics. It also focuses on different proposals for intelligent
agent architectures for robotic systems. As outlined in the introduction, one major
goal in robotics research is the development of human-like robot systems capable of
interacting and collaborating with humans in the same unstructured working envi-
ronments. These humanoid robot systems would need to interact autonomously and
intelligently with humans and the environment, they must also be able to learn and
adapt their behaviour to achieve goals and to react to changes in a complex and
evolving range of different situations. Intelligent humanoid robotic systems need to
present, suitable motor skills; the capacity to sense and perceive their environment;
the natural means for human-robot interaction and a high level of autonomy and
intelligent behaviour. This presents many challenges that need to be overcome. A
review of different approaches and architecture proposals aimed at tackling this issues
and developing intelligent robotic systems is presented. From deliberative planning
architectures to behaviour-based and hybrid approaches and cognitive architectures.
Finally, a general description of a framework for a cognitive model for the generation
and adaptation of learned models of robot skills, which can be used to comply with
task constraints presented in this thesis is also given. The organization of this chapter
is as follows:

e Section discuss the challenges of developing intelligent humanoid robot sys-
tems. Future human-like robot systems need to perform dynamically changing
tasks and be able to operate in the real world. Several issues emerge for motor
control, perception, interaction and intelligent behaviour.

e Section[Z 3 presents a review of approaches to robot planner-based architectures.
Deliberative or hierarchical planning architectures follow the Sense-Plan-Act
cycle from classical Al approaches. Intelligence resides on a central planner,
with world models and system goals that produce appropriate plans of action
for robot reproduction.

e Section presents a review of approaches to robot behaviour-based architec-
tures. Behaviour-based architectures present direct coupling between percep-
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tion and action with no need for internal models. Intelligence emerges as a
result of an embodied agent interaction with the environment.

e Section presents a review of approaches to robot hybrid deliberative/reac-
tive architectures. Hybrid architectures advocate the use of the advantageous
aspects of both the behaviour-based and the planner-based approaches com-
bining them to produce a new architecture that can deal with more complex
scenarios.

e Section presents a review of approaches to robot cognitive architectures.
Many attempts at developing architectures to provide cognitive process are
presented.

e Section 2.7 presents the proposed framework followed in the rest of this work to
allow the generation and adaptation of learned models of a skill for complying
with current task constraints.

2.2 Challenges in Humanoid Robot Development

The idea of automata moving machines in general, and human-like in particular,
which are capable of performing a variety of functions and tasks, and of working
and serving humans, have been a part of the collective imagination of mankind for
centuries.

The drive to developed human-like robots is supported by three basic ideas: 1)
Since humanoid robots are designed to resemble a human shape and to possess hu-
man capabilities, they would be ideally suited to performing tasks and to safely share
the same space and activities with people without the need to adapt the environ-
ments. Designing general purpose humanoid robots would make them more flexible
in handling a wide range of chore; and less expensive and efficient than developing
specialized robots for every task. 2) A humanoid robot would allow for more natural
means of interaction, sharing a similar embodiment would give for humans an easier
way to teach a robot and to understand its movements and intentions. Also, the nat-
ural human tendency of anthropomorphizing objects would be beneficial in creating
human-humanoid robot partnerships. 3) It is expected that human-like robots would
be more friendly and acceptable for reciprocal relationships with human beings. A
robot system with a human-like shape and behaviour would be more acceptable to
regular citizens and non-robotic experts as a household servant and companion or as
a co-worker and partner to perform everyday tasks.

Historical Developments in Humanoid Robotics

Many projects and research laboratories have put their efforts into designing,
building and testing humanoid robotic systems. Over the years great progress has
been made in this field, and currently humanoid robots that can walk, climb stairs,
carry objects, perform complex activities like dance routines and interactions with
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people are available. These advances are very encouraging and forecast the major
progress to come. Robotic researchers envision a world, sooner rather than later,
where humanoid robots and humans would work, collaborate and interact together
sharing the same space, tools, and activities.

Since the first full-scale humanoid robot, WABOT-1, developed by Waseda Univer-
sity [Sugano and Kato, 1987|, great advances have been made in humanoid robotics
research, especially during the last two decades. Detailing the advances and research
efforts in the field during this time would be too extensive. Table 2. 1lsummarizes the
major historical developments in humanoid robotics research. Currently there are
robots that walk, run or climb stairs; robots that can handle and manipulate objects,
or carry heavy loads; robots that interact and play games with people and children
and robots for entertainment that have taken part in shows and demonstrations,
dancing or performing complex choreographies. However, all these robots exist in the
scope of research departments of universities or technology companies, there are no
commercially available humanoid robots for general public use as of today. Despite
all the advances, the ultimate goal of an intelligent and autonomous humanoid robot

companion is still far from reach.

Date Name (Research Center) Development
1921 R.U.R. (Rossum’s Universal Karel Capek introduced the word “robot” in his play
Robots) R.U.R.

1961  Unimate (Unimation) The first digitally operated and programmable indus-
trial robot, the Unimate created by George Devol, is
installed on a General Motors assembly line.

1973  WABOT-1 (Waseda Univer- WABOT-1, the first humanoid robot, consisted of a

sity) limb-control system, a vision system and a conversation
system, it was able to walk.

1984  WABOT-2 (Waseda Univer- WABOT-2 was created as a “specialist robot”, a musi-

sity) cian humanoid robot able to communicate with a per-
son.

1986  E-series (HONDA) Honda research and development project was initiated
with the E-series of walking biped robots, E0-E6 from
1986 to 1993.

1990s  Cog (MIT) Cog was an upper-torso humanoid robot build as a gen-
eral purpose flexible and dexterous autonomous robot
with the scientific goal of understanding human cogni-
tion.

1993  P-series (HONDA) Development of the P-series of manlike models with up-
per limbs and body, P1-P3 from 1993 to 1997.

1995  WABIAN (Waseda Univer- WABIAN humanoid robot was developed, is a robot

sity) with a complete human configuration that is capable of
walking on two legs, and it is capable of carrying things.

1998  HERMES (Bundeswehr Uni- Service robot HERMES presented for the first time at

versity Munich) Hannover Fair, an experimental robot of anthropomor-
phic size and shape.

2000  ASIMO (HONDA) HONDA introduced the first version of ASIMO, it can

run, walk on uneven slopes and surfaces, turn smoothly,
climb stairs, and reach for and grasp objects.

Tab. 2.1: Historical developments efforts in the field of humanoid

robotics
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Continued from previous page.

Date

Name (Research Center) Development

2000

2001

2001

2001

2001

2002

2002

2002

2002

2003

2004

2004

2005

2005

2005

2005

ARMAR (KIT)

QRIO (Sony)

HOAP-1 (Fujitsu)

KHR-0 (KAIST)

Leroy (UC3M)

HRP-2 (AIST)

ARMAR-II (KIT)

Robonaut (NASA)

RH-0 (UC3M)

HOAP-2 (Fujitsu)

KHR-2 (KAIST)

iCUB (IIT)

HRP-3 (AIST)

KHR-3 HUBO (KAIST)

HOAP-3 (Fujitsu)

RH-1 (UC3M)

The Karlsruhe Institute of Technology built the hu-
manoid robot ARMAR, with a mobile wheel-driven
platform, two anthropomorphic redundant arms, two
simple gripper and a head.

Sony unveiled the Sony Dream Robot, later named
QRIO, a new line of humanoid robots for entertainment
robots.

Fujitsu produce its first commercial humanoid robot
named HOAP-1.

Korea Advanced Institute of Science and Technology
began developing humanoid robots, starting with KHR-
0 which has 2 legs without the upper body.
Universidad Carlos III de Madrid began efforts re-
searching humanoid robots with the development of the
7 DOF bipedal robot Leroy.

Developed under the HRP project. Biped walking robot
HRP-2 is 154 cm in height with a mass of 58 kg, includ-
ing batteries.

The second version of the ARMAR series, the anthro-
pomorphic body of the robot was placed on a mobile
platform, it was able to bend forward, backward and
sidewards.

Developed by NASA and DARPA, with a human form
and scale, Robonaut was design to use many astronaut
tools and work in the same tight corridors as astronauts.
Developed at Universidad Carlos III de Madrid, RH-0
was a full-size humanoid robot, with 21 DOF.

HOAP robots were designed for broad range applica-
tions for Research and Development of robot technolo-
gies.

KHR-2 was built as a complete humanoid with 41 DOF
and featured improved sensoring with the addition of
CCD cameras, inertial sensors, and tilt sensors.

Italian Institute of Technology began developing the
iCub humanoid robot, its aim replicating the physical
and cognitive abilities of a 3 year old baby.

The humanoid robot HRP-3 was presented as the suc-
cession of humanoid HRP-2, it presented improving ca-
pabilities of manipulation and handling.

Continued KASIT KHR series, HUBO design aimed
to have as many DOF as possible, long working time,
compact appearances, low development costs, minimum
maintenance.

Continued the HOAP series, HOAP-3 added movable
axis for the head and hands, CCD cameras, a micro-
phone, a speaker and LEDs to show expression.
Continued UC3M RH-1 series, RH-1 humanoid robot
have 21 DOF, 150 cm height, 50 kg weight, main objec-
tives were stability control and gait generation.

Tab. 2.1: Historical developments efforts in the field of humanoid

robotics
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Continued from previous page.

Date

Name (Research Center)

Development

2006

2006

2006

2006

2008

2009

2009

2010

2011

2011

2012

2013

NAO (Aldebaran Robotics)

LOLA (TUM)

ARMAR-III (KIT)

Justin (DLR)

RH-2 TEO (UC3M)

HRP-4C (AIST)

PETMAN (Boston Dynam-

ics)

Robonaut2 (NASA)

ASIMO (HONDA)

Robonaut 2 (NASA)

COMAN (IIT)

ATLAS (Boston Dynamics)

Aldebaran robotics presented is first humanoid robot
NAO, is a small biped robot, fully articulated, easily
programmable and low cost.

Development, of LOLA at Technical University of Mu-
nich. LOLA is 180 cm and 55 kg, build for fast, human-
like, autonomous walking.

ARMAR-IIT was presented to the public at CEBIT in
spring 2006 in Hannover, ARMAR-IIT hopes to closely
mimic the sensory-motor capabilities of humans.
Justin developed at DLR, the two-arm system Justin is
a powerful upper body humanoid robot that is able to
lift weights up to 20 kg.

Development started for the humanoid robot RH-2, re-
named TEO, It has 26 DOF, a wider workspace and
higher manipulability in the different configurations.
AIST presented HRP-4C, it has the appearance and
shape of a human being and can walk and move like one,
and interacts with humans using speech recognition.
Boston Dynamics began developing PETMAN, the first
anthropomorphic robot that moves dynamically like a
real person.

NASA developed the second generation Robonaut, up-
grades included increased force sensing, greater range
of motion, higher bandwidth, and improved dexterity.
Honda unveiled its second generation ASIMO Robot.
The new ASIMO is the first version of the robot with
semi-autonomous capabilities.

Robonaut 2 is the first humanoid robot sent into space,
arriving at the International Space Station in early
2011.

IIT released the Compliant huManoid robot, CoMan,
designed for robust dynamic walking and balancing in
rough terrain.

Boston Dynamics presented ATLAS for the DARPA
Robotics Challenge.

Tab. 2.1: Historical developments in the field of humanoid robotics

Important challenges remain to be solved or addressed. Functional humanoid
robots would need to execute a wide range of movements, with high efficiency in
terms of energy and performance, and in a natural human-like manner. They would
also need to process information from multiple sensors into a reliable representation
of the world in order to understand and react to their environment. Humanoid robots
would need to provide means for a meaningful interaction with their human partners;
they must be engaging and responsive. And they must present intelligent, natural,
predictable and reasonable behaviours. Much work remains to be done in order to
improve the capabilities of humanoid robots for locomotion, perception, interaction,
cognitive behaviour and competence at performing tasks.
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2.2.1 Motion Control

A major issue for robotics in general, and more so when dealing with humanoid
robots, is motion control. Unlike industrial robots, which are limited to a well known
set, of movements, and which in general are stationary or need many displacements
across established rails inside a room, the appeal and interest in developing humanoid
robots is that they are general and flexible in the range of tasks they can perform,
as are humans, and that they would be able to move around the whole environment
as it is, instead of needing the environment to be adapted in order to allow them to
navigate it. Furthermore, since humanoid robots are thought to work, collaborate and
interact in proximity to people, unlike industrial robots that perform on their own as
part of automated production lines, humanoid robots movements must be compliant
and safe for human-robot interaction. In addition to being safe, physically, humanoid
robots must act in human-like form and their movements must seem natural and
predictable in order to facilitate their acceptance and the comfort of their human
companions. All these special needs and demands present great challenges in the
development and implementation of complex control systems, as well as the building
and designing of humanoid robots in terms of materials, power supplies, actuators,
motors, sensors, etc.

Building humanoid robots requires complex mechanical designs in order to repro-
duce and mimic the features of human motions. A typical human being possesses
several joints DOF. A human leg, considered with rigid toes, would have 3 DOF in
the hip, 1 DOF in the knee, and a 2 DOF ankle, in total, each leg has 6 DOF of angu-
lar motion [Herman, 2007|. For each arm, considering all fingers rigid, the shoulder
has 3 DOF, the elbow is a hinge of 1 DOF, the wrist 2 DOF, and a additional 1
DOF, a pivot motion of the radius rolling on the ulna, for a total of 7 DOF in the
arm |[Herman, 2007|. With 6 DOF for every leg and 7 DOF in each arm, in addition
to 3 DOF for the head and waist, a typical human person would have in excess of 30
DOF. This does not take into consideration the DOF in the human hand, which has
4 DOF for each finger plus 5 DOF for the thumb and its over 20 DOF in total. Typ-
ical humanoid robots have in excess of 20 DOF to over 40 DOF [HONDA, 2012],
|[Kaneko et al., 2002, [Kim et al., 2005|, [Asfour et al., 2006|, [Vernon et al., 2007],
|[Martinez et al., 2012|. Most of these humanoid robots do not have fully articulated
hands. The Shadow hand, one of the most advanced, offers 24 DOF, position sensing
on every joint and pressure sensing on every muscle [Company, 2012].

Key designing decisions in humanoid robots are which materials and actuators
to employ, as this would determine the weights and loads of the robots, and limit
some capacities of the robot, such as speed and strength, maximum carrying pay-
loads, and complexity of the low-level control. Most humanoid robots have employed
DC motors, either brushed or brushless, but some examples can be found that imple-
ments hydraulic actuators, as Sarcos, or pneumatic actuators, as Lucy [Behnke, 2008].
DC servo motors with harmonic drive and reduction gear systems are employed for
the ASIMO [Hirai et al., 1998|, HRP [Akachi et al., 2005|, KHR [Park et al., 2004],
ARMAR [Albers et al., 2006] and TEO [Monje et al., 2011] humanoid robots. Fu-
ture technological advances will allow the development of smaller, more powerful,
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more efficient and less expensive actuators. Since the role of humanoid robots is one
closer to humans than that of industrial robots, precision, force and speed are not
as important; however while the requirement for safety and compliance take prece-
dence. Recent approaches aim at developing humanoid robots safe for human-robot
interaction exploring the use of controllable stiffness actuators like artificial muscles
[Sugisaka, 2009] or series elastic actuator, used by Robonaut2 [Diftler et al., 2011].
Such compliant actuators will significantly contribute to the safe operation of robots
in the close vicinity of humans |[Behnke, 2008|.

Another issue, that remains to be solved, is the development of adequate power
supplies. Powering a humanoid robot requires big and heavy battery packages or
other power supplies. Currently battery powered humanoid robots can provide no
more than 30 minutes of autonomy [Hirai et al., 1998|, [Martinez et al., 2012|. Re-
search into better and more efficient technologies for power supplies is fundamental
|[Monje et al., 2011]. For functional humanoid robots the life and energy capacities
of their batteries, or any future power supply, must be greatly improved, in terms of
duration, efficiency, weight and space, heat dissipation, recharging, etc.

Humanoid robots” movements need to be done in the most natural and human-
like way possible. Primary for full-body humanoid robots is the ability for biped
locomotion. Motions like walking, running, going up or down stairs, which seems
intuitive and simple for humans, are very complex and difficult to imitate in humanoid
robots, and though great advances have been made it is a problem that is not yet
fully solved due to the complexity of the non-linear dynamics that must be resolved.
Most humanoid robot approaches to biped walking are based on the theory of Zero
Moment Point (ZMP) [Vukobratovic and Borovac, 2004]. ZMP defines the point on
the ground about which the sum of the moments of all the active forces equals zero.
The bipedal robot is dynamically stable if it can guarantee that the ZMP would fall
within the support polygon of all the contact points between the feet and the ground
during the locomotion. Prominent humanoid robots, relying on ZMP-based control,
include Honda ASIMO, which is capable of running at a pace of 6km/h. However, its
gait with bent knees does not look human-like and it requires the ground to be flat and
stable for walking [Behnke, 2008|. A different strategy consists of the simplification of
the complex dynamics of the robot by limiting the model of the robot to a simplified
form. |Kajita et al., 2001a] introduced a 3D linear inverted pendulum to model the
robot dynamics of the center of mass. The other well know model for the dynamic of
a biped robot is the cart-tabled model [Kajita et al., 2003|. Other approaches follow
biological inspired controls and rely on central pattern generators involving non-linear
oscillators |Tsuchiya et al., 2003|, |[Righetti and Ijspeert, 2006|. Another approach is
to utilize the passive dynamics of the robot to take advantage of the swinging limb
momentum for greater efficiency. It has been proved that planar walking down a slope
is possible without actuators and control. These machines are able to walk on level
ground. However, they cannot stand still not they can start or stop walking and are
not able to change speed or direction |[Behnke, 2008|. The development of balance
control algorithms is fundamental for humanoid robots if they are to be as functional
as humans, moving over different types of terrains and, slopes and, avoiding obstacles,
etc.
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The ability to handle and manipulate tools is also essential for humanoid robots
to achieve their full potential and exploit their adaptability. Dexterous manipulation
would not only require capable hands, but also hand-arm coordination and the co-
ordination of two hands and the vision system [Behnke, 2008|. As mentioned above,
the human hand possesses a high number of DOF, is very flexible and strong and
with a high level of sensibility which makes replicating its functionalities a very chal-
lenging research goal. Researchers are working on various dexterous tasks ranging
from juggling and catching balls, to performing telesurgery or pouring coffee and
chopping vegetables |Pradesh, 2006[. Robonaut2 |Diftler et al., 2011], ARMAR-III
[Asfour et al., 2006|, and Justin |Ott et al., 2006, are among the most advanced hu-
manoid robots in manipulation, though none of them has legs, while the performance
of these robots is impressive, it stills presents limitations, like, for example, their not
being able to grasp and manipulate unknown objects |[Behnke, 2008|.

Humanoid robots need to incorporate control systems that can deal with a broad
repertoire of motions, variable speeds and constraints, and most importantly, uncer-
tainty in the real-world environment in a fast, reactive manner |Peters et al., 2003|.
To allow humanoids to move in complex environments, planning and control must
focus on self-collision detection, path planning, obstacle avoidance and reaction to
perturbations. Some approaches have relied on teleoperation control of the humanoid
robots. A teleoperation system for controlling a humanoid robot can present advan-
tages; the teleoperated humanoid robot can be more versatile in dealing with various
tasks and environments. However the characteristics of humanoid robots present
more difficulties for controlling the whole body motion of the humanoid robot from
teleoperated commands. Challenges arise from the control of the many DOF of hu-
manoid robots, satisfying severe balance constraints and the geometrical and dy-
namical differences between humanoid robots and humans [Hasunuma et al., 2006].
Teleoperation systems for controlling humanoid robots can be employed for vari-
ous interesting scenarios, acting as proxies for humans in hazardous or dangerous
tasks, the teleoperation of humanoid robots for space operations could be an impor-
tant application |Pierro et al., 2009|. |Glassmire et al., 2004] presents NASA efforts
at developing teleoperation systems for the Robonaut astronaut humanoid robot. In
INeo et al., 2007| a teleoperation system for whole-body motion generation, using joy-
sticks to control a humanoid robot performing a variable set of tasks is introduced.
[Stilman et al., 2008] presents the manipulation of objects with varying loads with a
teleoperated system. In [Evrard et al., 2009] a teleoperation control is used for in-
tercontinental, multimodal, wide-range telecooperation. As useful as teleoperation
control can be for certain humanoid robot missions, in order to benefit from the full
potential of humanoid robots. control architectures cannot rely on teleoperation since
humanoid robots are expected to perform their tasks in an autonomous way. Efforts
in teleopration control look for ways of providing robots with increasing levels of au-
tonomy, going from the fully teleoperated robots towards shared control collaborative
robots [Pierro et al., 2012b|, [Stilman et al., 2008].

Planning control of motions and tasks is the focal point of humanoid robots con-
trol architectures. The control of humanoid robots is most often distributed in a
hierarchical manner and comprises of several layers from lower joint motor control
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to higher modules for path planning, collision, obstacle avoidance and stabilization
control. The main task for the motion control is the generation of stable biped
locomotion gaits or full-body trajectories for the humanoid in its environment. Ap-
propriate joint motor control is essential for humanoid robots; the joint motor control
problem in humanoid robots is more complex because of the high number of DOF
and the possible disturbances from high vibration and external forces that can occur
during robot locomotion [Kaynov et al., 2007|. Due to the complex dynamics of the
mechanical structure involved in the performance of bipedal translational motions of
the humanoid robots, even if each joint follows a correct and well controlled motion
pattern this does not guarantee stable biped locomotions; the implementation of ad-
ditional controls for stabilization are needed. A stabilization controller is proposed in
IKaynov et al., 2009| for joint-position control stabilization with a general, practical
and open strategy.

At higher levels of humanoid robot motion control researchers focus on the plan-
ning of safe motions, collision and obstacle avoidance. [Harada et al., 2007a] presents
a real-time gait planning of humanoid robot for force-controlled manipulation. In
[Yoshida et al., 2008| a planning framework is presented for generating 3-D collision-
free motions that take complex robot dynamics into account. An iterative algorithm
is introduced in |Lengagne et al., 2011] for the replanning of safe motions, ensuring
safety, balance and integrity of humanoid robots over the duration of the motions. A
collision avoidance methods is described in |[Ohashi et al., 2007|. |Guan et al., 20006|
addresses the problem of humanoid robots stepping over obstacles, focussing on the
planning and the feasibility analysis of motions. [Stasse et al., 2009|] presents strate-
gies for dynamically walking over large obstacles. This is only a small list since almost
every work on humanoid robot control offers modules for tackling these issues.

The majority of these approaches generates the humanoid robot planned trajecto-
ries offline, thus making it impossible or challenging to respond to unforeseen events.
Since replanning of new motions is a computationally heavy and time consuming
process, it is therefore necessary to have control algorithms that are capable of re-
acting to perturbations and online adaptation. Machine learning techniques are seen
as the best alternatives to offer fast, safe, adaptable control for humanoid robots.
[Schaal et al., 2000] offers several locally weighted learning algorithms that have been
tested successfully in real-time learning of complex robot tasks. |Atkeson et al., 2000
explores easier ways of programming behaviours in a humanoid robot employing learn-
ing from demonstration algorithms. Learning from demonstration has appeared as
one way to respond to the need for intuitive control methods |Calinon et al., 2007]
presents a demonstration framework for generally extracting the features of a task
and generalizing the skills in a different context. [Tani et al., 2008| presents a hu-
manoid robot learning to manipulate objects with a recurrent neural network that
has a hierarchical structure. [Hwang et al., 2006| focuses on determination of opti-
mal configuration posture for a pushing task of the humanoid robot employing simple
genetic algorithm. [Kamio and Iba, 2005] has proposed an integrated technique of
genetic programming (GP) and reinforcement learning (RL) to enable a real robot
to adapt its actions to a real environment. Reinforcement learning offers a general
framework to offer robotics true autonomy and versatility. However, applying RL to
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humanoid robots systems, with its high dimensionality, remains an unsolved prob-
lem. |Peters et al., 2003| discusses different approaches of reinforcement learning for
their applicability in humanoid robotics. [Stulp et al., 2010] presents a probabilistic
reinforcement learning approach, derived from the framework of stochastic optimal
control and path integrals, demonstrated to be able to efficiently learn humanoid
motor skills which require full-body motion.

2.2.2 Sensory Perception

Sensory perception is one prominent topic of research for robotics, and one of
major importance for humanoid robots. It is quite clear that, just like humans, hu-
manoid robots need to perceive their own state and their environment for them to
perform successfully. One hurdle in sensory perception would be the integration of
the large set of multiple sensor modalities and the processing of this information into
a reliable input to the rest of the control architecture. There is a large range of
sensors that could be implemented in humanoid robots to measure many kinds of
environmental variables, yet visual and auditory perception remain the most impor-
tant modalities for sensory perception, together with the necessary proprioception for
self-estimation. Providing humanoid robots with tactile sensors seems like a natural
approach given the importance that the sense of touch has for humans. There have
also been attempts to give robots the sense of smell.

For proprioception, most robot motors are equipped with encoders, relative or
absolute, to measure their own joint positions; others could employ force sensors, or
potentiometers. Most humanoid robots are also equipped with some type of inertial
sensors to estimate the robot attitude; either accelerometers, gyroscopes, magnetome-
ters or combinations of all three. Force-torque sensors at the wrist and ankles are
also used in many humanoid robots for sensing ground reaction forces or forces at
grasping and manipulating objects with the hands.

For humans, the sense of vision is the most important and versatile of all, used
to quickly perceive the environment and generate functional representation of work.
Providing robots with vision capabilities by means of computer vision is therefore one
of the great challenges in robotic research. Great advances have been made over the
years, yet computer vision is still not close to replicating the capacities and abilities
of the human eye. In general, humanoid robots are equipped with two cameras in
their heads, to simulate human eyes, and provide the robots with stereo vision. These
cameras are used as active vision systems, allowing the robots to focus their attention
towards relevant objects in their environment. Most humanoid robots are equipped
with on-board computers for image interpretation. Interpreting real-world image
sequences is not a solved problem, and many humanoid vision systems only work
well in a simplified environment [Behnke, 2008]. Recent developments on RGB-D
cameras could greatly increase humanoid robot capacities for depth perception and
3D interpretation of their world.

Providing humanoid robots with auditory perception is an important research
objective, particularly for human-robot interaction where they would be expected
to understand the human natural language. Auditory perception is provided by a
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microphone or an array of microphones. In addition to facilitate hearing, an ar-
ray of microphones can provide the capability of also identifying the source of the
sound, this however can increase the difficulty of interpreting the audio signal. One
major problem is the separation of the sound source of interest from other sound
sources and noise. Turning the microphones towards the source of interest and beam
forming in microphone arrays are means of active hearing |Behnke, 2008|. Though
many speech recognition systems exist, very few are openly available. CMU Sphinx
|[Huggins-Daines et al., 2006], is one of the leading open source toolkits available for
speech recognition. Speech recognition systems performance has been continuously
getting better, even if substantial word error rates remains.

Research efforts are also made in providing humanoid robots with a sense of
touch. An idea is to cover the robot with a force-sensitive skin; these robot skins
are composed of a large number of spatially distributed tactile elements organized
in patches, which are surface compliant structures covering large parts of a robot
body |Baglini et al., 2010]. Some attempts can be found in this area. The iCub
robot, for instance, is being fitted with a capacitive skin system in the fingertips
and palms that enables measurement of contact |[Consortium, 2012]. The sense of
smell is also important for humans. A robot working collaboratively with a human
that can’t alert the presence of a smell relevant to the task would lack an important
functionality,|Coradeschi et al., 2006|. For Ishida, the ability to recognize smells will
bring robots closer to humans and provide new ways of directing navigation of au-
tonomous robots |[Ishida et al., 2005|. The first research on an artificial sensing system
able to discriminate different odours was published in 1982. Since then, researchers
have done extensive research on developing electronic noses |[Coradeschi et al., 2006].
An electronic nose consists of an array of chemical sensors with partial specificity and
a pattern-recognition system. The major problem in the development of artificial
olfaction is that no sensor as versatile as odour receptor cells exists.

A key aspect for robot perception is the processing, filtering and representation of
the information gathered by the multi-sensory system into manageable structures for
the robot interpretation of its state and that of the environment. To provide robots
with scene understanding and proper situation awareness the robots would need to
build adequate representations of the environment base on the signals received form
the various sensors. This is not a trivial task, and much work in this area remains to
be done.

2.2.3 Human-Robot Interaction

Humanoids robots are one of the main topics in service robots investigation. Hu-
manoid robots have many features that make them a very suitable partner in collabo-
rative working environments. Therefore, a major focus of research is in the interaction
between robots and humans, as this presents one of the main tasks which has to be
achieved if we want a world where humans and robots can work together. One impor-
tant motivation is the idea that the efficient techniques which evolved in our culture
for human-human communication can work also for intuitive human-machine com-
munication, since they are designed to have a similar or identical embodiment. This
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includes multiple modalities like speech, facial expressions, gaze and body language
|Behnke, 2008|.

Much work in this area is focused on coding or training mechanisms that al-
low robots to pick up visual cues such as gestures and facial expressions that guide
interaction. Omne important example of a robot built for studying interaction and
socializing with humans is the robot Kismet. Kismet is designed to perceive a variety
of natural social cues from visual and auditory channels, and to deliver social signals
to the human caregiver through gaze direction, facial expression, body posture, and
vocalizations [Breazeal, 2001|. Movable eyes, head, and chest communicate where
the robot focuses its attention. When the robot looks at the interaction partner, the
partner feels addressed.

Robots present different models of interaction, from direct control or teleoper-
ation of the robot, to robots with an autonomous and independent behaviour and
ambient intelligence. The optimal ideal for the human-robot interaction is for the
human operator to accept and recognize the robot system, just as one more partner
in a working team composed of multiple human and robotic agents. A human-robot
team can present many advantages. Robots can be used in order to cover human
limitations or to assist them in numerous tasks. Human-Robot Collaboration is an
important topic of research in this area. Since robots are expected to live with us
and share our environment, studying the possible means of collaboration is of major
interest. One example of a humanoid robot working in collaboration with humans
is NASA JSC’s Robonaut [Johnston and Rabe, 2006]. Another important platform
in the field of the human-robot collaboration is the HRP-2 robot from Kawada in-
dustries |Kaneko et al., 2004b|. This robot is able to manipulate objects under the
orders of a human |[Neo et al., 2008| and also to assemble a panel by cooperating with
a human [Harada et al., 2007b]. Robots can also be of great assistance for a human
worker at a construction scenario, taking most of the workload in a transportation
or an assembly task and performing more risky activities. A robot partner can also
perform precise or sensitive tasks in an industrial or factory scenario.

Humanoid robots that allow the users to perform tasks in the real world by switch-
ing between continuous teleoperation and autonomous operation have been proposed
by Yokoi in [Yokoi et al., 2008]. In order for collaboration to be meaningful, it is
important for the human operator to see the robot as not just a tool but as a col-
league in a team [Siino et al., 2008|. In the work of [Fong et al., 2002] a model for
collaboration is proposed in which, instead of a supervisor dictating to a subordinate,
the human and the robot engage in dialogue to exchange ideas, to ask questions, and
to resolve differences. In |Pierro et al., 2012b| a shared control concept is proposed,
the collaboration focuses on a human-robot interaction were the human is not just a
supervisor directing the robot, but a partner in which the robot can look for assis-
tance. By sharing control according to each one best capabilities the advantages of a
human-humanoid partnership can be exploited.

Another issue to take into account for the design and development of humanoid
robots is the phenomenon known as the “uncanny valley”. In 1970 Professor Mori
introduced the term “uncanny valley” to explain the hypothesized eerie response a
person would have at encountering a robot trying to resemble a human shape but
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failing to replicate a lifelike appearance |[Mori et al., 2012]. The “uncanny valley” de-
scribes the relation between human likeness of a machine and affinity towards it, the
relationship behaves as a monotonically increasing function until a point in which, a
failure in correspondence between the human-like appearances and its artificial per-
formance becomes unsettling and produces a steep drop in the affinity creating the
local minimum named the “uncanny valley” |Gee et al., 2005|. When motion is con-
sidered, the effect of unsettling eeriness is heightened. Even though the extent of
Professor Mori’s hypothesis has not been fully validated, the concept of the “uncanny
valley” is generally accepted and applied in areas like computer-graphics, animation,
films and robotics. For humanoid robots research, where it is expected for humans
and robots to generate close relationships and interact and collaborate together, it is
very important to consider the level of acceptance the humanoid robots would have
by the general population. Humanoid robots design must take into consideration the
“uncanny valley”, and try its best to prevent it or overcome it. This requires design
guidelines for both the appearance and the motion performance of robots. Discussion
on the “uncanny valley” often focuses mainly on the appearance dimensionality, for-
getting the problem of replicating human-like motion and aiming to achieve a lesser
similarity in physical appearance. Even Professor Mori recommends taking the first
peak as the goal, aiming at a moderate human likeness with a considerable sense of
affinity [Mori et al., 2012|. This, however, omits an important part of the problem as
both aspects are relevant to humanoid robotics and necessary for human-robot inter-
action. Consistency between appearance and motion play a large part in acceptance
when they cannot be reviewed independently |Gee et al., 2005]. The continuous de-
velopments in robotics should move forward both dimensions, appearance and motion
performance, retaining the acceptance. It is, therefore, necessary that developments
in humanoid robots go hand in hand with appearance and performance to generate
better human-robot interactions. Humanoid robots must not only simulate our em-
bodiment and try to mimic our physical appearance they must also replicate humans
motions and try to resemble our behaviour.

Human-robot interaction is an open and very active field, involving several disci-
plines and a large set of topics. Important progress has been made in this field, and
several working robotic systems can be found allowing for multimodal human-robot
interaction [Stiefelhagen et al., 2007, [Gorostiza et al., 2006], providing robots with
speech recognition [Gomez et al., 2012b|, object attention localization and identifica-
tion |Haasch et al., 2005|, gesture recognition interfaces |Bertsch and Hafner, 2009],
[Stiefelhagen et al., 2004], face detection |[Bueno et al., 2012|, teaching and learning
interactions |[Schmidt-Rohr et al., 2010], |[Kronander and Billard, 2012|, natural dia-
logue processing [Alonso-Martin and Salichs, 2011), user interfaces |[Chen et al., 2007],
etc. Still, the most relevant topics in human-robot interaction can be considered un-
resolved. Major work on human-robot interaction focuses on assistive and health
care robots, lifelike robots, remote robots, robot companions, long term interaction,
multi-modal interaction, awareness and monitoring, robot-team learning and collab-
oration, software architectures for HRI, user studies and experiments on interaction,
collaboration and acceptance.
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2.2.4 Intelligent Behaviour

In addition to robust and efficient motor controls, for allowing humanoid robots
to generate smooth, natural human-like motions, comprehensive multi-sensory per-
ceptual systems and appropriate strategies for meaningful and engaging human-robot
interactions, humanoid robots need to present behaviours with a minimum level of
autonomy and intelligence. Development of intelligent systems is a long term goal in
the fields of robotics research, artificial intelligence and cognitive science. To truly
exploit humanoid robots full potential it would be necessary to provide them with an
intelligence that is similar to that of humans. This presents an even greater challenge
than endowing humanoids with the ability to replicate human-like motions or simu-
late human interactions. Particularly since the process of human intelligence is one
that is not fully understood, in which many competing ideas can be found and where
no generally accepted theory of intelligence exists that satisfies every group.

The study of intelligence is a relevant topic of research in many fields, such as
psychology, philosophy, neurobiology, education, cognitive science, and artificial in-
telligence, each one with its own views on what constitutes intelligent agents and
intelligent behaviours. Despite all this debate, which has encompassed many years
and a wide field of research, no one single standard definition of intelligence has
emerged. However, from the many definitions that have been proposed, it is not
hard to find some strong similarities and a common ground between them on which
behaviours are to be expected from an agent in order to be considered intelligent.

Reviewing the various definitions, as the basis of intelligence the abilities to learn
and acquire knowledge, to make judgements and decisions based on reason, to ef-
fectively adapt to the environment, to succeed in solving problems and achieving
goals can all be found. Intelligence is defined in [American-Heritage, 2006]| as the
ability to acquire, understand and use knowledge. Seeing it from the view point of
psychology |Gardner, 1993|, intelligence is the ability to solve problems, or to create
products, that are valued within one or more cultural settings. Also [Anastasi, 1992
intelligence is a composite of several functions, a combination of abilities required for
survival and advancement within a particular culture. In intelligence is
defined as the ability of a system to act appropriately in an uncertain environment,
where appropriate action is understood as that which increases the chances of success
for the behavioural goal and subgoals. In a more computational intelligence frame, for
|[Poole et al., 1998| an intelligent agent is one that is flexible to changing environments
and changing goals, learns from experience, and makes appropriate choices given per-
ceptual limitations and finite computation. For |Legg and Hutter, 2006| intelligence
measures an agent ability to achieve goals in a wide range of environments.

A survey of definitions of intelligence collected in |Legg and Hutter, 2007], leads
them to construe intelligence as a property of agents in their interaction with the
environment, that are related to the agent ability to succeed in respect to some goal,
depending on the agent capacity to adapt to different objectives and environments.
As a summary from the various views of intelligence it is possible now for an iden-
tification of the key attributes required for considering the behaviour of an agent as
intelligent. An intelligent agent can be thought of as one that features the abilities to
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learn and acquire knowledge based on its experience, the capacity to understand or
comprehend current relevant features in the environment, to exhibit situation aware-
ness, the capacity for reasoning, to compute or deduce the course of actions to follow,
the forming of conclusions and value judgements. Also, the ability to adapt, be it
of itself, its objectives or its environment, according to every situation and objec-
tive. Finally, a fundamental ability to succeed, i.e., to survive, in the wider possible
range of environments, to efficiently accomplish one’s goals. In order to consider that
an agent has displayed intelligent behaviour, it must be required that it presented
a successful performance, that is, it has achieved its goal and objectives effectively,
regardless of any form of unplanned disturbance that could have been encountered
in the environment. An environment, that could be arbitrarily complex in nature
and that could be dynamically changing and unpredictable, from which the agent
does not necessarily have any prior knowledge. Finally, the agent behaviour must be
replicable over time and across different situations.

For humanoid robots to become intelligent agents, and present intelligent be-
haviours it is necessary to have replicable models of intelligence. [Sternberg, 2000
discusses some relevant, contemporary, models of human intelligence. In the triarchic
theory of intelligence there are three interacting factors of intelligence: an internal
aspect, consisting of information processing skills guiding intelligent behaviour; an
external aspect, the practical ability to adapt a particular environment to match one
own skills; and an experimental factor, involving the ability to capitalize on experi-
ences in processing novel or unfamiliar information |[Sternberg, 2000]. The theory of
multiple intelligences of Gardner focuses on domains of intelligence. There are eight
fairly independent, equally important types of intelligence, which are based on abilities
valued within different cultures. The intelligences described are, visual-spatial, verbal-
linguistic, bodily-kinaesthetic, logical-mathematical, interpersonal, musical, intraper-
sonal and naturalistic intelligence. The models reviewed above present contrasting
differences, however, one common aspect between them is that they all value adapt-
ability of cognitive processing as an important aspect of intelligence.

has proposed a model that integrates knowledge from research in
both natural and artificial systems. The model consists of a hierarchical system ar-
chitecture. Different levels of intelligence in the hierarchy can be achieved, depending
on the computational power of the system and the sophistication of its processing
algorithms for various functionalities, such as, world modelling, behaviour genera-
tion, value judgement, and global communication, and the information and values
the system has stored in its memory. A minimal level of intelligent requires at least
the ability to sense the environment, make decisions and take actions. Higher levels
of intelligence may include the ability to recognize objects and events, to represent
knowledge in a world model and to reason about and plan for the future. More ele-
vated forms of intelligence provide the capacity to perceive and understand, to choose
wisely, and to act successfully under a large variety of circumstances [Albus, 1991].
The current humanoid robots may only be around the minimum and mid-levels of
intelligence. As developments of systems, architectures and algorithms continue to ad-
vance the intelligent capabilities of humanoid robots will increase. Humanoid robots
need to reach a functional level of intelligence that allows them to function properly
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interacting with humans and the environment, even if perhaps the ultimate levels of
intelligence could turn out to be out of reach, and creating robots that replicate the
total scope of human intelligence may prove impossible. Humanoid robots need to
achieve a sufficiently high level in the hierarchy in order to be considered by their
human partners as intelligent, namely, a sensing, acting system that perceives, learns,
plans, and succeeds in achieving its goals in the world. This is a major challenge in
humanoid robot research.

As a minimal requirement, an intelligent robot system or agent needs to be thought
of as perceiving its environment through sensors and acting upon that environment
through actuators |Russell and Norvig, 2010]. Sensors and actuators represent the
inputs and outputs from intelligent systems. Its ability to rationalize and make de-
cisions in the middle of the perception-action determines its level of intelligence. To
achieve a higher level it is needed to integrate perception, reason, knowledge, emo-
tion, and behaviour. The model in [Albus, 1991|, identifies four elemental systems
of intelligence: sensory processing, world modelling, behaviour generation, and value
judgement. Similarly, from the field of cognitive science and intelligent agents, the
importance of the different functions of cognition were identified in a robotic sys-
tem point of view as perception, learning, motor control, reasoning, problem solving,
goal orientation, knowledge representation and communication |[Langley et al., 2009].
The phenomena of intelligence, however, require more than a set of disconnected ele-
ments. Intelligence requires an interconnecting system architecture that enables the
various system elements to interact and communicate with each other in intimate and
sophisticated ways [Albus, 1991].

Figure 211 illustrates a model of an architecture for an intelligent agent based
on the general principles stated above. For an intelligent agent, with the needs of a
humanoid robot, it is necessary to have systems for perception, action, interaction,
reasoning, world knowledge and learning. The perception, interaction and action sys-
tems are the outward components of the architecture, in charge of dealing with, and
affecting the environment. Perception systems process sensor information to acquire
and maintain internal models of the world. World knowledge systems store and main-
tain memory data gathered and processed from the reasoning and learning systems.
Learning systems must learn appropriate behaviours from the perception and the in-
teraction data, and also store them in memory. The reasoning system interacts with
the action system so as to pursue behavioural goals, it also may interact with the
perception, world knowledge and learning system to reason about the environment
and the task, the space, time, geometry, etc., and to formulate or select action plans.

Perception establishes and maintains correspondence between the internal model
and the external real world. Sensory processing is the mechanism for perception. The
sensory input data form multiple ranges of sensors are processed and integrated into a
consistent unified perception of the state of the world. Sensory processing algorithms
compute distance, shape, orientation, surface characteristics, physical and dynamical
attributes of objects and regions of space.

Action is a process of the systems actuators that move, exert forces, move manip-
ulators and, handle tools. It represents the means by which the agent produces an
effect on the world, interacting and altering its environment in order to achieve its
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Fig. 2.1: Model for an architecture of intelligent agents. For an intelligent agent,
with the needs of a humanoid robot, it is necessary to have systems for
perception, action, interaction, reasoning, world knowledge and learning.

goals. Task and goal behaviours are decomposed into actions.

Reasoning systems evaluate the observed state of the world and the predicted re-
sults of hypothesized plans. They provide the criteria for making intelligent decisions.
Reasoning systems compute costs, risks, and benefits both of plans and actions, the
desirability, attractiveness, and uncertainty of objects and events. Reasoning systems
select goals, and plans and executes tasks. Tasks are recursively decomposed into sub-
tasks, and subtasks are sequenced so as to achieve goals. Logic has been a favoured
tool of artificial intelligence theorist, practical intelligent systems have tended to use
techniques such as rules, cases and neural networks. However there is a growing use
of probabilistic reasoning in intelligent systems [Thagard, 2005].

World modelling estimates of the state of the world. The world model thus can
provide answers to requests for information about the present, past, and probable
future states of the world. It includes databases of knowledge about the world, and
database management systems that store and retrieve information. The world model
is the representation of the external world, it provides the reasoning system informa-
tion necessary to make decisions. It maintains world knowledge, keeping it current
and consistent.

Learning is required to acquire and develop task knowledge. Learning systems
work the mechanisms for storing knowledge about the external world and for acquir-
ing skills and knowledge of how to act; the algorithms for learning and extracting
important features of task actions in order to build intelligent behaviours. The learn-
ing system consolidates short-term memory into long-term memory, and exhibiting
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altered behaviour because of what was remembered.

For humanoid robot systems to present the intelligent behaviours that would be
expected from them, from the ability to sense the environment, make decisions and
take actions, to recognize objects and events, represent knowledge, reason and plan for
the future, and act successfully under a large variety of circumstances, the intelligent
robot architectures developed to control humanoid robots must implement, all or a
subset of, these systems.

2.3 Robot Planner-Based Architectures

As stated throughout this chapter, for the development of functional humanoid
robots, that work together with humans, helping them in achieving everyday tasks,
robotic agents need to become intelligent, they need to be endowed with control
mechanism that enables them to produce intelligent behaviours. That is, they must
be capable of performing successfully complex tasks in a dynamic environment. Au-
tonomous robotic systems need to be able to perform a wide range of functions,
in order to work in complex evolving environments, seeking for the successful ac-
complishment of their goals. Robots would need to present many different skills,
and implement several competing behaviours. Among the desirable abilities that au-
tonomous robots should present is the ability to perceive and understand, the ability
to act and interact, the ability to learn, the ability to reason and acquire knowledge,
the ability to plan actions and goals, and make decisions, the ability to adapt to tasks
and /or environmental changes, etc. All these functionalities present many challenges
that the control system architectures of autonomous robots need to address.

Intelligent agents, at their most basic definition, can be thought of as something
that perceives and acts in an environment [Russell and Norvig, 2010|, one in which
actions are well thought of, logically inferred, and reasoned from the information,
gathered and processed, from the environment. In this simplified construe for an
intelligent agent, it is easy to identify three basic building blocks for a control systems
architecture: a perception module, that senses the external world; a reasoning module,
that processes the collected information from the environment and reasons about the
plans of actions to accomplish goals; and an action module that translates the planned
commands into physical actions in the world. Other modules could be thought of
such as a learning module, or a memory module, a knowledge module, an adaptation
module, etc. However when considering the basic definition of agents, as systems
that sense and act in an environment, in pursuit of their own objectives and goals,
in order to build intelligent robot systems, efforts could well be first concentrated on
the fundamental modules for perception, reason, and action. Front this point of view,
the classical approach from Al emerged, focusing on decomposing the control systems
for autonomous robots into the three functional elements forming the sense-plan-act
cycle. The sensing system’s function is to translate raw sensor input into a world
model. The planning system’s work is to take the goals and the world model and
generate plans that achieve these goals. The execution system’s job is to generate the

actions prescribed by the plan |[Gat, 1997].
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Fig. 2.2: Hierarchical planning or deliberative architectures follows the Sense-Plan-
Act cycle from classical AI approaches. These architectures are form by
three components. Information flows unidirectionally from sensors to per-
ception, to planning, to motor control, to actuators. The system intelli-
gences resides on the planner, with world model and system goals, produces
appropriate plans of action for the robot.

Classical approaches from the field of Al focus their effort on building intelligent
systems on the symbolic representation of physical world entities, which could be
combined, computed or operated upon. And in the belief that intelligent agents could
be formulated as information processing systems, taking a representation of the world
as input and outputting appropriate sets of actions. The development of planning or
deliberative strategies that generate the sequences of tasks to accomplish robot goals
is the central aspect of the classical AI control architectures. Figure presents
the general planning or deliberative architectures. The architectures are formed by
three components, from the sense-plan-act hierarchical problem solving paradigm: a
perception component for sensing the environment; a plan component, with world
model and system goals, for producing a plan of action; a motor control component
for translating the planned actions to proper motor commands. The control scheme
of information flows unidirectionally and linearly from sensors to perception, to the
world model, to planning, to motor control, to actuators.

Hierarchical planning or deliberative architectures use a high level structured ap-
proach, relying on a traditional top-down strategy centred on planning for decompos-
ing the robot goal tasks, having an explicit symbolic model of the world, and in which
decisions are made via logical reasoning |[Wooldridge and Jennings, 1995|. Work on
hierarchical planner-based or deliberative architectures has focused on the planning
of long-term actions for achieving a set of basic goals. The intelligence of the system
architecture, is said to live, in the planner or the programmer, not the execution
mechanism [Gat, 1997]. As represented in Figure 22 the robot architecture follows
a strict sequence of distinct stages during execution: first the robot senses the world,
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then plans the next move and acts accordingly. In the sense stage of perception, the
robot would acquire information about its environment from its available sensors.
The world model data structure is created using this information. The world model
are symbolic descriptions, comprising priori information of the environment, with the
information collected from the robot sensors and any other cognitive knowledge that
the specified task could need to assist the robot |[Murphy, 2000]. The planning stage
takes a symbolic description of both the world and goal states, it then attempts to
find a sequence of actions that will achieve the goal [Wooldridge and Jennings, 1995|,
several different automated planning algorithms could be employed. When the final
goal comprised of complex situations and world states, the planner breaks the goal
into sub goals and account for each one in turn to achieve the final goal. The act
stage represents the execution of actuator commands that are generated according
to the sequence orders from the planning stage. After the robot’s actuators finish off
the planned task, the cycle begins again and continues until the goal is reached.

The most representative methodology that has been built, based on the planner-
based paradigm, was STRIPS |Fikes and Nilsson, 1971]. The STRIPS method takes
a symbolic description of both the initial state and a desired goal state, and a set of
action conditions and operations, which characterise the pre and post-conditions that
are associated with the various actions. Constructing the world model was impera-
tive and the action to be chosen at a certain point was selected from a descriptive
table called the difference table. For the planning stage of each cycle a difference-
evaluator would measure the difference between the goal state and the current state,
enabling the planner to choose the best corresponding commands from the difference
table, that would minimize the difference, and pass them on to the actuators. The
STRIPS method was used for the robot Shakey by the Stanford Research Institute
[Nilsson, 1984]. The STRIPS planning algorithm was very simple, and proved to be
ineffective on problems of even moderate complexity. Hierarchical and non-linear
planning were proposed in efforts to raise the efficiency of the planner, but remained
somewhat weak while working in a system with time constraints [Nilsson, 2007].

In spite of these difficulties, various attempts to construct an agent planner compo-
nent can be found: the Integrated Planning, Execution and Monitoring (IPEM) sys-
tem is based on a sophisticated non-linear planner [Ambros-Ingerson and Steel, 198§|.
The AUTODRIVE system has planning agents operating in a highly dynamic envi-
ronment [Wood, 1993]. The PHOENIX system includes planner-based agents that
operate in the domain of simulated forest fire management |[Cohen et al., 1989|. The
Belief-Desired-Intention model has also been of relevance for deliberative planner ar-
chitectures, the model call for a rational agent must allow for means-end reasoning,
for the weighing of competing alternatives, and for interactions between these two
forms of reasoning. One example is the Intelligent Resource-bounded Machine Ar-
chitecture (IRMA) [Bratman et al., 1988]. It presents a high-level specification of
the practical-reasoning component of an architecture for a resource-bounded ratio-
nal agent. This architecture has four key symbolic data structures: a plan library,
and explicit representations of beliefs, desires, and intentions. Another examples is
GRATE* [Jennings, 1993|, a layered architecture in which the mental attitudes of
beliefs, desires, intentions and joint intentions, guide the behaviour of an agent.
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Numerous examples of hierarchical control systems can be found
addresses the task of navigational path-planning, which provides the robot with a
path guaranteed to be free of collisions with any modelled obstacles. [Albus, 1997],
[Meystel, 1988]|, promote the idea of top-down, hierarchical controllers, each execut-
ing a sense-plan-act feedback loop. The NASREM architecture [Albus et al., 1987,
is a strict hierarchical framework for task decomposition, perception and world mod-
elling. [Meystel, 1986] proposed a theory for a nested hierarchical controller (NHC),
enhancing the planner by decomposing it into three distinct components, namely,
the mission planner, navigator and the pilot. NHC looks to give a more receptive
response to changes in the environment by having the sensors continuously updating
the world model even while the actuators were carrying out the commands.

The symbolic approaches to intelligent agents, embodied by the planner-based
or deliberative architectures presented numerous shortcomings. Among the biggest
issues that hinder the hierarchical planner-based paradigm with time were the trans-
duction problem, translating the real world into an accurate, adequate symbolic de-
scription, the close world assumption, and the representation or frame problem, of
how to symbolically represent information about complex real-world entities in time
for the results to be useful [Wooldridge and Jennings, 1995|. The required assump-
tion for the close world model, that the robot obtains all the information from the
environment that it needs, presents significant problems since the planner cannot
keep track of all the changes in the environment in a continuous manner. The frame
problem refers to the inability to represent all the world information that was needed
by the robot in a computationally viable method. Consequently, addressing uncer-
tainty in the event of a bigger problem was too tedious and was not worth the effort
[IDe Silva and Ekanayake, 2008].

Planning and world modelling turned out to be very difficult problems, and open-
loop plan execution was clearly inadequate in the face of environmental uncertainty
and unpredictability [Gat, 1997]. Uncertainty in sensing and action, and changes
in the environment, can require frequent replanning, the cost of which may be pro-
hibitive for complex systems |[Mataric, 1997]. The planner-based or deliberative ar-
chitecture has presented its strengths and its weakness: they can handle complex
tasks by breaking them into more manageable sub tasks, specifying the current and
future activities and constraints [Simmons, 1994|. They allow for explicitly formulat-
ing task and goals of the system and estimating the quality of the agent’s performance
[Mataric, 1997]. And they can produce optimal, domain-independent solutions. How-
ever, they generally fail to address uncertainty, and are therefore unfit to operate in
changing environments, since they are unable to re-plan their actions quickly enough.
Planner-based approaches have high computational costs, making their performance
poor when there is a need for frequent replanning.

Researches in the 80s began to feel unsatisfied with the poor results obtained from
planning-based architectures and started to look for other alternative techniques.
The problems of the planner-based or deliberative architectures led to questioning
the viability of the whole paradigm, and to the development of what are generally
known as reactive architectures [Wooldridge and Jennings, 1995|. Many researchers
begin a shift of viewpoints away from the traditional AI symbolic representation,
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abandoning the requirement for a central world model, and the idea that intelligence
is a computational process that takes an input and produces an output [Brooks, 1996].

2.4 Robot Behaviour-Based Architectures

Earlier attempts to develop intelligent agents, following the classic Al approaches
for symbolic reasoning, failed to produce adequate levels of intelligent behaviours
for robots. Although the deliberative thinking approach proved successful for cer-
tain tasks, for planning operations, by real autonomous agents in complex dynamic
environments, the obtained results have been poor [Maes, 1991b]. Therefore, many
researchers saw the need for developing different types of architectures and mecha-
nism for replicating intelligence. Attention turned away from the symbolic and Al
and attempts to model behaviour through explicit representations and abstract rea-
soning. Instead, the ideas that real intelligence is situated in the world, and that
intelligence behaviours can only emerge as a result of an embodied agent interaction
with the environment, gained preference.

This novel Al approach was based on the hypothesis that to build intelligent
systems it is necessary to have their representations grounded in the physical world
[Brooks, 1990]. Instead of focusing on the design of systems capable of intelligent
thinking, the emphasis changed to creating agents that could act intelligently. Re-
searchers took inspiration from biological and ethological advances, studying animal
behaviour and coordination. Approaches centred on the reflexive behaviours of an-
imals as stimulus-response mappings, responses to a particular sensory input are
directly wired with an action response which is carried out without any higher cog-
nitive involvement |[De Silva and Ekanayake, 2008|. The behaviour-based or reactive
paradigm is founded on the building of behaviours, direct couplings of sensory inputs
to a pattern of actions that in turn carries out a specific task [Murphy, 2000].

Central to the definition of a reactive architecture is that it does not include any
kind of central symbolic world model, and does not use complex symbolic reasoning
[Wooldridge and Jennings, 1995|. Decisions are based on real-time information from
sensors, and the global system behaviour emerges from the interactions of local be-
haviours with the environment. Behaviour-based or reactive architectures implemen-
tations are founded on the constant-time run-time direct encodings of the appropriate
actions for each input state, these mappings rely on a direct coupling between sens-
ing and action, and fast feedback from the environment [Mataric, 1997]. This allows
reactive autonomous agents to respond faster, and in a somewhat more natural man-
ner, and for achieving real-time performances. Reactive systems maintain no internal
models and perform no search. A generally simple functional mapping between stim-
uli and appropriate responses is employed, usually in the form of a look-up, this being
on a table, a set of action rules, a simple circuit, a vector field, or a connectionist
network |[Mataric, 1997|.

Figure shows a generic representation for a reactive behaviour-based architec-
ture. The behaviour-based paradigm presents a direct coupling between perception
and action. A collection of preprogrammed condition-action pairs is embedded into
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Fig. 2.3: The robot behaviour-based architectures presents a direct coupling be-
tween the perception and action modules. A collection of preprogrammed
behaviours, typically consisting of a collection of rules, is embedded into
the agent control strategy. Behaviour-based systems maintain no internal
models and perform no state space searchs. The reactive behaviour-based
autonomous agents can respond faster and achieve real-time performances.

the agent control strategy. The behaviours in reactive or behaviour-based architec-
tures typically consist of a collection of rules, taking inputs from sensors or other
behaviours in the system, and sending outputs to the effectors, or other behaviours
|Nicolescu and Mataric, 2002|. The system intelligent behaviours emerge from the
bottom-up, instead of the top-down approach of the planner-based models.

[Brooks, 1986] introduced the subsumption architecture as an instance of a behaviour-
based approach to building robots that operate in the real world. The subsumption
architecture is the best known effort from the behaviour-based paradigm for agent
intelligence: it enables a tight connection of perception to action, embedding robots
concretely in the world. The subsumption architecture presents a hierarchy of task-
accomplishing behaviours, built on layering progressively more complex task-specific
competencies, each one connected to its own sensory inputs. The behaviours are de-
composed in a vertical arrangement, on top of each other, based on task achieving
behaviours in their order of sophistication. Thus, the most basic “survival” behaviours,
such as avoiding objects are at the lowest layer while more complex ‘cognitive’ be-
haviours, such as reasoning about the behaviour of objects, are at the higher levels
[Brooks, 1986]. The higher layers would have the ability to replace or subsume the
behaviours of the lower layers. Each layer of behaviour competences receives its own
sensorial input system, and is supposed to execute independently, with each behaviour
being unaware of what is happening in the other layers. Since each layer executes
a dedicated behaviour, this avoids the need for it to know the complete scenario it
is trying to solve, which in turn simplifies each layer’s computational needs and al-
lows it to abandon the need for internal models of representation. The subsumption
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architecture does not come without its shortcomings: including the competencies of
lower layers into higher levels leads to a waste of resources; the subsumption archi-
tecture precludes the layers from passing information between themselves, and fails
to take into account any advantage a planning module can introduce to the system
[IDe Silva and Ekanayake, 2008|.

|[Chapman and Agre, 1987| also began to explore alternatives to the Al planning
paradigm proposing that an efficient agent architecture could be based on the idea
of ‘running arguments’. The idea is that as most decisions are routine, tasks, once
learned, can be accomplished in a routine way, they can be encoded into a low-level
structure, which only needs periodic updating. The approach was illustrated by the
PENGI system |Agre and Chapman, 1987]. PENGI is a simulated computer game,
with the central character controlled using a scheme such as that outlined above.

developed an agent architecture in which an agent is defined as
a set of competence modules loosely resembling the behaviours of the subsumption
architecture. Each module is specified in terms of pre and post-conditions and an
activation level. The higher the activation level of a module, the higher the proba-
bility that this module will influence the agents behaviour. Once specified, a set of
competence modules is compiled into a spreading activation network, in which the
modules pre- and post-conditions define the ways they are linked to one another.
Similarities between the agent network architecture and neural network architectures
exist. Perhaps the key difference is in the difficulty of saying what the meaning of a
node in the net is. In a neural net it only has a meaning in the context of the net
itself. Since the competence modules are defined in declarative terms, it is very much
easier to say what their meaning is [Wooldridge and Jennings, 1995|.

[Mataric, 1992| implemented an architecture that integrates a map representation
into a reactive, subsumption-based mobile robot. It presented a fully integrated reac-
tive system removing the distinction between the control program and the map. Pro-
grammed with a collection of simple, incrementally designed behaviours, the robot
performs collision-free navigation, dynamic landmark detection, map construction
and maintenance, and path planning. |Nicolescu and Mataric, 2002 presents an ap-
proach for implementing hierarchical task representations concepts into behaviour-
based systems. It describes a Hierarchical Abstract Behaviour Architecture that
allows for the representation and execution of complex, sequential, hierarchically
structured tasks within a behaviour-based framework. The architecture introduces
the notion of abstract behaviours and enables the re-usability of behaviours across
different tasks. [Nicolescu and Mataric, 2003| uses a behaviour-based approach as
an underlying control architecture in which time-extended actions that achieve or
maintain a particular goal are grouped for representing robot skills behaviours. The
behaviours are built from two components: one related to perception (Abstract be-
haviour), the other to actions (Primitive behaviour). This architecture provides a
simple and natural way of representing robot tasks in the form of behaviour networks
INicolescu and Mataric, 2002|. The architecture is used to endow the robots with the
ability to convey their intentions by acting upon their environment and to learning
complex tasks from observing a demonstration by a teacher [Nicolescu and Mataric, 2003|.

|Lenser et al., 2001] describes a highly modular hierarchical behaviour-based con-
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trol system for robots. The architecture is designed to present features for easy
addition and removal of behaviours, easy to program hierarchical structure, abil-
ity to execute non-conflicting behaviours in parallel, a unique reward based com-
binator to arbitrate amongst competing behaviours such as to maximize reward.
|Balch and Arkin, 1998| presents and evaluates reactive behaviours implementing for-
mations in multirobot teams. The formation behaviours are integrated with other
navigational behaviours to enable a robotic team to reach navigational goals, avoid
hazards and simultaneously remain in formation. Another approach in the reactive
paradigm is the methodology known as the Potential Fields Methodology (PFM).
In PFMs each behaviour is represented as a vector, thus this methodology is inher-
ently regarded to be confined to the navigational robots. Behaviours are combined
in vector summation to produce the emergent behaviour. These behaviours are as-
sumed to exert on the robot in the form of force fields, the robot is assumed to be
a particle entering into the force field and the behaviour of the robot is the path
it takes as a result of the multiple potential fields |[De Silva and Ekanayake, 2008|.
Many other navigational systems using reactive control have been developed. These
include Paytons reflexive behaviours [Payton, 1986, Kadonoffs arbitration strategies
[Moravec et al., 1986], Arkins motor schemas [Arkin, 1989a].

The behaviour-based or reactive architectures lead to a significant advance in
the development of autonomous robots, although not everything was positive. The
behaviour-based approaches presented greatly improved performances in robot nav-
igation and obstacle avoidance. Reactive architectures showed great flexibility and
adaptability, and were ideally suited to performing in dynamic and unpredictable envi-
ronments. Also, these approaches were robust, simple and computationally tractable.
However, they also have some drawbacks: behaviours-based or reactive architectures
do not include explicitly the achievement of a goal in their behaviour description;
plans and goals are to emerge from the robot interaction with the environment; the
approaches only include ‘local’ information, collected from the environment; they
present, a short-term view, with no long-term planning capabilities, and offered lim-
ited applicability. One of the most important characteristics of the behaviour-based
paradigm is their abandonment of the abstract symbolic representation, this pre-
sented their advantages but also limits the possibility to employ them at higher levels
task. The purely reactive approaches achieved great efficiency at run-time, but their
limited representational power results in a lack of run-time flexibility [Mataric, 1997].

Another shortcoming of the reactive behaviour-based paradigm is in the complex-
ity of the interaction dynamics between the behaviours and the environment, and
between the behaviours themselves. This hampers the debugging and understanding
of the robots emerging behaviour, it also hinders the development and implementation
of a large number of behaviours. Also, the behaviour-based architecture prevents the
automatic reusability of behaviours across different tasks and thus, the automatic gen-
eration of behaviours. Even though the behaviours themselves are usually reused and
accumulated into behaviour libraries, the behaviour-based systems are to be manually
programmed, involving the customized redesign of behaviours in accordance with the
specifics of any new task [Nicolescu and Mataric, 2002].

The reactive behaviour-based paradigm emerged as a response to the problems
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presented in the planner-based architectures. The reactive approaches offered a solu-
tion for the rigidities encountered within the hierarchical paradigm, and their limita-
tions in performing in dynamic environments. The behaviour-based paradigm proved
to be more than satisfactory in robots executing simple tasks, and performs remark-
ably well and fast in collision free navigation tasks, and in working within the envi-
ronment. However, a need for planning and higher representations emerged in order
to deal with more complex tasks. Many roboticists turned to new ways of com-
bining the planning process with the reactive behaviour of robots and new breed
of architectures under the name Hybrid Deliberative/Reactive paradigm was born
[De Silva and Ekanayake, 2008].

2.5 Robot Hybrid Architectures

For some time researchers trying to develop intelligent robotic agents explored
their implementations in two competing paradigms, the deliberative planner-based
architecture, centred on classical Al approaches in the symbolic representation of the
world and the deliberative planning of robots’ actions, and the reactive behaviour-
based architecture, that focused on alternative approaches generating appropriate
behaviours to react to real-time robot interactions with their environments. Both the
reactive and deliberative based architectures had their advantages and presented early
satisfactory results. Nevertheless, each approach displayed various shortcomings.

The deliberative planner-based approaches, dominant through the first decades of
Al tried to build intelligent agents by means of symbolic reasoning and representa-
tions of the world that were capable of generating deliberative plans of actions, after
reasoning in relation their goals in the world. However, these approaches proved un-
successful in dealing with dynamic changing environments, where the computational
speed for planning was slower than the environment rate of change. Two major prob-
lems hindered the progress of the deliberative planner-based architectures. First, as
mentioned, the world may change during computation of the planning phase in a way
that invalidates the resulting plan. Second, unexpected outcomes or errors during
the execution of the planned steps can cause the subsequent steps in the plan to be
executed in an inappropriate context [Gat, 1997].

The reactive behaviour-based approaches appear as a reaction to the failures of
classical Al approaches. An attempt was made at building intelligent agents that
could perform in real-time, situated in the real world. The idea of symbolic reasoning
and of maintaining a world model was abandoned in favour of a direct coupling be-
tween the sensing and the action, extracting information directly from the world, as
its best model [Brooks, 1990]. Though the approach achieved dramatic early success,
its limitations and drawbacks were quickly apparent. Behaviour-based approaches of-
fered limited applicability, often confined to low-level tasks. One significant problem
was the lack of modularity: upper layers interfere with the lower layers’ function-
alities so that they cannot be designed independently. Also, the complexity of the
interaction dynamics between the behaviours and the environment, and between the
behaviours themselves, in cases where a large number of behaviours are implemented,
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makes the understanding of the robot’s emerging behaviour quite difficult to pre-
dict and design, therefore hindering their development and implementation. Also, by
eliminating internal state representations, the reactive approach avoided the problem
of maintaining that state, but ran headlong into the problem of extracting reliable
information about the world through sensors |[Gat, 1997].

Intelligent robot agents, in order to be successfully employed, working alongside
human partners, need to address three main challenges: adapt quickly to changes in
the environment; understand high level human commands; be engaging for people
[Stoytchev and Arkin, 2001]. Traditionally, the first challenge has been adequately
addressed by the behaviour-based reactive controllers. The second challenge can well
be addressed by using a deliberative planner-based approach. The hybrid deliber-
ative/reactive architectures naturally emerged as attempts to bridge these two ap-
proaches and use the strengths of each other in reducing their respective shortcomings.
The hybrid deliberative/reactive paradigm advocates for the use of the advantageous
aspects of both the behaviour-based and the planner-based approaches, combining
them to produce a new architecture that can deal with more complex scenarios. In
practice, this means the integration of the planning aspect of the hierarchical de-
liberative paradigm with the rapid execution capabilities of the reactive paradigm
[IDe Silva and Ekanayake, 2008|.

The hybrid architectures idea was to attempt a compromise between the purely
reactive and deliberative approaches and integrate both of them as subsystems of
the architecture. Generally, the reactive system, capable of performing behaviours at
faster speeds, is given precedence over the deliberative system. The hybrid deliber-
ative/reactive architectures usually adopt a reactive system at the low-level control,
where modules are closer to sensors and actuators, and a planner-based approach at
the high-level, for higher decision making [Mataric, 1997|. Therefore, the motion con-
trol loops are closed at the lower levels producing different behaviours. At the same
time, decisions based on internal models and plans can be reached, modifying lower
behaviours variables. The reactive behaviour system makes short term decisions in
local areas, and the deliberative planning system makes mid and long term decisions
in global areas. This type of structure leads naturally to the idea of a layered ar-
chitecture. The architecture is arranged into a hierarchy of control subsystems, with
the lower levels closer to the physical world, sensors and actuators, and in which the
higher levels deal with information at increasing levels of abstraction.

In general, hybrid deliberative/reactive architectures usually divide the control
system into a layered structure. This architecture structure to control intelligent
robots needs the integration of three separate components: a reactive feedback mech-
anism for controlling low level primitive activities; a deliberative planning system
for decision-making computations; and a sequencing system that controls the inter-
actions between the other two components. This three layered structure, or similar
configurations, can be found in the majority of hybrid architecture approaches, such
as the ATLANTIS architecture [Gat, 1992], the SSS architecture [Connell, 1992], and
the 3T architecture [Bonasso et al., 1995|.

Figure 2.4 represents a general hybrid architecture divided into three functional
layers: a behaviour control layer, for reactive feedback control of the robot low-level
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Fig. 2.4: Hybrid deliberative/reactive architectures usually divide the control sys-
tem into layered structures with three main components: a behaviour con-
trol layer, for reactive feedback low level control; a sequence execution
layer, for controlling the execution of behaviours in a planned sequence;
and a planning layer for time-consuming deliberative computations, plan-
ning high level goals and maintaining the world model.

behaviours; a sequence execution layer, whose tasks are the activation and inhibition
of the other layers and the control of the execution of behaviours in a sequence order
to carry out their task; and a planning layer for performing time-consuming delib-
erative computations, planning high level goals and maintaining the world model.
These components run as separate asynchronous computational processes. Usually,
algorithms in the three-layer architectures are organized according to the role of their
internal state representation. Sensor-based algorithms, that contain no state repre-
sentation, inhabit the control behaviour layer component. Algorithms that maintain
memory of the past inhabit the sequencer layer. Algorithms that make predictions

about the future inhabit the planner deliberator layer |[Gat, 1997].

In the ATLANTIS architecture [Gat, 1992], these layers are called the controller,
the sequencer, and the deliberator. For the 3T architecture |Bonasso, 1991|, the
components are called the skill layer, the sequencing layer, and the planning layer,
respectively. The behaviour control layer is responsible for the control of primitive
activities, that is, simple reactive sensorimotor processes. Usually it contains libraries
of primitive behaviours or skills, the activation of which is determined by an external
input to the control layer, the sequencer or certain sensory inputs. The algorithms
that go into the behaviour control layer need to follow some important constraints
[Gat, 1997]. The computing cycles must be of constant-bounded time and space com-
plexity, small enough to afford stable closed loop control for the desired behaviour.
The algorithms should detect failure to perform the adequate functions, allowing
higher components of the system to take corrective actions for failure recovery. In-
ternal states in the controller should have limited time life, and should not introduce
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discontinuities. It is the responsibility of the sequencer to manage transitions between
regimes of continuous operation.

The sequence execution layer is responsible for controlling the sequences of prim-
itive behaviours and deliberative computations. The job of the sequencer is selecting
which primitive behaviour the behaviour control layer should be activated at a given
time, and to supply parameters for the behaviours. By controlling the activation
and deactivation of behaviours at appropriate moments the robot can be made to
perform useful tasks. The sequence execution layer initiates and terminates primitive
behaviours by activating and deactivating sets of modules in the behaviour control
layer. In addition, it can send parameters to the behaviour control layer, and mon-
itor the progress of the active behaviours [Gat, 1992]. The control of sequences is
required to handle several difficult situations. The sequencer must be able to deal
effectively with unexpected failures. Also, if behaviours must be interrupted, then
the sequencer must ensure that the interrupted activity is properly terminated, and
the system must ensure that two activities which interfere with each other are not
enabled simultaneously.

The planning layer is responsible for the performance of time-consuming compu-
tational tasks such as decision making, planning generation and maintaining world
models. The planning layer performs under the control of the sequencer which ini-
tiates and terminates its processes. The planning layer often runs as a concurrently
computational process in one or more separate control threads. Several behaviour
transitions could occur between the time a deliberative algorithm is invoked and the
time it produces a result, with no restrictions on the computational structure except
the sequencer’s ability to initiate and terminate its functions. The planning layer
interaction with the rest of the system usually follows one of three broad methods
[IDe Silva and Ekanayake, 2008|. The planning layer provides lower layers directly
with the information on which to act. It can produce plans for the sequencer to
execute, or it can respond to specific queries from the sequencer. The planning layer
works prior to or jointly with the behaviour layer, updating the robots behavioural
parameters or changing the world state. Coupled planning and behavioural layers
occur concurrently making plans and reactive execution.

Many examples of implementations of hybrid architectures can be found. The
Autonomous Robot Architecture, AuRA |Arkin and Mackenzie, 1994], is one of the
earliest approaches attempting the integration of hierarchical planning and reactive
behaviours mechanisms. In AuRa two major planning and execution components
are present: a behaviour reactive component, schema controller, coupled with a hi-
erarchical planning component system that is formed by a mission planner, at the
highest level of the architecture, concerned with establishing high level goals, a spa-
tial reasoner, that construct sequences of paths using stored knowledge, and a plan
sequencer, that translates each path generated by the spatial reasoner into a set of
motor behaviours for execution |Arkin and Balch, 1997].

Under the hybrid paradigm the most popular hybrid deliberative/reactive archi-
tectures are the three-layered architectures. |Gat, 1992] introduced the ATLANTIS
architecture as an early example, it was first implemented on robot Robby in 1990.
ATLANTIS is a heterogeneous asynchronous architecture for controlling mobile robots
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based on the activity model of action. It has three layers, namely the controller, the
sequencer, and the deliberator. The controller is a reactive control of primitive ac-
tivities with no decision-making computations. The sequencer is a special-purpose
system which controls initiation and termination of the primitive activities, and the
time-consuming deliberative computations, performed in the deliberator, like plan-
ning and world modelling [Gat, 1992].

Another architecture, similar in structure to ATLANTIS is SSS, Servo-Subsumption-
Symbolic, which combines a servo-control layer, a “subsumption” layer, and a symbolic
layer. Unlike ATLANTIS in the SSS architecture the middle layer is based on the
subsumption architecture [Brooks, 1986], and the symbolic layer is inside the control
loop. The 3T architecture |[Bonasso et al., 1995|, separates the general robot intel-
ligence problem into three interacting tiers or layers. First, a skill layer where a
dynamically reprogrammable set of behaviour reactive skills is coordinated by the
skill manager. A sequencing layer, that activates and deactivates the sets of skills
to accomplish specific tasks, this use the Reactive Action Packages (RAPs) system.
And the planning layer with deliberative planning capabilities that reason about the
goals, resources and time constraints.

|[Ferguson, 1991] developed the TOURINGMACHINES hybrid agent architecture.
It consists of components for perception and action in direct interaction with the envi-
ronment, and three independent control layers concurrently executing process under
a control framework. The reactive layer, implemented in the style of the subsump-
tion architecture [Brooks, 1986], as a set of situation-action rules, generates courses
of action in response to quick changing events. The planning layer constructs plans
and selects actions to execute in order to achieve the agents goals. The modelling
layer contains symbolic representations of the cognitive state of other entities corre-
sponding to the environment. The three layers are embedded in a control framework
that mediates between the layers, and deals with conflicting action proposals from
the different layers.

INTERRAP [Miiller and Pischel, 1994, is a layered architecture, with each suc-
cessive layer representing a higher level of abstraction. The INTERRAP architecture
further subdivides these layers into two vertical ones: the first containing layers of
knowledge bases and, the other containing control components. The lower-layer is a
world interface control component that manages the interface between the agent and
its environment, and thus , deals with acting, communicating, and perception as an
abstraction layer for the rest of the structure. The next layer is the behaviour-based
component that implements and controls the basic reactive capability of the agent.
Above the behaviour-based component is the plan-based component layer which con-
tains a planner that is able to generate single-agent plans in response to requests from
the behaviour-based layer. The knowledge component at this layer contains a set of
plans, including a plan library. The highest layer for the INTERRAP architecture
is the cooperation layer, which is able to generate joint plans that satisfy the goals
of a number of agents. These plans are generated in response to requests from the
plan-based component. The knowledge component at this layer contains a social plan
library, from which the cooperation layer can select plans for elaboration.

The Task Control Architecture (TCA) [Simmons, 1994], provides an integrated
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set, of control constructs for implementing deliberative and reactive robot behaviours.
The control constructs mean to facilitate the development of modular and evolution-
ary systems, they are used to integrate and coordinate planning, perception, and
execution, and to incrementally improve the efficiency and robustness of the robot
systems. The TCA control constructs include support for distributed inter-process
communication, task decomposition, management and allocation of resources, excep-
tion handling and execution monitoring. A TCA robot system consists of a number of
robot-specific modules, and a central control module, which is common to all systems
that use TCA. The modules communicate by passing coarse-grained messages to the
central control, which then routes messages to the appropriate modules that would
handle them. In this structured control approach, the deliberative components han-
dle normal situations and the reactive behaviours, which are explicitly constrained
as to when and how they are activated, handle exceptional situations. The TCA
architecture has been used in over a half-dozen robot systems, including a six-legged
robot that autonomously walks over rugged terrain |[Simmons, 1994].

The Action-Deliberative (AD) architecture [Malfaz et al., 2011], was designed try-
ing to avoid rigidity in the planning-sequencing-acting paradigm that can be found in
the three layer architectures. It is composed of only two levels: one for deliberative
activities and a second one for automatic activities. The sequencing processes are
distributed between the deliberative and automatic levels, providing more flexibility
to the hybrid architecture. The AD architecture has been further enhanced by also
adding a biologically inspired decision making system [Malfaz et al., 2011].

The hybrid deliberative/reactive architectures present some advantages over both
purely deliberative and purely reactive architectures, mostly in shortening their re-
spective drawbacks. Hybrid deliberative/reactive architectures combine the rapid
real-time responses and ability to adapt to quickly changing environments provided
by behaviour-based systems with the higher level reasoning, planning and decision
making capabilities of planner-based approaches, enabling them to perform in a bet-
ter wider range of tasks, coupling the strengths of both paradigms, providing more
successfully acting intelligent agents. However, these types of architectures are not
devoid of problems and critics. Hybrid deliberative /reactive architectures tend mostly
to be very specific, application dependent, and lacking general design guiding method-
ologies. A potential difficulty with hybrid architectures is that while their structures
are well-motivated from a design point of view, it is not clear that they are motivated
by any deep theory |[Wooldridge and Jennings, 1995|. The lack of good theoretical
models for agent architectures prevents the true understanding of the mechanism
from which the systems works, difficulting the generalization and reproduction of
their results for varying domains. However, psychological and neurophysiological ev-
idence can be found for the co-existence of two distinct planning systems in humans
[Norman et al., 1980|, supporting this approach as a potentially effective methodol-
ogy for robotic systems.
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2.6 Robot Cognitive Architectures

When developing robot systems with human like embodiments and functional ca-
pacities and behaviours that are similar to that of humans, such as those needed
for the humanoid robots that have been discussed in the above sections, it becomes
clear that different mechanisms are necessary to replicate the complex level of skills
and operations presented by humans than those employed to simulate simpler be-
haviours. In order to deal with the richer set of intricate abilities that are expected
from humanoid agents, the intelligent architectures need to provide new structures
and models. The deliberative planning and behaviour-based approaches on their own
seem to be insufficient to deal with the inherent complexities related to represen-
tation and modelling of reasoning in the human mind. In [Brooks, 1996], a needed
shift in viewpoint is discussed for cases when the focus of research goes to building
humanoid robots, designed to present a full human level intelligence, that must be
capable of operating and interacting in the world in much the same way a human
agent would. Here, approaches are led to different architectural decompositions from
those considered from both the traditional Al planning approaches and the behaviour-
based approaches, largely implemented for mobile robots. These decompositions are
motivated by fundamentally different concerns at many different levels of analysis,
requiring to deal with a number of important issues, such as, bodily form, motivation,
coherence, self adaptation, inspiration from the brain, etc.

In dealing with these concerns, which arise when thinking about building robots
with human level intelligence and functionality, the agents’ architecture structural
paradigm shifts from the production and emergence of intelligent behaviours as a
system output towards a viewpoint whose main pursuit is in the development of in-
telligence thinking at the system internal processing. These approaches are centred
on the mechanism that allows for the generation of thought and the interior work-
ings of cognition. This calls for an organization of intelligence in terms of cognitive
models. Dealing with these issues, and the organization and interaction of cognitive
components, is one important aspect for the development of cognitive architectures
and cognitive robotics.

The deliberative planning approaches, while applicable for state-space search and
scheduling systems, proved to be unfit to operate in changing environments which
would be required of humanoid robots. The reactive and behaviour-based approaches
presented great performances in robot navigation and obstacle avoidance, and in
dynamic and unpredictable environments, yet their true applicability is limited to
low level behaviours and they would not be suited to dealing with the complexities
of behaviours present in humanoid robots. The hybrid approaches have attempted
to combine the strengths of deliberative and reactive approaches and can be readily
employed as the system architecture for several robotic platforms. However, they
ignore issues of perception, learning, world model, and different mechanisms that
would be necessary to replicate the complex level of skills and operations presented
by humans and lack of good theoretical models. Research in cognitive architectures
constitute a solid basis for building intelligent systemdecompositionss centred on the
configuration and interaction of cognitive modules dealing with the various mechanism
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and abilities that constitute the various process of human intelligence.

The study of the mind, intelligence, and the working processes of intelligent
thought are the competencies of cognitive science. Research in cognitive science
stands at the intersection of various fields, embracing philosophy, psychology, artifi-
cial intelligence, neuroscience, linguistics, and anthropology. A central point for the
development of cognitive theories lies in studying the nature of knowledge. The most
agreed view by cognitive scientists is that knowledge in the mind consists of mental
representations, and that intelligent behaviour and thought are the resultant prod-
ucts of manipulating, reasoning and operating upon these internal representations.
Much debate in the field is focused on the class and nature of these knowledge rep-
resentations, on the representational mechanisms for acquisition, organization, and
utilization of knowledge, and on whether the internal representations are even needed
at all or whether or not another paradigm is required.

The central task of a knowledge representation is capturing the complexity of
the real world |Davis et al., 1993|. Representations thus perform as functional ab-
stractions of the perceived environment, encoding an agents’ knowledge of its world,
objects, actions, events, etc., into manageable internal structures. An agent system,
having useful representations, can therefore operate on them by abstracting itself
beyond the world. The knowledge representation constitutes an important property
for the design of a cognitive agent architecture, along with the organization and use
of the represented knowledge, and the mechanism supported for the acquisition and
revision of the knowledge in the representation |Langley et al., 2009].

The dominant analogy in cognitive sciences has been to compare the mind, and
the brain, to computers, where thinking can be understood as computational proce-
dures. The metaphor assumes that the mind has mental representations analogous
to data structures in a computer program, and computational procedures similar to
programmed algorithms |Thagard, 2005|. The computational hypothesis has been
the most expanded and dominant theoretical and experimental theory of mind de-
veloped so far. Other theories have also arisen to challenge the major premises of
the computational-representational understanding of mind (CRUM) thesis as the
most suitable one for cognition. Connectionist models have proposed novel ideas
expanding theoretical frame of cognitive science about representation and compu-
tation that uses neurons and their connections. The connectionist analogy is that
mental phenomena can be described by interconnected networks of simple and often
uniform units, where neuron patterns and network connections can be compared to
data structures, and neuron firing and spread activation is analogous for algorithms
[Thagard, 2005]. More recent approaches in cognitive science have taken a growing
interest in dynamical systems. The dynamical systems metaphor promotes thinking
about the underlying forces, vector fields, from which observed patterns of behaviours
emerge [Schoner, 2008|. In this view, the brain is thought of as a dynamic physical
system and the processes in the mind can be described by differences and differential
equations. The driving idea motivating the dynamical systems approach is that cog-
nitive processes, contrary to the computational hypothesis of discrete representational
operations, must unfold continuously and simultaneously in real time. Therefore, a
cognitive system would not be a sequential manipulation of discrete static representa-




48 2. Intelligent Architectures for Humanoid Robots

tional structures, but rather, a structure of mutually and simultaneously influencing
change |van Gelder and Port, 1995|.

The traditional commitment of cognitive sciences to a computational-representational
view of the mind, where intelligence is a problem of symbol manipulation, has faced
increasing challenges and scepticism over the years, in which, the very central notion
of internal representation has been questioned. This challenges have been explicitly
stated by [van Gelder, 1995|, and are also present in works by |[Thelen and Smith, 2007],
[Wheeler et al., 1994], |Haselager et al., 2003|, etc. The representational approach,
according to this hypothesis, is viewed as incapable of producing timely suitable cog-
nitive responses, and as detrimental and counterproductive for developing intelligent
physical agents. The critical distinction is not between representational and non-
representational solutions but among an action-neutral form of internal representa-
tion, requiring disembodied symbolic computational processing, and action-oriented
forms, in which a behavioural response is embedded into the representation itself
[Clark, 2004]. A necessary emphasis is placed on the close link of cognition with the
sensory and motor processes and the environments in which these are immersed. Mod-
els of cognition must be embodied processes that capture the unfolding of cognition
in time and the associated sensory and motor surfaces embedded in the environment
in which cognitive phenomena, takes place |[Schoner, 2008|. The embodied cognition
view maintains that there is more to cognition than just mental representations.
Humans’ problem solving ability involves “intensive cooperation” between internal
representation, computations and interactions with the environment. The claim is
not an outright rejection of the legitimacy of representations, however in order to
be valid, for embedded cognition, the representations are to be limited, physically
grounded to the environment and oriented toward the specific needs of the given
agent [Anderson, 2003|. Development of cognitive robotics will relied on off-lined
modelling and operation on internal representations, and emulation mechanism for
environmentally coupled responses |Clark and Grush, 1999|.

The ideas of knowledge representation and reasoning are central for high level cog-
nitive robotic control [Levesque and Lakemeyer, 2008|. The development of robot sys-
tems endowed with a human like embodiment, functional capacities and behaviours,
capable of replicating the complex level of skills and operations presented by humans,
would require complex control architectures, which allowed them to display cognitive
abilities. Cognitive architectures specifies the underlying infrastructure for an intel-
ligent system. The representational formalisms by which an agent would encode its
knowledge are a central aspect of a cognitive architecture |[Langley et al., 2009|. As a
definition, let’s take the one provided by [Albus and Barbera, 2005]: a cognitive ar-
chitecture is an organizational structure, of knowledge representations and functional
structures, set for enabling the modelling of cognitive phenomena. A cognitive archi-
tecture would attempt to provide the basic primitive computational resources needed
for developing intelligent systems. Among their basic properties are those related to
memory, representation, processing, organization, performance, interaction, reason-
ing, and learning. Research on cognitive architectures is a very important topic since
it supports a central goal of artificial intelligence, cognitive science, and robotics, the
creation and understanding of agents built for supporting the same capabilities as
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Fig. 2.5: A Robot Cognitive Architecture must support several capabilities. Per-
ception and motor abilities must be present for a cognitive robot agent
acting in an environment. The capacity for modelling and characterizing
the environment is central to the performance of all other cognitive func-
tions. Memory storage is also fundamental for a cognitive robot agent.
The ability for learning, adapting and improving the agent skills is vital
for the performance of a cognitive agent over time. Reasoning and decision
making abilities guide agent action, choosing, from the perceived, stored,
and learned knowledge, appropriate set of skills and proper behaviours to
execute.

humans |Langley et al., 2009].

The Cognitive architecture function is to provide a comprehensive initial frame-
work for the modelling and understanding of cognitive phenomena, in a variety of
task domains, [Sun, 2009]. The architecture design must specify overall structures,
essential divisions of modules and their interrelationships, basic representations, es-
sential algorithms and a variety of other aspects. The various attempts at developing
cognitive architectures can differ in the assumptions they make, and the design de-
cisions they take about how to manage these aspects. A cognitive architecture can
support several capabilities, and can differ variedly in their set of abilities. Perception
and recognition, decision making, memory, and learning are the most central abilities
an architecture must support to cover the range of human-level intelligence. Other
relevant abilities are those of problem solving and planning, prediction, reasoning,
communication and action execution |Langley et al., 2009].

Figure 2.5l represents a general model for a robot cognitive architecture. Here var-
ious interlinked models are present for supporting perception, motor control, world
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modelling, memory, reasoning, and learning abilities. A cognitive robot agent, em-
bedded in an environment requires modules for perception and motor control of its
actions with the world. A comprehensive model of the agents environment, allowing
for the agent situatedness and understanding of the current state of the world is a
necessary prerequisite for practically every other cognitive faculty the agent could dis-
play. A memory module for knowledge storage is of central importance for a cognitive,
adaptive, intelligent agent. Stored knowledge could be of declarative or procedural
nature. Modules for reasoning or decision making guide all motor activity, based on
the perceive, store, and learned knowledge of the agent. The module for reasoning
would choose appropriate sets of actions and proper behaviours to execute. Sup-
porting modules for learning, and improving, the agents skill set, is a vital part of a
cognitive architecture in order to guarantee an agents’ success over time.

An intelligent agent exists inside an external environment that it must sense, per-
ceive, and interpret. Multiple sensor modalities could be implemented by the agent.
Perception involves integrating results from the different modalities into a model of
the environment which could be used by other cognitive processes. The perception
must go beyond perceiving isolated objects or events to interpret the broader envi-
ronmental situation, and compose a large model of the current environment.

Intelligent agents require the ability to recognize situations as instances of known
or familiar patterns, and categorize such objects, situations, or events to known con-
cepts. To support recognition and categorization, a cognitive architecture must pro-
vide some way to represent patterns and situations in memory |Langley et al., 2009].

Decision making abilities to select from alternatives is an important ability re-
quired for an intelligent agent. A cognitive architecture, in order to support decision
making, must possess a way to represent alternative choices or actions, and also offer
a process of selection between these alternatives.

A cognitive architecture requires mechanisms that draw inferences using its knowl-
edge structures. Reasoning lets an agent augment its knowledge state, drawing con-
clusions from beliefs and assumptions that the agent already holds. The cognitive
agent can engage in various forms of reasoning such as, deductive reasoning, inductive
reasoning, adductive inference, as well as the architectures afforded by it. Cognitive
architectures are essentially models of human reasoning |[Russell and Norvig, 2010].

Storing, and retrieving, an agent cognitive process in memory is an important
ability that crosses all other cognitive capacities of the agent. In order to ‘remember’
an agent cognitive activity, the architecture must encode and store the cognitive
structures that are generated during the agent’s activity. Memory must store and
index this knowledge, and be able to retrieve it when needed. Cognitive architectures
most often distinguish between a short-term memory, holding information relevant
to current environment models, and long-term memory storing knowledge capture by
the agent over periods of its actions.

Cognitive architectures must incorporate some way from which to learn, and im-
prove, their cognitive capacities. Learning involves processing, and generalizing, mem-
ory cognitive structures to improve the capabilities of the agent, beyond specific beliefs
and events. The data on which learning operates may come from all sources sup-
ported by the architecture, including observation of another agent, problem-solving
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behaviour, perception and categorization, prediction, reasoning, skills and execution
policies. A cognitive architecture should also be able to learn from instruction and
experience.

Problem solving and planning abilities are necessary in order to generate plans
and achieve an agents goals in several situations. Intelligent agents operating in
dynamic environments must often modify existing plans in response to unanticipated
changes |Langley et al., 2009|. To support these abilities, the cognitive architecture
must be capable of representing the planned actions, as ordered set of activities,
and expected results. It should also be able to generate plans and solution from
components available from its memory, or learning.

Cognitive agents can benefit from the ability to predict future situations. This
requires the architecture to provide mechanisms capable of predicting future situations
using present knowledge structures. Prediction requires a model of the environment
and of the effects an action has on it [Langley et al., 2009|.

Communication is another important ability for cognitive architectures to support
since a cognitive agent interacts with other agents and the transfer of knowledge
from one agent to another is a possible occurrence. Cognitive architectures should
support mechanisms for transforming knowledge into the form and medium through
which it will be communicated |Langley et al., 2009]. Agents can communicate about
perceptions and actions, plans, inferences, decisions made, predictions and anomalies,
etc. Building cognitive architectures facilitates the interaction between humans and
intelligent systems because of similarities in cognitive abilities [Sun, 2009]. Increasing
the cognitive capacities of a robotic system is an important task in order to achieve
a meaningful and natural interaction and collaboration in a human-robot team.

The cognitive architectures must allow for the execution of skills and actions in the
environment. The architecture must be able to represent and store motor skills that
enable the agents activity. Cognitive architectures should present the flexibility to
support a behavioural range, as can humans, from autonomous open-loop behaviours,
to reactive closed-loop behaviours.

In the field of Artificial Intelligence and Cognitive Systems there are various
works on the development of cognitive architectures to model cognitive processes
and functionalities of humans. Among the better known architectures there is Soar
|[Laird et al., 1987], ACT-R [Anderson et al., 2004], PRODIGY |[Veloso et al., 1995|,
EPIC |[Kieras and Meyer, 1997], [CARUS |Langley and Cummings, 2004|, CLARION
[Sun et al., 2001], etc.

The Soar (State Operator And Result) [Laird et al., 1987], cognitive architecture
has been under continuous development since the early 1980s. The architecture is
based on the theoretical framework of knowledge-based systems seen as an approxi-
mation to physical symbol systems |[Duch et al., 2008|. Soar stores its knowledge in
the form of production rules, which are in turn organized in terms of operators that
act in the problem space. The basic deliberative acts of the system are performed
by the operators, with knowledge used to dynamically determine their selection and
application |Langley et al., 2009|. In Soar, tasks are formulated as goal achieving
attempts. The primary learning mechanism in Soar is chunking. Chunking occurs
when one or more results are produced in a subgoal. The chunk actions are based on
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the result, and theirs conditions are based on the relevant aspects of the goal above
the subgoal. Soar has multiple learning mechanisms: chunking and reinforcement
learning acquire procedural knowledge, whereas episodic and semantic learning ac-
quire their own corresponding types of declarative knowledge |Langley et al., 2009].
Researchers have used Soar architecture to develop a variety of sophisticated agents
that have demonstrated several high-level cognitive functions |[Duch et al., 2008|.

ACT-R (Adaptive Control of Thought-Rational) [Anderson et al., 2004], architec-
ture is primarily concerned with modelling human behaviour. The aim is to build
systems that perform the whole space of humans cognitive tasks and describe mech-
anisms’ underlying perception, thinking and action |Duch et al., 2008|. The ACT-R
architecture is organized into a set of modules, including sensory modules for visual
processing, motor modules for action, an intentional module for goals, and a declar-
ative module for long-term declarative knowledge. Each module processes different
types of information and has its own associated buffer to hold chunks of declarative
structures, taken together these buffers comprise the architecture short-term memory
|Langley et al., 2009]. ACT-R employs a top-down learning approach to adapt to the
structure of the environment [Duch et al., 2008|. Productions or chunks are matched
to perceptions and facts, mediated by activation levels of objects. There execution
is made to affect the environment or alter declarative memory. The architecture op-
erates by matching productions on perceptions and facts, mediated by the real-value
activation levels of objects, and executing them to affect the environment or alter
declarative memory. Learning in ACT-R involves creating new facts and productions,
as well as updating base activations and utilities associated with these structures. The
ACT-R architecture has been applied in intelligent tutoring systems, psychological
studies, including aspects of memory, attention, reasoning, problem solving, etc., and
to control mobile robots that interact with humans |Langley et al., 2009|.

ICARUS |Langley and Cummings, 2004], defines an integrated cognitive architec-
ture for physical agents where two distinct forms of knowledge are stored. Concepts,
containing knowledge of general classes of objects and relationships, and skills spec-
ifying knowledge about ways of doing things. The architecture includes a number
of modules: a perceptual system, a planning system, an execution system, and sev-
eral memory systems [Duch et al., 2008]. The ICARUS interpreter operates on a
recognize-act cycle. Conceptual memory directs bottom-up, percept-driven inference
with the process continuing until I[CARUS infers all deductively implied beliefs. Skill
memory controls top-down, goal-driven selection of actions, starting from a top-level
goal: it finds a path downward through the skill hierarchy when a path terminates
in a primitive skill with executable actions; the architecture applies these actions
to affect the environment |[Langley et al., 2009]. TCARUS is able to learn new con-
cepts incrementally, in an efficient way, by constructing feature trees that the system
can comprehend |[Duch et al., 2008|. ICARUS architecture has been used to develop
agents for a number of domains involving a combination of inference, execution, prob-
lem solving, and learning. Ongoing work aims to link ICARUS to physical robots that
carry out joint activities with humans |[Langley et al., 2009|.

PRODIGY [Veloso et al., 1995|, incorporates two kinds of knowledge structures,
domain rules, which encode the conditions under which actions have certain effects
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and control rules, which specify the conditions under which the architecture should
select, reject, or prefer a given operator. PRODIGY performs searches through a
problem space to achieve one or more goals, relying on means-ends analysis, select-
ing an operator that reduces differences between the current state and the goal. If
control knowledge is absent, the architecture makes a choice at random and pursues
a depth-first means-ends search with backtracking |Langley et al., 2009|. Research
in PRODIGY framework has focuses mainly on problem solving and planning is-
sues. However, PRODIGY has also formed the basis for a mobile robot with in-
terleaved planning and execution and accepted asynchronous requests from users
[Langley et al., 2009].

CLARION (Connectionist Learning with Adaptive Rule Induction ON-line), is
an integrative architecture [Sun et al., 2001], it consists of four distinct subsystems:
action-centered subsystem (ACS), non-action-centered subsystem (NCS), motivational
subsystem (MS), and metacognitive subsystem (MCS). Each of these interacting sub-
systems consists of two levels of representation. CLARION architecture incorporates
a distinction between explicit (symbolic) and implicit (sub-symbolic) processes and
captures the interactions between the two |Duch et al., 2008|. In general, for each
subsystem, the top level encodes explicit knowledge and the bottom level encodes
implicit knowledge [Sun, 2009]. The role of the ACS module is to control and regu-
late the agent actions, whether they are external physical movements or for internal
mental operations. The role of the NCS module is to maintain the general system
knowledge, either implicit or explicit. The role of the MS module is to provide un-
derlying motivations for perception, action, and cognition. The role of MCS module
is to monitor, direct and alter the operations of the other three modules. CLAR-
ION cognitive architecture has seen applications to multi-agent social simulations
[Sun, 2009).

EPIC, (Executive Process Interactive Control) [Kieras and Meyer, 1997], aims at
capturing human perceptual, cognitive and motor activities through several inter-
connected processors working in parallel, and to build models of human-computer
interaction for practical purposes |Duch et al., 2008|. The architecture encodes long-
term knowledge as production rules, and a set of perceptual (visual, auditory, tactile)
and motor processors. Research on EPIC has included a strong emphasis on achieving
quantitative fits to human behavior, especially in tasks that involve interacting with
complex devices |Langley et al., 2009].

Polyscheme |Cassimatis et al., 2004|, cognitive architecture integrates multiple
methods for representations, reasoning, and problem solving [Duch et al., 2008|. Each
representation has a specialist associated module, modelling a different aspect of the
world, it supports forward inference, subgoaling, and other basic operations, which
are matched against the shared dynamic memory with elements grounded in percep-
tion and action |Langley et al., 2009|. The architecture could be used for abstract
reasoning and also for common sense physical reasoning in robots. The PolyScheme
architecture makes a stronger semantic commitment than most other architectures:
it encodes all structures within a basic set of relations of time, space, events, identity,
causality, and belief |Langley et al., 2009|. Polyscheme architectures has been used to
model infant reasoning, including object identity, events, causality, spatial relations
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[Duch et al., 2008|.

IBCA (Integrated Biologically-based Cognitive Architecture), is a biologically in-
spired cognitive architecture |O’Reilly et al., 1998|, it imitates automatic and dis-
tributed notions of information processing in the brain. The architecture contem-
plates three modules inspired by the role of three regions in the brain, posterior
cortex (PC), frontal cortex (FC), and hippocampus (HC) [Duch et al., 2008]. The
PC module focuses on sensory-motor as well as multi-modal, hierarchical processing,
assuming overlapping, distributed localist organizations. In the FC module, work-
ing memory units are isolated from one another, contributing combinatorially, in a
non-overlapping, recurrent localist organization. The HC module utilizes a sparse,
conjunctive globalist organization, in which units contribute interactively to a given
representation. In the IBCA framework, the underlying regularities of the world and
sensory-motor activities, are captured by employing slow integrative learning, in the
PC and FC modules, that blends many individual experiences. The HC module adds
a fast learning retaining and discriminating over he individual experiences. Cooper-
ation between HC and FC/PC reflects the complementary learning paradigms in the
brain |Duch et al., 2008|.

RCS (Real-time Control System) [Albus, 1997], is a cognitive architecture, orig-
inally designed for the sensory-interactive goal-directed control of laboratory ma-
nipulators. It has evolved over three decades into real-time control architecture for
intelligent machine tools, factory automation systems, and intelligent autonomous
vehicles [Albus and Barbera, 2005|. The RCS architecture consists of a multi-layered
hierarchy of computational modules, operating in parallel, containing elements of
sensory processing (SP), examining the current state, world modelling (WM), pre-
dicting future states, value judgment (VJ), selecting among alternatives, behaviour
generation (BG), carrying out tasks, and a knowledge database (KD). The Knowl-
edge representation is heterogeneous, including frames, rules, images, and maps
|Langley et al., 2009]. At the lower levels, goal-seeking reactive behaviours are gen-
erated. At higher levels, decision making, planning, and deliberative behaviour takes
place |[Albus and Barbera, 2005|. The higher level modules influence, in a top down
manner, the lower level modules, which in turn pass information back up.

Other approaches to cognitive architectures or frameworks includes, PRS (Proce-
dural Reasoning System) [Ingrand et al., 1992|, a well know agent architecture, based
on the belief-desire-intention paradigm. PRS includes a plan library, of partially-
elaborated plans called knowledge areas, as well as explicit symbolic representa-
tions of beliefs, desires, and intentions |[Wooldridge and Jennings, 1995|. The frame-
work stores the hierarchical procedures, effects, and ordered steps that invoke sub
procedures. Among dynamic structures includes, agent belief about the environ-
ment, desired goals to achieve, and planned intentions of the agent. At each con-
trol cycle, PRS architecture decides on whether to continue executing its current
intention or to select a new intention to pursue |Langley et al., 2009]. PRS has
been evaluated in a simulation of maintenance procedures, as well as other domains
[Wooldridge and Jennings, 1995]. SULTAN (Simultaneous User Learning and TAsk
executioN) [Balaguer et al., 2011], offers a framework for an intelligent service robotic
system that can be capable of physical and cognitive collaboration. The SULTAN
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concept sets the problem in a user-task-object domain, aimed at solving the challenge
of how an agent can robustly perform a set of tasks for different users in different envi-
ronments. In SULTAN the learning process is based on hierarchical Bayesian networks
build on the base of the Bayesian approach to cognitive system |[Balaguer et al., 2011].
A model of the user is maintained by SULTAN learning module, and the representa-
tion of the physical interaction tasks is concurrently refined keeping explicit account
of user learning. The framework allows the augmentation of personal capabilities, its
main focus is the creation of a human-+robot binomial in which physical and cognitive
collaboration is achieved as a whole with potential applications for assistive robotics
|Balaguer et al., 2011]. ISAC cognitive architecture [Kawamura et al., 2008|, devel-
oped for the humanoid robot ISAC, is a multi-agents architecture, based on the IMA
|[Pack et al., 1997|. The ISAC cognitive architecture provides three control loops for
cognitive control of robots: Reactive, Routine and Deliberative. It relies on the par-
allel operation of several cognitive agents, such as a Perceptual Agent, an Action
Agent, a Self Agent, a Central Executive Agent, a Goal Agent. Also three mem-
ory components are implemented in the architecture, including: Working Memory
System (WMS), Short Term Sensory Memory (STM), Long Term Memory (LTM)
[Tan, 2012]. Work on ISAC focused on human-robot interaction and development of
cognitive control for humanoid robots |Pack et al., 1997].

Efforts in cognitive architectures have produced important advances in cognition,
reasoning and conceptual aspects of human thinking. |Levesque and Lakemeyer, 2008|
offers an overview of the challenges and efforts taken in the subject of cognitive
robotics. A comprehensive review of various different cognitive architectures, issues
and challenges, can be found in |Langley et al., 2009], many of which have seen prac-
tical use in real-world problems. To date, contributions to the development of cogni-
tive architectures for humanoid robots have been rather sparse. However, attempts
to provide cognitive processes and functionalities for a humanoid robot can be found
in the works of [Brooks et al., 1999|, |Burghart et al., 2005|, |Zoliner et al., 2005a],
|Galindo et al., 2005|, [Jung et al., 2007], [Lemaignan et al., 2010], [Choi et al., 2009],
[Kim et al., 2010], and [Tan, 2012], among others.

Further research into cognitive architectures, frameworks and cognitive models is
important to improve the control and design of the intelligent robotic agents. The
most obvious arena for improvement concerns the introduction of new capabilities,
and additional research on the structures and processes that support such capabili-
ties |[Langley et al., 2009|, which bear the wide range of human skills and cognitive
abilities. The architectures must address the issue of the agents’ physical limited re-
sources. Frameworks are needed that can encode knowledge in a variety of formalisms,
and use them with greater flexibility and more effectively to support intelligent be-
haviours [Langley et al., 2009]. Cognitive architectures need to confront the roles of
the interaction with the environment, agents’ internal drives, emotions, etc. There
is also the need for experimental methods for the thoughtful evaluation of cognitive
architectures |[Langley et al., 2009|. The development of cognitive architectures sup-
port the central goal of artificial intelligence, cognitive science and robotics: and of
building artificial systems that are as capable as human beings. The reviewed cogni-
tive architectures constitute a solid basis for building intelligent systems, since they
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Architecture Deliberative Reactive Hybrid Cognitive
Design Sense-Plan-Act Hierarchy of Low-level reactive Interconnected
Paradigm cycle coupled sense-act layers and high- structure of func-
behaviours level deliberative tional  cognitive
layers modules
Strengths -Planning of long -Improved naviga- -Combine  real- -Solid basis for
term actions. tion and obstacle time response and building  intelli-
-Break com- avoidance. adaptability of gent systems.
plex task into -Great efficiency reactive systems -Interconnected
subtasks. at run-time. with planning and models of cog-
-Can produce -Robust, simple decision making nitive abilities
optimal, domain- and computation- of deliberative support range of
independent ally tractable. approaches. skills and actions.
solutions.
Challenges -Fail to address -No long-term -Very application -Introduce  new
uncertainty. planning. dependant. capabilities.
-High  computa- -Limited applica- -Lack general de- -Address  agent
tional cost. bility. sign, methodolo- physical limited
-Poor perfor-  -Difficult to  gies. resources.
mance when debug and under- -Difficult to gen- -Experimental
frequent replan- stand  emerging eralize in varying methods to evalu-
ning. behaviour. domains. ate architectures.
Implementations STRIPS, TRMA, Subsumption ATLANTIS, SSS, Soar, ICARUS,
etc. 3T, AuRA, etc. ACT-R,EPIC, etc
Applicability Unfit to operatein  Offers limited Couple strengths Support goal
for changing environ- applicability con- of deliberative/re- for intelligent
Humanoid ments. fined to low level active paradigms. artificial systems.
Robots tasks. Lack of good the- Further research

oretical models.

is important.

Tab. 2.2: Comparison of Intelligent Architectures with their strengths, challenges
and possibilities for application in the field of humanoid robotics.
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are based on well-motivated and properly grounded cognitive research [Sun, 2009).
The desired cognitive agents must display capacities for environmentally coupled em-
bedded action: and at the same time, they must think or reason abstractly about
the world in a de-coupled manner, as argued by the theories of embodied situated
cognition.

Table summarizes the most relevant aspects and shortcomings of the intelli-
gent architecture approaches for developing humanoid robots that have been reviewed
throughout this chapter. Comparing their their design, strengths, challenges, imple-
mentations and possibilities for application in the field of humanoid robotics.

2.7 Framework for Learning and Adaptation of Skills to Task
Constraints

From everything that has been stated throughout this chapter, it becomes clear
that the envisioned humanoid robots of the future, capable of working autonomously
and serving humans, are required to have advanced motor control skills, comprehen-
sive perceptual systems, and suitable intelligence, with an intelligent agent being un-
derstood as in [Poole et al., 1998]|, as one that is flexible to changing environments and
changing goals, and one that learns from experience and makes appropriate choices,
given perceptual limitations and finite computation. The previous sections presented
a review of different approaches for developing a robot’s functional architecture that
would endow it with the capabilities for performing intelligent behaviours in the en-
vironment. Clearly this is a very challenging topic in which completely satisfactory
solutions have not yet been reached. Although great efforts and advances have been
made over the years, obtaining important contributions through the field.

When thinking about what could constitute a general typical task for a humanoid
robot operating in a domestic environment together with other human agents, let us
consider a kitchen setting and a cooperative task of setting a table for supper. The
robot would be required to pick up, place and hand different objects into different
places at different times, not necessarily following a particular order or sequence es-
tablished beforehand, and in a world being changed not only by its actions, but also
by other agents working in the same space. In this scenario, deliberative planning
approaches would be unsuitable, since they are inappropriate to operate in dynamic
changing environments. A reactive and behaviour-based approach would be limited
in its applicability, and concentrated only on low level reactive behaviours. Hybrid
approaches could be employed when designed to resolve the challenges of one particu-
lar task but a different mechanism would be necessary when the focus is on humanoid
robots presenting human level intelligence and in replicating the complex level of skills
and operations presented by humans. The agent’s architecture paradigm must con-
centrate on the development of intelligent thinking at the system internal processing,
centred on an organization of intelligence in terms of the configuration and inter-
action of cognitive modules. Research in cognitive architectures constitutes a solid
basis for building intelligent systems, but even though some attempts on the field
have been made for providing cognitive processes for humanoid robots, there are no
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fully developed cognitive architectures capable of endowing robots with the necessary
functional intelligence readily available.

[Albus, 1991] proposed a multi-layered hierarchical system architecture, where
different levels of intelligence in the hierarchy can be achieved, depending on the
computational power of the system and the sophistication of its processing algorithms.
A minimal level of intelligence requires at least the ability to sense the environment,
make decisions and take actions. Higher levels of intelligence may include the ability
to recognize objects and events, to represent knowledge in a world model, and to
reason about and plan for the future. More elevated forms of intelligence provide the
capacity to perceive and understand, to choose wisely, and to act successfully under
a large variety of circumstances.

The current humanoid robots may only be around the minimum and mid-levels
of intelligence. Even if perhaps the ultimate levels of intelligence could turn out to
be out of reach, and creating robots that replicate the total scope of human intelli-
gence may prove impossible, it is necessary for future humanoid robots to achieve a
sufficiently high level in the hierarchy. A cognitive framework for humanoid robots
needs to provide a minimum degree of intelligent behaviour; this is the ability to sense
the environment, learn, and adapt its actions to perform successfully under a set of
circumstances.

The reference model architecture |[Albus and Barbera, 2005|, |[Albus, 1991], iden-
tifies five elemental systems contained in each layer, such as, sensory processing, world
modelling, behaviour generation, value judgement and knowledge, interconnected in a
way that enables the various system elements to interact and communicate with each
other in intimate and sophisticated ways. Research efforts must focus on building the
necessary modules of cognition that would form the layers in this hierarchy and allow
for assembling the levels of intelligence.

Humanoid robot agents to be successfully used for working alongside human part-
ners would need to address important challenges such as high level understanding,
engaging interactions and quick adaptations to environmental dynamical changes
[Stoytchev and Arkin, 2001]. The ability to self-adapt and learn from experience
is a major concern. In order to have humanoid robots acting fluently in the world,
interacting with different objects and people, they must be able to learn and adapt
their motor control to dynamic changes in their interaction with the world, that is,
robot systems must be continuously self-adapting [Brooks, 1996].

It becomes apparent that humanoid robots must be provided with systems that
allow them to continuously learn new skills and adapt their existing skills to new
contexts, as well as to robustly reproduce new behaviours in a dynamical environment
in order to cope with working in continuously changing environments and performing
an unlimited variability of tasks.

Motivated by the design of multi-layered reference model architectures, in the
spirit of [Albus, 1991], and influenced by the ideas of the Dynamical System approach
to embodied cognition, as promoted by the works of |van Gelder and Port, 1995|,
|Clark and Grush, 1999, |Clark, 2004], |[Beer, 2000], and in the Learning from Demon-
stration approaches for encoding complex motions as Dynamical Systems, first intro-
duced by |[jspeert et al., 2001|, [Ljspeert et al., 2002|, representing movement plans
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Fig. 2.6: Proposed framework of a cognitive model for the learning and adaptation
of robot skills to task constraints. A knowledge base (2) is built with
the models of the robot skills learned through demonstrations (1). The
constraints of a requested task are extracted from the perception of the
world state. With the current task constraints and the models of a skill
retrieved from the knowledge base an adapted task model (3) is generated
for reproduction (4).

as mixtures of non-linear differential equations with well-defined attractor dynamics,
in this work a framework is proposed for a cognitive module for the generation and
adaptation of learned models of robot skills for complying with task constraints.

We follow a view which claims that models of cognition must be embodied pro-
cesses capturing the unfolding of cognition in time, mindful of the associated sensory
and motor surfaces embedded in the environment in which cognitive phenomena takes
place |Schoner, 2008]. And that systems’ internal representations may be modelled
not as simple inner states but as dynamical patterns of just about any conceivable
kind [Clark, 2004]. Here, thought can be described by variables governed by a set of
non-linear differential equations and an agent behaviour can be generated from the
complex dynamical evolution of stable states and their instabilities in a non-linear
dynamical system [Schoner, 2008|.

For the rest of this work, and throughout the following chapters, a framework
for the generation and adaptation of learned skills to task constraints is presented,
developed, implemented and validated. Figure2Z.@illustrates our proposed framework.
The main purpose of the framework is to provide the humanoid robot with a basic
level of intelligence, namely, the ability to sense the environment, learn and adapt
its actions to perform successfully under a set of circumstances. In the developed
framework a knowledge base of skills is built with the models of the skills learned
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through demonstrations. During execution the constraints of a requested task are
extracted from the perceptual system from the working environment and the models
of an appropriate skill are retrieved from the skills knowledge base. With all available
information a new adapted task model is generated for reproduction.

The framework provides humanoid robots with systems that allow them to con-
tinuously learn new skills, represent their skills’ knowledge, and adapt their existing
skills to new contexts, as well as to robustly reproduce new behaviours in a dynamical
environment. The proposed framework is formed by 4 fundamental modules:

1. Module for the learning of robot skills.

2. Module for the management and representation of robot skill knowledge.
3. Module for the generation and adaptation of robot skill models.

4. Module for the reproduction of robot skills.

The robot skill learning module collects the learning processes and algorithms used
for learning and encoding the models of the skills. The robot skill knowledge module
controls the developed knowledge base. The robot skill generation and adaptation
module governs the process by which the learned model of a skill can be operated to
reproduce a new task. The robot skill reproduction module produces the adequate
control signals to the robot for the reproduction of those skills. Additionally, a per-
ception and interaction module is in charge of processing the outside information of
the robot’s working environment to use in the other modules. The following chapters
will describe in more detail the modules for learning the robot skills models, rep-
resenting the robot skills knowledge, generating and adapting robot skills, and the
reproduction of the robot skills.

The ultimate goal for a humanoid robot would require them to present full level
cognitive and intelligent architectures, yet current developments are not yet even near
close to these capacities. The cognitive architecture archetype could, eventually, very
well be the most suitable approach for building the humanoid robots’ intelligence
capabilities. However, a majority of current cognitive approaches focus more on
solving intelligence as an abstract reasoning process and do not take into account
the physically embedded aspects of cognition and the particular challenges humanoid
robotics represents. Furthermore, fully developed cognitive architectures with the
capabilities for endowing robots with the needed functional intelligence are not readily
available. Therefore we begin our approach by trying to attain a basic functional level
of intelligence allowing a robot the ability to sense the environment, learn, and adapt
its actions to perform successfully under a set of circumstances. The framework
developed in this work was proposed as a cognitive model intended to provide the
robot with an essential cognitive ability for learning and adaptation of skills. Our
framework can be thought of as one module level in the hierarchy of a more complex
architecture, or as a first stepping stone upon which to incrementally build more
complex cognitive processes.
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2.8 Summary of the Chapter

Throughout this chapter a review of the developments and challenges in humanoid
robotics research has been presented along with different proposals for intelligent
agent architectures for robotic systems. Table 2.I] summarizes the major histori-
cal developments in humanoid robotics research. Section discussed the issues
emerging for humanoid robot developments and for motor control, perception, inter-
action and intelligent behaviour. Much work remains to be done in order to improve
the capabilities of humanoid robots for locomotion, perception, interaction, cognitive
behaviour and competence at performing tasks. Humanoid robots must present in-
telligent, natural, predictable and reasonable behaviours. Different approaches were
reviewed in planner based, behaviour based, hybrid, and cognitive architectures for
intelligent robots. Section 23] presents a review of approaches to robot planner-based
architectures. They follow the Sense-Plan-Act cycle, intelligence resides on a cen-
tral planner that produces appropriate plans of action for the robot reproduction.
Section 2.4] presents a review of approaches to robot behaviour-based architectures.
They present direct coupling between perception and action. Intelligence emerges as
a result of an embodied agent interaction with the environment. Section presents
a review of approaches to robot hybrid deliberative/reactive architectures. They at-
tempt to use the advantageous aspects of both the behaviour-based and the planner-
based approaches. Section presents a review of approaches to robot cognitive
architectures. Planning approaches are unfit to operate in changing environments,
as would be required of humanoid robots. Behaviour-based approaches are limited
in their applicability to low-level behaviours and they would not be suitable to deal
with the complexities of behaviours present in humanoid robots. Hybrid approaches
combine the strengths of deliberative and reactive approaches and can be readily
employed as the system architecture for several robotic platforms, but they tend to
be very specific and application dependent; also, the lack of good theoretical models
makes generalization and reproduction of their results difficult for varying domains.
Research in cognitive architectures constitute a solid basis for building intelligent
systems, but even though some attempts in the field have been made for providing
cognitive process for humanoid robots, there are no fully developed, cognitive archi-
tectures capable of endowing robots with the needed functional intelligence readily
available. Cognitive approaches are centred on the mechanism that allows for the
generation of thought and the interior workings of cognition. This calls for an orga-
nization of intelligence in terms of cognitive models. Table summarizes the most
relevant aspects and shortcomings of the intelligent architecture approaches for de-
veloping humanoid robots that have been reviewed throughout this chapter. Section
2.7 presents the proposed framework, followed in the rest of this work, of a cogni-
tive model for learning and adaptation of skills to task constraints. Our approach
attempts to attain a basic functional level of intelligence, allowing a robot the ability
to sense the environment and learn and adapt its actions. The framework provides
humanoid robots with systems that allow them to continuously learn new skills, rep-
resent, their skills’ knowledge and adapt their existing skills to new contexts, as well
as to robustly reproduce new behaviours in a dynamical environment.
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3. LEARNING ROBOT SKILLS MODELS
FROM DEMONSTRATIONS.

3.1 Outline of the Chapter

This chapter presents the methodology followed in this work for learning models
of robot skills. Robots working alongside humans means there will be continuously
changing environments and a huge variability of tasks that the robot is expected
to perform: thus, the robot should have the ability to continuously learn new skills
and adapt the existing skills to new contexts. An important part of the framework
proposed in the previous chapter, and developed through this work, is the learning of
robot skills. Figure Bl shows the framework proposed throughout this work for the
learning and adaptation of robot skills to comply with task constraints, highlighting
the module for learning the robot skills discussed in this chapter. Learning from
Demonstration (LfD), also known as Robot Programming by Demonstration (RPbD)
or Imitation Learning, has appeared as a major trend for developing intuitive control
methods. This chapter presents important concepts in LfD and the most relevant
developments in demonstration learning approaches. It also describes the learning
process and algorithms used for learning and encoding the models of the skills. Finally,
the results of the teaching and learning process for various different robot skills are
presented. The organization of this chapter is as follows:

e Section 3.2, presents the basic notions, and a review of the field, of Learning
from Demonstration (LfD).

e Section B3] presents a review of methodologies for teaching and building the
demonstration datasets for learning. This include kinaesthetic teaching, visual
demonstrations, motion capturing systems to record demonstrations and, gen-
erating robot trajectories with virtual reality or simulated environments.

e Section B.4] presents the framework employed through this work to learn robot
skill motions from demonstrations. The approach is based on learning time
independent models of the motion dynamics estimated through a set of first
order non-linear multivariate dynamical systems.

e Section 3.0l presents a review of the methodologies used for the encoding of the
models of the motion dynamics for learning robot skills.

e Section 3.0 presents a review of the methodologies used for the reproduction
of the learned motion dynamics of robot skills.
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Fig. 3.1: Learning models of robot skills module, highlighted over the proposed cog-
nitive framework for learning and adaptation of robot skills in compliance
with task constraints. To learn a robot skill, models of the motion dynamics
are built from various human demonstrations of the skill. Robot replicates
a skill by reproducing the model of the demonstrated skill motion.

e Section B.7 discusses approaches for using the learned robot skills as basic
primitives of movement.

3.2 Learning from Demonstration

Previously in section 2.2], the challenges of developing humanoid robots were dis-
cussed. When trying to develop the next generation humanoid robots, with the
capabilities to collaborate and interact together with humans and, sharing the same
space, tools, and activities with them, there are many important issues that arise
and which motivate the field’s research directions. Finding suitable solutions to the
challenges in system design, appropriate materials, power supply, processing capac-
ities, motor control and sensory perception is a fundamental goal. However, even if
it would be possible to have access to an ideal robotic system with every desirable
property, the successful operation of a humanoid robot would not be possible without
developing proper control mechanisms. The control algorithms traditionally available
are not nearly versatile, robust or flexible enough to achieve the level of complexity
of the biological systems which are to be emulated. Missing are the abilities to deal
with large movement repertoires, variable speeds, constraints and uncertainty in the
real-world environment in a fast, reactive manner |Peters et al., 2003|. Most current
robotic systems can only solve tasks after the task has been carefully analysed and

added to the robot program by a human [Schaal, 1999]. This requires an impressive
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amount of work, research and time, and it is very inefficient when it is needed to
develop a broad set of behaviours. The classical robotics approach relies heavily on
teleoperation or fixed “pre-canned” behavior based control with very little autonomous
ability to react to the environment |Peters et al., 2003|. There are many approaches
that rely on the teleoperation control of humanoid robots |[Hasunuma et al., 2006],
[Pierro et al., 2009|, [Glassmire et al., 2004], [Neo et al., 2007], [Stilman et al., 2008],
|[Evrard et al., 2009|. A teleoperation system for the control of a humanoid robot can
present advantages, like versatility, provided by the human operator when dealing
with various tasks and environments. Yet several challenges arise in humanoid robot
teleoperation, from the control of the many DOF of humanoid robots, satisfying both
severe balance constraints and the geometrical and dynamical differences between hu-
manoid robots and humans, in addition to the regular issues presented in teleoperated
systems [Chen et al., 2007], such as, limited FOV, degraded perception, time delay,
user interface, operator cognitive load, etc. As useful as teleoperation control can be
for certain humanoid robot missions, to benefit from the full potential of humanoid
robots control architectures cannot rely only on teleoperation since humanoid robots
are also expected to perform their tasks in an autonomous way. In order to overcome
the need for teleoperation and manual “hard-coding” of every behaviour, a learning
approach is required [Schaal, 1999).

Robot learning covers a large field, encompassing learning to perceive, control,
to plan and, make decisions, etc. [Schaal and Atkeson, 2010]. Machine learning al-
gorithms have been extensively developed in the last couple of decades. Machine
learning techniques present wide application at several levels of robot planning and
control [Miinch et al., 1994], offering solutions in computer vision, object recognition,
grasp planning, robot motion, pattern recognition, language processing, etc. Robotic
systems, of the characteristics of the humanoid robots we want to develop, need to be
able to learn, and adapt to uncertainty and unforeseen changes in their dynamic envi-
ronments. Focus on this work will center on topics of learning control, in particular of
robot learning of motion trajectories and skills. Learning control refers to the process
of acquiring a control strategy, at the core of this is the problem of learning a mapping
between world states and actions. This mapping, or policy, enables a robot to select
an action based upon its current world state |[Argall et al., 2009]. The goal for a robot
learner is to generalize from its experience [Bishop, 20006|, to find appropriate control
policies to accomplish a given movement task. The traditional approaches to robot
control of modelling dynamics and deriving mathematically-based policies is most of-
ten a challenging task and heavily dependent upon the accuracy of the world model.
As a result, machine learning techniques have been applied to policy development
|Argall et al., 2009|. Robot learning can be classified, from the viewpoint of machine
learning, as supervised learning, reinforcement learning, learning modularizations or
learning feature representations that subserve learning |Schaal and Atkeson, 2010].

Robot Programming by Demonstration (RPbD) |Billard et al., 2008|, appeared as
a promising route to automate the tedious manual programming of robots and as
a way to reduce the costs involved in the development and maintenance of robots
in a factory. Moving from purely preprogrammed robots towards flexible interfaces
for training robot tasks follows a three-fold motivation. RPbD or LfD is a powerful
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mechanism for reducing the complexity of search spaces for learning. It offers an
implicit and natural means of interacting and teaching a machine. It also helps to
understand the coupling mechanism of perception and action |Billard et al., 2008].

Acquiring efficient motor learning, exploring the connection between action and
perception and modular development of motor control in the form of movement prim-
itives, are three issues at the core of Imitation Learning [Schaal, 1999]. The Imitation
Learning approaches focus on the development of algorithms that are generic in their
representation of the skills and in the way they are generated. Implementing LfD
methods offers the possibility of making learning faster, in contrast to tedious rein-
forcement learning methods or trial-and-error learning. LfD formulates user-friendly
methods by which a human user can teach a robot how to accomplish a given task,
simply by demonstrating this task |Gribovskaya et al., 2010|, and generalizing the
demonstrated movements across a set of demonstrations. Due to the intuitive nature
of the demonstrations, LfD algorithms have the potential of making robots accessible
for everyday users, not requiring extensive programming experience but rather the
ability to provide demonstrations of the chosen behaviours [Argall et al., 2009].

A most important question here is what is it that should be learned? The major
goal of learning control is acquiring a task-dependent control policy 7 that maps a
continuous-valued state vector x of a controlled system and its environment, to a
continuous-valued control vector u. The motor control learning is thus centred on
finding the generally non-linear function 7 that is adequate for a desired behaviour
[Schaal and Atkeson, 2010].

As mentioned above, the machine learning approaches for policy development
can be mainly divided between unsupervised learning, supervised learning and rein-
forcement learning. Unsupervised learning refers to the problem of finding hidden
structures in data. No reward or error signal exists to evaluate a potential solution
since the examples given to the learner are unlabelled.

Reinforcement learning in robotics offers one of the most general frameworks to-
wards true autonomy and versatility |Peters et al., 2003|. The reinforcement learning
approach should enable humanoid robots to autonomously learn motor skills from in-
teraction with the environment, and given only a relatively unspecific feedback on the
quality of completing the task. However, in practice, applying reinforcement learning
to humanoid robots poses several challenges [Stulp et al., 2010|. The state and action
spaces are continuous, the learning problems are high-dimensional thanks to the large
number of DOF in humanoid robots. Exploration in high-dimensional spaces is costly
and time consuming, and it is difficult to acquire an accurate model of the robot and
its interaction with the environment. The greedy policy improvement algorithms are
likely to fail to scale to the high dimensional systems as their large changes in the
policy during learning makes stable algorithms, so far, infeasible. The policy gradient
methods are promising techniques in terms of scaling to high dimensional continuous
control systems, and have been applied in humanoid robotics for both walking and
fine manipulation |Peters et al., 2003|.

In Supervised Learning the agent is presented with labelled training data and
learns an approximation to the function that generated such data. LfD can be seen
as a subset of Supervised Learning |Argall et al., 2009|. In the scope of LfD, the
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ll Demonstrations Model of the skillH Reproduction

Fig. 3.2: Generalization of a skill by extracting the statistical model across multiple
observations. Adapted from |Billard et al., 2008]

training dataset is composed of example executions of the task by a demonstration
teacher. As LfD it is understood the general category of algorithms in which a policy
is derived based on demonstrated data. A probabilistic transition function defines the
mapping between the world states S and actions A, S x A x S — [0, 1]. The learner
has only access to observed states Z, since state S is not fully observable, through
the mapping U : S — Z. A policy selects from the set A of actions, containing
low-level motions to high-level behaviours, based on observations of the world state
|Argall et al., 2009].

To reproduce a skill in a new situation, the robot cannot simply copy an observed
behaviour; it must have the capability to generalize |Calinon, 2009]. A common ap-
proach for generalizing a skill consists of creating a model of the skill based on several
demonstrations, performed in slightly different conditions. The goal is to exploit
the variability inherent to the various demonstrations and to extract the essential
components of the task. Figure illustrate this process.

LfD covers methods by which a robot learns new skills through human guidance.
Common to all these approaches is the presence of a teacher, providing examples
for the execution of a desired behaviour, and a learner, provided with a set of these
demonstrations and deriving a policy from such examples capable of reproducing the
demonstrated behaviour. Distinctions among LfD methods can be made based on
their choice of demonstration approach: the choice of demonstrator or demonstra-
tion technique, the choice of state action representation, either discrete or continuous
representation and the selection of an algorithm for generating the policy. The deter-
mination of these decisions can greatly be influenced by factors such as the general do-
main, task complexity and robot capabilities, and developers preference. Within LfD,
the learning problem is thus segmented into two phases: gathering the examples and
deriving a policy from such examples [Argall et al., 2009|. In LfD a popular method
employs a probabilistic framework gathering information from cross-situational obser-
vations of a skill with information extracted from different social cues observed during
the interaction |[Calinon and Billard, 2008|. A key concept at the bottom of these ap-
proaches is that of determining a metric of imitation performance. First it must be
determined the metric, weights of the function for the reproduction of each of the
components of the skill. Then it is possible to find an optimal controller for imitation
by minimizing the metric. Relevant problems to address in these approaches are, the
problem of extracting the relevant features of a given task, the problem of evaluating
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how the task should be reproduced and the problem of finding optimum controllers
to generalize the acquired knowledge of various contexts |Calinon et al., 2007].

The demonstrated behaviours can be used to learn the appropriate control pol-
icy directly by supervised learning. In these methods, called “task-level imitation”
[Schaal, 1999], a serious constraint is imposed on the need for the state and action
of the teacher to be observable and identifiable. Therefore, a coordinate frame based
on variables that can be perceived would be needed to define a movement primitive.
Prior knowledge of how a task-level command can be converted into an actuator-level
command is required. For this purpose, motor control needs to be modular, assuming
at least separate processes for movement planning and execution. A second approach
to learning novel behaviours is based on building policies out of the demonstrated
trajectories. This process results in data about the movement of the manipulated
object in Cartesian coordinates, as well as the movement of the actuator in terms
of joint angle coordinates. Knowledge of the task goal is manually provided in the
form of an optimization criterion. Based on this knowledge, the robot’s performance
improves by trial and error learning until the task is accomplished [Schaal, 1999]. A
third method employs model-based learning from the demonstrated behaviours to
learn a novel primitive; the dynamics of the task are approximated in the form of
a predictive forward model. Given knowledge of the task goal, the task-level policy
of the movement primitive can be computed with reinforcement learning procedures
based on the learned model [Schaal, 1999.

Research within LfD has seen the development of three core approaches to pol-
icy derivation from demonstration data: a mapping function approach consisting of
learning an approximation to the state-action mapping; A system model approach
based on learning a model of the world dynamics and deriving a policy from this
information. An alternately is planning approaches where a sequence of actions can
be produced by a planner after learning a model of action pre and post-conditions
|Argall et al., 2009]. The mapping function approach to policy learning calculates
a function that approximates the state to action mapping, f() : Z — A, for the
demonstrated behaviour. These types of algorithms aim to reproduce the underlying
teacher policy and to generalize over the set of available training examples. The goal
is to acquire valid solutions for similar states that may not have been encountered
during demonstration [Argall et al., 2009]. The system model approach to LfD pol-
icy learning derives a policy 7 : Z — A using a state transition model, T'(s|s, a),
of the world. The transition function, 7'(s'|s,a), is generally determined from the
demonstration data and any additional autonomous exploration the robot may do
|Argall et al., 2009|. In the planning framework, the policy is represented as a se-
quence of actions that lead from the initial state to the final goal state. Actions are
often defined in terms of the state that must be established before the action can be
performed, pre-conditions, and the state resulting from the actions’ execution, post-
conditions. Demonstration-based algorithms differ in how the rules associating pre
and post-conditions with actions are learned, and whether additional information is
provided by the teacher [Argall et al., 2009].

The most important issues in the field of Imitation Learning are categorized under
the broad spectrum of four major questions, namely, the set of generic questions what
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to imitate, how to imitate, when to imitate and who to imitate |Billard et al., 2008].
A fifth central question on research on Imitation Learning relates to how to evaluate a
successful imitation attempt [Alissandrakis et al., 2002b|. Intense research has been
made into solving these questions, focused mainly on technical approaches to answer-
ing the what to imitate and how to imitate questions. What to imitate is related to the
general problem of ‘what to learn of a skill’. There are several aspects of a behaviour
that could be imitated. An agent must be able to extract the relevant features of a
given task from the ‘cues’ and constraints that define the ‘skill’ to imitate. An agent
is required to build the structure of the knowledge transferred, choosing between two
different kinds of imitation, copying the organizational structure of the behaviour
versus copying the surface form of the behaviour |Alissandrakis et al., 2002b|. How
to imitate considers the problem of ‘how to encode a skill’, the problem of evaluating
how the task should be reproduced and the problem of finding the optimum con-
troller with which to generalize the acquired knowledge |Calinon et al., 2007|. The
learning algorithm must provide means from which to learn the encoding of relevant
knowledge of the ‘skill’ to build models appropriated for reproduction. Agents must
employ the appropriate mechanisms to learn and reproduce necessary imitating ac-
tions |Alissandrakis et al., 2002b|. The when to imitate and who to imitate questions
are strongly related to the social interaction between the imitator and the imitated,
these questions have been less explored. When to imitate question refers to the prob-
lem of ‘when it is fit to reproduce a skill’. Agents need to learn to recognize from
social and environmental ‘cues’ when a learned imitation ‘skill’ is to be used. The
imitating agents have to segment the demonstrator behaviour and have to decide on a
suitable time and place for imitation, based on the appropriateness of previous or cur-
rent observed behaviour in their current context [Alissandrakis et al., 2002b]. Who to
imitate covers the problem of ‘observing from whom to learn a skill’. An agent must
recognize from social ‘cues’ and interaction imitation demonstrations provided from
other agents, and evaluate their usefulness as an appropriate behaviours to imitate.
The agent must choose its demonstrator in order to engage in imitation, produce an
imitated behaviour that is beneficial, and at the same time, not to imitate agents
whose tasks and needs are not relevant to the imitator |Alissandrakis et al., 2002b|.
The question of how to evaluate an imitation attempt refers to the need to find proper
measures to evaluate behavioural matching |Alissandrakis et al., 2002b|. Determin-
ing a metric of imitation performance is very important. It must be determine the
metric, weights of the function for the reproduction of each of the components of the
‘skill” |Calinon and Billard, 2008|. The above questions and their solutions aim at
being generic in the sense of making no assumptions about the type of skills that may
be transmitted |Billard et al., 2008|.

Once all the features and relevant knowledge of a given task have been extracted
from a set of suitable teacher’s demonstrations, the most fundamental issues becomes
how such information should be converted into actions; this concerns the How to
imitate question above. For this purpose the concept of movement primitives, also
called movement schemas, or units of actions, is proclaimed. Movement primitives are
sequences of action that accomplish a complete goal-directed behaviour [Schaal, 1999).

A movement primitive can have different forms of representation. Two major trends
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can be identified for the generalization of these task representations: a trajectory
level and a symbolic level representation. A task at a trajectory level is described by
temporally continuous signals representing different configuration properties changing
over time. A task at a symbolic level is described by the sequential or hierarchical
organization of a discrete set of primitives that are pre-determined or extracted with
pre-defined rules |Calinon, 2009].

RPbD or LfD contribute to major advances in robot learning, and advance the
development of robust controllers for service, personal, and humanoid robots. LfD is
an intuitive communication medium for human teachers and enables the development
of control algorithms to non-robotics experts. For a complete review on the field see
|Billard et al., 2008|. It also, offers solutions to certain weaknesses in traditional
approaches and complements traditional policy learning techniques. LfD has been
successfully applied to many robotic applications. The field has seen very active
research, as exemplified in the works of [Kober and Peters, 2010|, [Schaal et al., 2007],
ILjspeert et al., 2009|, |Gribovskaya et al., 2010|, among others.

Research into RPbD or LfD has seen important developments in many areas, yet
some issues have received limited attention, these issues include, sufficient availability
of state features to adequately describe the task and to allow its learning, the encod-
ing of temporary information and event memory into the demonstration sequence;
also recovery operations in the event of encountering failures in policy derivation or
execution, the ability to continuously learn from its experience, the application of
LfD in multi-robot settings, the development of standardized evaluation metrics, etc.
[Argall et al., 2009]. Certain outstanding questions remain to be addressed, such as,
how can appropriate movement representation be developed in an automated fash-
ion? How can new primitives be learned, and old primitives be combined to form
higher level movement primitives? How can sequencing and recognition of sequences
of movement primitives be accomplished? Are the mechanisms for movement gener-
ation also directly employed for movement recognition? How can the demonstrated
movement intentions be recognized? And how can they be converted to the imitator’s

goal? [Schaal, 1999].

3.3 Providing Demonstrations of a Skill

A LfD framework has many favourable features, as stated in the previous sec-
tion; one such very attractive feature for the development of a demonstration ap-
proach is that of an intuitive medium for communication from humans who already
use demonstration to teach other humans [Argall et al., 2009|. Providing demonstra-
tions to a humanoid robot agent offers a familiar and instinctive way for non-expert
users to communicate and program the robot behaviours. The Imitation Learning
approach allows for a well-known mechanism, regularly employed for teaching and
learning the performance of tasks among the general public, to be easily used to
naturally interact with a robot. LfD provides an implicit means to facilitate learn-
ing for humanoid robots. Demonstrations also have the practical feature of focusing
the dataset to areas of the state-space actually encountered during task execution




3.3. Providing Demonstrations of a Skill 71

|Argall et al., 2009|. The LfD or RPbD paradigm to learning control has at its core
the goal of enabling robots to perform new task autonomously, focused on building ap-
propriate robot control policies derived from observations of a human demonstration
performance. Within LfD, the learning problem is thus segmented into two phases:
gathering the demonstration examples and deriving a policy from such examples
|Argall et al., 2009|. In this section, various techniques for executing and recording
demonstrations are discussed.

The first approaches to Imitation Learning, adopted for manipulator robotics,
chose to rely on symbolic reasoning |Billard et al., 2008|. Due to reduced compu-
tational power demonstrations consisted of manually pushing the robot through a
movement sequence [Schaal et al., 2003, divided into subgoals and into appropriate
primitive actions, commonly chosen to be simple point-to-point movements. The
demonstrated tasks were segmented into sequence of state-action-state transitions,
and from them ’if-then’ rules were extracted, describing the states and actions accord-
ing to symbolic relationships [Billard et al., 2008]. The field moved gradually from
copying movements to generalizing over sets of demonstrations. |[Miinch et al., 1994
suggested using machine learning to recognize Elementary Operators, defining dis-
crete sets of basic motor skills, learning tasks by generalizing over a sequence of
discrete actions. However, this was only one part of the problem and learning con-
tinuous trajectories to control actuators were also required |Billard et al., 2008]. As
machine learning, robotic and sensor systems have experienced advances in their
respective fields. Imitation Learning has been influenced by non-symbolic learning
tools, including, artificial neural networks, radial-basis function networks, fuzzy logic,
statistical learning, etc. |[Schaal et al., 2003|. More recent trends take inspirations on
processes of animal imitation, taking into account evidence of neural-mechanism for
visuo-motor imitation in primates, and developmental stages of imitation capacities
in children |Billard et al., 2008|. In essence current works follow mostly a conceptual
approach, very similar to that of early approaches, as recent progress has mainly
affected only the interfaces to support teaching. New elements include the use of
computer vision, data gloves, laser range finder, kinaesthetic teaching, marker-based
observation systems, etc. [Schaal et al., 2003|.

An LfD dataset is composed from the state-action pairs recorded during teacher
execution of demonstrated behaviours. A majority of work on LfD makes use of
humans demonstrations, while some techniques explore the use of robotic teachers,
hand-written control policies and simulated patterns [Argall et al., 2009]. An im-
portant matter for a demonstration approach to be successful is that states and
actions provided by the learning dataset be usable by the robot, by constraining the
demonstrations modality the robot can understand and providing sufficient exam-
ples to achieve desired generality |Billard et al., 2008]. Demonstrations are defined
as recorded trajectories in the teacher’s state space, with identifiable start and end
points and proceeding through a finite number of steps. For a well formed set of
demonstrations the teacher must convene to the learner all necessary information of
the task space to fully generalize the demonstrated knowledge of a task. The defi-
nition outlined above aimed at being general and makes no assumptions about the
type of trajectories or task that are demonstrated, what and how the variables are
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recorded, what platform is use during execution, and what types of representations
are employed. The choice of demonstrator and the demonstration technique are two
key decisions when gathering teacher demonstrations |Argall et al., 2009|. Choosing
a demonstrator is additionally decomposed into the controller of the demonstrator
and the executer of the demonstration. Choosing a demonstration technique further
refers to strategies for providing the data to the learner and the selection of algorithms
for deriving a policy.

The major focus in RPbD or LfD works is in the selection and development of
algorithms for policy derivation. Yet studying the learning process, the flowing of in-
formation from teacher to robot learner, is also important. In choosing demonstration
technique strategies for the learning process and for providing data for the learning
mechanism are selected. Options include batch learning, self-improvement and inter-
active approaches. For batch learning, the demonstrations are sampled beforehand,
either because collecting the data is difficult or processing it is too time consuming
and it is more practical to collect the data all at once. In batch learning the pol-
icy is learned only after all data has been gathered |Argall et al., 2009|. Teachers’
demonstrations must cover the behaviour sufficiently to ensure adequate generaliza-
tion. For self-improvement learning, demonstrated data is also collected at the onset
of the learning approach; it is separated from batch learning in that self-improvement
involves generating new samples from the learning of the original demonstrations
which in turn are used to drive the improvement of the policy itself. For interactive
learning approaches, the learning process is also iterative, learning must be quicker
and demonstration easier to acquire compared to batch learning approaches. In in-
teractive learning, the policy can be updated incrementally as learning data is made
available [Argall et al., 2009]. Interactive learning allows teachers to provide addi-
tional demonstration to target observed errors in the robot’s reproduction.

Another important choice is selecting the information to record from the demon-
stration examples. Recorded sensory information must be parsed into knowledge
about objects and their spacial location in a coordinate system whether internal or
external. Some information should become available on the posture of the teacher
and /or positions of objects, if any are involved, while moving [Schaal et al., 2003].
Afterwards, this information needs to be converted into action. Common approaches
create model of the skill based on sets of demonstrations performed in slightly dif-
ferent conditions generalizing overt the inherent variability to extract the essential
components of the skill |[Billard et al., 2008].

The knowledge of the task, extracted from demonstrations of the states and actions
in the teacher’s dataset, must be relevant and usable to the learner for a successful
Imitation Learning approach. In an ideal set-up, states and actions of the teacher
execution would map directly to the learner’s embodiment. However, in practice, a
direct mapping is generally not possible, as it is most likely to find that the learner
and the teacher will differ in their sensing and mechanical systems and capacities
[Argall et al., 2009]. In nature, even two humans or animals of the same species
in spite of their morphological similarities would still present dissimilar mappings as
their height, weight, muscle build, stamina and so on, would differ between them. For
humanoid robots learning from a human teacher, even though an attempt is made at
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replicating its functionalities, a direct mapping would not be possible as they don’t act
in the environment in the same manner. Even when dealing with a robot teacher and
learner, including robots of identical types, dissimilar mappings are likely to occur due
to differences in their respective sensory-motor characteristics. The challenges which
arise from these differences are broadly referred to as the Correspondence Problem
[Nehaniv et al., 199§|.

In order to match reproduction of an observed behaviour in a copying, imitation
or mimicry approach, it is important that a suitable correspondence is established. To
achieve a behavioural match a correspondence must explicitly or implicitly be present
|[Nehaniv et al., 1998|. Different correspondences could be required depending on the
type of task to imitate, whether it is desired to match individual actions or global
goals, or how teacher and learner sensory-motor characteristics differ from each other.

The Correspondence Problem is circumscribed to determining partial correspon-
dence between states and events for the imitator and those of the model to imitate, and
to search for an appropriate relational morphism ensuring a sufficient degree of corre-
spondence between them for imitation to be possible [Nehaniv and Dautenhahn, 2001].
As outlined above, dealing with issues of correspondence is important since exact
copying of behaviours, even when there is similar embodiment, is almost never possi-
ble [Nehaniv et al., 199§|. Solving these discrepancies in sensory-motor capabilities of
agents is a problem related to the how to imitate question. It is important to note that
correspondence need not be a one-to-one mapping, it can take many forms; also suc-
cessful imitation does not necessarily involve a fixed mapping correspondence, a par-
tial mapping could also be an useful correspondence [Nehaniv and Dautenhahn, 2001].
Simple one-to-one correspondence cannot exist between the joints of two agents with
a different number of DOF, as often would be the case among robots. A robot may,
however, still imitate a human successfully, e.g. in a waving task, without requiring
that it has the same number and type of joints as the human whose behaviour it
emulates using a particular correspondence |[Nehaniv et al., 1998|. Humans and hu-
manoid robots, although interacting in the same environment and using the same
objects, would still perceive and act in the world in very different ways due to their
difference in structure, form, DOF, sensors, and abilities. Correspondence, neverthe-
less, can still be found regarding to two different dimensions, a perceptual equivalence,
dealing with the differences in which the agents can perceive the world, and a physical
equivalence dealing with the differences in which the agents can perform the task in
the world.

According to |[Nehaniv and Dautenhahn, 2001|, for a behaviour to be called imi-
tation, a correspondence of perception, both exteroceptive and proprioceptive, must
exist between model and follower. While correspondence in form, structure, dynamics
of actions and behavioural repertoire are also very important aspects, a correspond-
ing perception of a shared context between the model and imitator is a fundamen-
tal requirement for imitation. This shared context can be fixed, whether designed
by nature or artificially engineered, accidental, opportunistic, or actively established
INehaniv et al., 1998|. With an insufficient perceptual correspondence, an agent could
still be able to follow or mimic another agent’s behaviour; however, the agent cannot
perform the behaviour alone; unless it has perceptions correlating to those of the
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model, no true imitation of that particular behaviour can take place.

It is possible to distinguish with respect to how the events of an imitator ‘corre-
spond’ to the distinct types of imitation of the imitatee: action-level imitation, where
the imitator is set to carry out actions exactly as in the imitated system; where the
purpose of the behaviour lies in action-matching rather than focusing on a particular
resulting state |[Nehaniv and Dautenhahn, 2001|; program-level imitation, where the
imitator carries out an identical program conceived as a structure of hierarchical sub-
routines; it entails acquiring a program of action that makes use of a solution to the
correspondence problem. Program-level imitation focuses attention on components of
the behavioral program rather than the structural |[Nehaniv and Dautenhahn, 2001];
effect-level imitation, where the imitator’s concern is obtaining results similar to those
of the imitatee, rather than with matching specific actions; for effect-level imitation,
trying to imitate, relies on discovering affordances to attain effects corresponding to
those attained by the agent being imitated [Nehaniv and Dautenhahn, 2001].

No generic solution exists to solve correspondence problems so task specific equiv-
alences are formulated for each case. To find proper mappings between like individ-
uals of the same kind or species can be natural and direct. Determining the map-
pings between dissimilar bodies is a problem dependent on the observer point of view
|[Nehaniv and Dautenhahn, 2001]. The judgement of the degree of success or failure
of an imitative behaviour is observer-dependent; the observer, either the demonstra-
tor, the learner, or a possible third party, has a central role at judging whether
or not an exhibited behaviour matches that of a model |[Nehaniv et al., 1998|. The
subjective notion of observer-attributed goals must be transformed to a well-defined
notion of metrics. By choosing the metrics, one is choosing which states of the
demonstrator are deemed to match those of the imitator and how closely they match
[Nehaniv and Dautenhahn, 2001]. A metric provides a quantifiable method to mea-
sure the error of an attempted imitation, which the imitator uses to evaluate its own
success [Alissandrakis et al., 2002a). Degrees of success can be formalized by metrics
in states and actions and measures of correspondence with respect to achieving some
result.

As a formal definition |[Nehaniv et al., 1998|, a correspondence between two au-
tonomous agents is a relation of states ® C X xY and sequence of actions W C ¥* x A*
satisfying:

Vee Xandy €Y, if(x,y) € ®and (0,d) € ¥, then (x,y,0,0) €

where the state of the systems are represented as X, and Y, and the actions-events
are represented as X, and A. A correspondence or mapping to model (Y, A) from
imitator (X,X) is a relational homomorphism: ¢ : (X,X) — (Y, A). A sequence
of action-events for system (X,Y) given by w € ¥* is said to match successfully
a sequence z € A* in another system (Y,A) if w achieves the same effects as z
[Nehaniv and Dautenhahn, 2001]. The solutions to correspondence problems result
from successful attempts at imitation [Nehaniv et al., 199§|.

Different methods could be classified in accordance to the variables employed by
learning which are assumed to be observable, are they kinematic or kinetic, are in-
ternal or external coordinates used for the demonstrations, are task goal explicit
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or not, etc. [Schaal et al., 2003]. Approaches for gathering demonstration data
can be categorized in respect to correspondence of two mappings, an embodiment
mapping, which is concerned with how the recorded state-actions on the dataset
matches those which the learner would execute; and a record mapping, which relates
to how the states-actions of the teacher are recorded within the demonstration dataset
|Argall et al., 2009]. When exact states-action experienced by the teacher are directly
recorded in the demonstration dataset the identity I(Z, A) constitutes the record
mapping, where Z are the observable states, and A are the actions. If not a record
mapping, gg(Z,A) # I(Z,A), is needed to encode the teacher’s demonstrations
within the dataset. Analogously, when the states-actions are mapped directly to the
learner for execution the embodiment mapping is the identity /(Z, A). In any other
way an embodiment, gr(Z, A) # [(Z, A), exists to map the learner’s execution of the
recorded demonstrations. This mapping does not change the contents of the demon-
strated dataset, only the reference frame which represents it [Argall et al., 2009|. Fur-
ther categorization of LfD approaches for data acquisition can be made according to
whether record and embodiment mappings are present. The presence of more map-
pings increases the difficulty of recognizing and reproducing the teacher’s behaviour.
Yet, it also reduces teacher constraint and helps improve generality of the demon-
stration technique |Argall et al., 2009]. Approaches are first split into two categories
based on the embodiment mapping and then further distinguished, within these cat-
egories, based on the record mapping.

The case when there does not exist an embodiment mapping, that is gg(Z, A) =
I(Z,A), is denominated as demonstration. Here, the teacher demonstrations of be-
haviour are performed directly by the learner platform or a representation thereof,
and the embodiment mapping is not an issue. However, a non-direct record mapping
can exist, thus dividing approaches for providing demonstration data as teleopera-
tion and shadowing, |Argall et al., 2009|. For teleoperation, the teacher operates the
learner platform and the execution is recorded by the learner’s own sensors. The
record mapping is direct, gr(Z, A) = I(Z,A). Among all the methods teleoperation
is the most direct for transferring learning data, however, it is required that the opera-
tion of the robot be manageable for the learners which is not always possible, making
it a technique not suitable for all systems |[Argall et al., 2009]. In shadowing, the
learner records its execution while trying to mimic or copy the teacher demonstrated
behaviours. The record mapping is not direct, gr(Z,A) # [(Z,A). The shadowing
method requires an additional component to enable the learner to track and shadow
the teacher execution [Argall et al., 2009].

The case where the embodiment mapping do exist, that is gp(Z,A) # [(Z,A),
is denominated as imitation. Here, the teacher demonstrations are performed on a
platform that is different from the learner platform, therefore embodiment mapping
is an issue to regard. Equally as in the case of demonstration, the record mapping can
exist or be the identity, thus dividing approaches for providing imitation as sensors
on teacher and external observation |[Argall et al., 2009|. In sensors on teacher, the
platform executions are recorded by sensors directly on itself. The record mapping is
direct, gr(Z,A) = I(Z,A). The sensors on teacher method can provide more pre-
cise measurements of the example execution, however, applicability of this technique
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Fig. 3.3: Intersection of the record and embodiment mappings. Adapted from
[Argall et al., 2009]. The demonstration technique can be divide, accord-
ing to its record and embodiment mappings into four quadrants. (top-left)
Teleoperation demonstration when both record and embodiment mappings
are direct. (top-right) Sensors on teacher imitation when there exist a
non-direct record mapping. (bottom-left) Shadowing demonstration when
there exist a non-direct embodiment mapping. (bottom-right) External
observation when both record and embodiment mappings are non-direct.

can be limited by the overhead associated with the need to use specialized sensors
|Argall et al., 2009|. For external observations, the data from the teacher executions
are recorded by sensors externally located to the executing platform, these sensors
may or may not be located on the learner’s platform. The record mapping is not
direct, gr(Z,A) # I(Z,A). The external observation method is less reliable as un-
certainty increases from having to infer the teacher states-actions from recorded data
|Argall et al., 2009|.

Many techniques have been employed throughout the field for providing and gath-
ering the demonstration datasets; most popular among them are teleoperation, data
gloves, haptic devices, kinaesthetic teaching, motion capture systems, virtual sim-
ulations environments, speech interaction and computer vision |Billard et al., 2008].
As outlined above, the role of the interface employed at gathering the demonstra-
tions plays a significant role. In this section, four important techniques for providing
demonstrations to a humanoid robot, corresponding to the previous categorization,
are reviewed. Figure summarizes the approaches’ review for gathering and build-
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Fig. 3.4: Kinaesthetic Teaching of a Skill: (left) A human teacher operates the
HOAP-3 robot arms through a demonstration of the skill. (right) The
HOAP-3 robot reproduces the recorded demonstration of the skill.

ing the demonstrations datasets, and how they intersect with the considered record
and embodiment mapping of correspondence.

Kinaesthetic Teaching

One method for providing demonstrations of the motion to the robot is by means
of kinaesthetic teaching. The kinaesthetic teaching process [Calinon, 2009|, consists
of using the motor encoders of the robot to record information while the teacher moves
the robot’s arms. To record the demonstrations the robot motors are set in a passive
mode, a human demonstrator, standing beside the robot, moves simultaneously the
robot’s arms as it performs the motions.

In kinaesthetic teaching the robot is operated by the teacher while recording from
its own sensors. The record mapping is therefore direct, gr(Z,A) = I(Z,A). Since
the demonstration is performed on the actual robot learner, the embodiment mapping
will also be direct, gg(Z, A) # I(Z,A), just like the described category of teleopera-
tion, as represented by the top left quadrant of Figure

In this work, kinaesthetic teaching was employed to teach several demonstrations
to a humanoid robot by operating the robot arms in the performance of different
motions. The kinematics of each joint motion were recorded at a rate of 1000H z
during the demonstrations and were then re-sampled to a fixed number of points.
The robot is provided with motor encoders for every DOF, except for the hands and
the head actuators. The process is illustrated in Figure B.4] for the teaching of a skill
with the humanoid robot HOAP-3.

Providing demonstrations to the robot by means of kinaesthetic teaching is ad-
vantageous on several fronts. As discussed above for teleoperation, it is the most
direct method, and since both mappings are the identity there is not correspondence
problem. Also, it provides the human teacher with knowledge of the robot platform
limitations when performing the demonstrations. However, the manageability of the
robot operation is an issue. It would be difficult to provide complex demonstrations
requiring the human to move several limbs simultaneously. And it limits the human
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Fig. 3.5: Demonstrations in a Motion Capture Systems: (left) A human teacher
performs a demonstration. (right) The generated skeleton of the human
recorded demonstration.

teacher’s ability of performing the demonstration naturally, as they would be doing it
themselves; specially when the human and the robot have very different embodiments.

Motion Capture Systems

Motion Capture (MoCap) is the term that describes the process of recording the
motion of the human or animal body, where the recording process could be in real
or delayed time. MoCap involves the mapping of human motion onto the motion
of a computer character or Skeleton. This mapping can be direct, such as a human
arm motion controlling a character’s arm motion, or indirect, such as a human hand
and finger patterns controlling a character’s skin color or emotional state. There are
two main technologies used in motion capture. Inertial Motion Capture technology,
were the systems are based on inertial measurement sensors. During the motion, the
data captured from the inertial sensors is often transmitted wirelessly to a computer.
Optical systems, were optical sensors and one or more cameras are used to estimate
the 3D position and orientation of the human body segments during the motion. For
the optical systems, markers are generally attached to the human body, which are
located on the joint or the body part needed to be captured. The number and the
type of these markers and the number of the cameras used in the system depend on
the complexity of the motion to be captured |Dyer et al., 2013|.

In teaching demonstration to the robot recorded by a motion capture system, the
recording sensors are located directly on the teacher executing the task. This means
therefore, that there is no record mapping, ggr(Z,A) = I(Z, A). Imitation, however,
is directly performed by the teacher and not the robot, therefore the embodiment
mapping is not direct, gg(Z, A) # I[(Z,A), just as it is for the described category of
sensors on teacher, as represented by the top right quadrant of Figure 3.3

Currently there are several different options of equipment that can be used for
MoCap systems, although they remain a little pricey. Alternatively, many libraries
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Status Bar

Fig. 3.6: Teaching Demonstrations in Simulated Environment: (left) A human
teacher provides demonstration to the virtual HOAP-3 robot. (right) The
HOAP-3 robot reproduces the recorded demonstration of the skill.

and databases of available capture motions, such as, the CMU Graphics Lab Motion
Capture Database do exist. Future work for this thesis would require to also use these
libraries to build a vast repertoire of demonstrations to learn robot skills. Figure
illustrates the process of motion capture from one of the motions in the CMU
database.

Providing demonstrations to the robot by means of a MoCap system can be ad-
vantageous, as discussed above for sensors on teacher, as it can provide more precise
measurements of the example execution. Also, the human teacher can perform the
demonstrations naturally. However, this technique requires the use of specialized
sensors, and sometimes the conditioning of a dedicated room just for these systems,
making the system complex and expensive and was thus not used in this work.

Simulated Environment

Another method for providing demonstrations of the motion to the robot is by
employing simulated environments. For instance, the demonstrations of the skill can
be provided by a human teacher by means of a virtual simulator interface. A human
teacher can provide demonstrations to a simulated robot in a virtual environment,
either by a joystick, mouse or any other appropriated input device.

In teaching the robot under a simulated environment the demonstrations are
recorded by the simulator’s virtual interface, meaning that a record mapping exists,
and gr(Z,A) # I(Z,A). The demonstrations, however, are performed on a simulated
robot learner, the embodiment mapping will therefore be direct, gp(Z, A) = [(Z, A),
just like the described category of shadowing, as represented by the bottom left quad-
rant of Figure

In this work the Open Robotics Automation Virtual Environment, (OpenRAVE)
|[Diankov and Kuffner, 2008|, was used to develop a simulated environment to control
a humanoid robot HOAP-3. A 3D model of the real HOAP-3 robot is loaded into the
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Fig. 3.7: Visual Demonstrations Teaching of a Skill: (left) A human teacher per-
forms a demonstration. (right) The generated skeleton of the human
recorded demonstration.

OpenRAVE environment. The simulated HOAP-3 is controlled by a human operator
which provides the virtual robot with demonstrations of the task. The process is
illustrated in Figure for the teaching of a skill to a humanoid robot HOAP-3
simulated in OpenRAVE.

Providing demonstrations to the robot with a simulated environment can be ad-
vantageous in that it can allow the human teacher better control over the learner and
the demonstration environment. Also, it can be safer to interact with a simulated
version of the robot and not with the real robot platform. However, as discussed
above for shadowing, it requires an additional component to enable the learner to
track and shadow the teacher execution. Also, the record mapping is not direct and
the correspondence problem must be dealt with.

Visual Demonstration

A robot platform provided with its own set of cameras and vision sensors can also
record the teacher demonstrations by itself. The human teacher would simple perform
the demonstrations of the motion in front of the robot vision system. Computer vision
algorithms can be employed to build a system capable of tracking human motions, as
it performs the demonstrations, with the robot cameras.

In teaching the robot by visual demonstrations of the skill, the imitation relies on
data recorded by sensors located externally to the executing platform, meaning that
a record mapping exists, and gr(Z,A) # I(Z,A). The demonstrations, however,
are performed by the human teacher and the embodiment mapping would not be
identical, gp(Z, A) # 1(Z,A), just like the described category of ezternal observation,
as represented by the bottom right quadrant of Figure B.3]

In this work, visual demonstrations are provided to the robot learner using the
stereo robot cameras equipped within the robot or via a Microsoft Kinect sensor
[Microsoft, 2013|, and the appropriate computer vision software modules implemented
to track accordingly the motions of the human teacher performing the desired skills.
The process is illustrated in Figure B.7 for the teaching of the skill with visual demon-
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strations employing the Microsoft Kinect sensor.

Providing demonstrations to the robot by visual demonstrations is advantageous
in that it is a simpler and cheaper method than a MoCap system. Also, demonstrating
the skills visually to a robot recording from its own sensors provides a more natural
and intuitive way for a human teacher to interact with a robot as it could be able to
perform as it would typically do if interacting with another human partner. However,
as discussed above for external observation, it is less reliable as uncertainty increases
from having to infer the teacher states-actions from recorded data. And it forces us
to deal with both record and embodiment correspondence problems.

Each of these interfaces presents positive and negative aspects, for instance, in the
context of teaching humanoid robots, imitation approaches relying on motion capture
systems or visual demonstrations are particularly suitable to human teachers since
they would be able to provide the demonstrations naturally, performing as it would in
regular situations of human interaction, while a teleoperation or kinaesthetic approach
would prove more difficult to the teacher, since controlling all the DOF of the learner
could be a complex task. However, a kinaesthetic approach also provides its own
advantages by allowing the demonstrator more direct control of the learner platform
reproduction. Exploring the way these interfaces could be employed together to
exploit complementary information and short-circuiting its respective disadvantages,
would be an interesting topic.

Apart from the teaching interface employed, within the context of gathering
teacher demonstrations several issues and limitations should also be addressed. Such
as the manageability of the large streams of data comprising the dataset, which could
be typically at rates from 60 to 1,000 data points per second |[Schaal and Atkeson, 2010],
which must be used for continuous learning without degradation over time. Availabil-
ity of the training data, is an important limitation, for most general cases; the teacher
would be incapable of providing a demonstration for every possible state of the task,
dealing with under demonstrated datasets raises many questions that the learning
systems need to address, most common approaches would attempt at generalizing
from the existing demonstrations or re-engaging the teacher to provide additional
information [Argall et al., 2009]. One major complexity comes from the high dimen-
sionality of the learning data, in particular for more complex robot systems such as
humanoid robots. Ideally learning should happen in real time; this requires com-
putationally tractability, efficiently data management, robustness towards shifting
input distributions and capacity for discovering relevant features, while automati-
cally excluding irrelevant or redundant inputs, from hundreds or thousands of input
dimensions [Schaal and Atkeson, 2010].

The performance of the learner can also be limited by poor quality of the data
provided by the demonstrations. A teacher demonstration may be ambiguous, unsuc-
cessful or suboptimal in certain areas of the state space |Argall et al., 2009|. Teacher
feedback must, beyond evaluating performance, also provide correction of the exe-
cuted behaviour. The gathering demonstration process is greatly influenced by the
evolution of the robot interaction with the human. Several insights from the field of
Human-Robot Interaction (HRI) are explored in order to make the transfer of skill
more efficient |Billard et al., 2008|. The role of the teacher is one of the most im-
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portant key components of attention for an efficient transfer of skill, where an active
participation of the teacher, not only for demonstrating the skill but also to refine the

acquired model, allows the learner to adapt the skill for particular body capacities
[Calinon and Billard, 2008].

3.4 Learning a Robot Skill

An aim of this work is to learn models of robot skills for humanoid robots; the
learned robot skills should latter be used to build a knowledge base of robot skills. To
teach and learn the robot skills a LfD framework is implemented. The motivations for
adopting a LfD approach have been outlined in the previous sections; it provides intu-
itive and user-friendly methods to teach tasks to a robot by demonstrating the skills,
and they don’t require the user to have expert programming skills. It also, reduces
the cost of developing automated planning and manual programming of robot control,
and speeds up the learning process, as opposed to reinforcement learning methods,
reducing complexity of search spaces, giving prior knowledge of task performance.

The LfD approaches focuses on the development of algorithms that are generic
in their representation of the skills and in the way they are generated. One common
approach creates models of the skill based on sets of demonstrations performed in
slightly different conditions, generalizing about the inherent variability to extract the
essential components of the skill [Calinon, 2009]. Current approaches to generalizing
a skill can be broadly divided into two trends: a symbolic encoding, providing a high-
level representation of the skill, in which the demonstrated task is decomposed into a
sequence of state-action-state transitions; and trajectory encoding, providing a low-
representation for the skill, taking the form of non-linear mapping between sensory
and motor information. The most promising approaches are those that encapsulate
the dynamics of the movement into the encoding |Billard et al., 2008|. Generaliza-
tion is important since it is not possible to demonstrate all the motions the robot is
expected to perform and the learned motions must be applicable to contexts not seen
during training. Working in dynamically changing environments, it is necessary to
adjust the desired trajectories appropriately, or to generate new ones by generalizing
from previously learned knowledge [Schaal et al., 2007]. Statistical machine learn-
ing approaches are a popular mechanism for encoding changing correlations across
variables and observed variations from multiple demonstrations of the movement.
Generic approaches must allow the robot to automatically extract relevant features
of the task and search for a controller to optimize their reproduction.

Employing statistical learning techniques is a popular trend for dealing with the
high variability inherent to the demonstrations. Traditional means were based on
spline fitting techniques to deal with the uncertainty contained in several motion
demonstrations [Ude, 1993], [Aleotti and Caselli, 2006]. Non-linear regression tech-
niques were proposed as a statistical alternative to spline-based representations. A
number of authors exploited the robustness of Hidden Markov Models (HMMs) for
encoding temporal and spatial variations and modelling various types of motion
[Tso and Liu, 1996|, |Yang et al., 1997]. Popular approaches used Gaussian Miz-
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ture Model (GMM) to encode a set of trajectories, and Gaussian Mizture Regression
(GMR) to retrieve them [Calinon et al., 2007], [Calinon and Billard, 2008]. The work
of [Chatzis et al., 2012| proposed an extension of GMR-based learning by demonstra-
tion models to incorporate concepts from the field of quantum mechanics. Different
approaches [Schaal and Atkeson, 1998|, used Receptive Field Weighted Regression
(RFWR) to learn piecewise linear models with non-parametric regression techniques.
Autonomous dynamical systems have also been proposed as an alternative approach,
representing movements as mixtures of non-linear differential equations with well-
defined attractor dynamics [[jspeert et al., 2001].

Efforts in Imitation Learning focus on three important issues: efficient learning
of motor control; organizing relation of perception and action units; and achieving
modular motor control in the form of movement primitives [Schaal, 1999]. Learning
motor control requires mapping world states and actions, a given motor movement
can generally be formalized as a policy in terms of the expression,

u=m(x,a) (3.1)

which maps the state vector, x, to a control vector of the system, u. The vec-
tor, «, contains task specific and adjustable parameters shaping the policy. The
major goal of learning control being centred around finding a generally non-linear
function m, the motor control policy, adequate to reproduce a desired behaviour
[Schaal and Atkeson, 2010]. Imitation Learning covers the algorithms by which a
robot learns a policy based on demonstrated data. As mentioned in previous sections,
the learning problem is segmented between gathering the demonstrations, including
the choice of a demonstration technique, and deriving a policy from the demonstra-
tions, including the selection of an algorithm for generating this policy. Significant
problems to address in these approaches are the problem of extracting the relevant
features of a given task, the problem of evaluating how the task should be reproduced
and the problem of finding optimum controllers to generalize the acquired knowledge
of various contexts |[Calinon et al., 2007].

The Robot Skills Models learned in this chapter would form a set of basic primi-
tives of action from which a skills knowledge base is built for generating, adapting,
and reproducing more complex tasks in the right context. Suitable models of the
robot skills must promote the simple learning and representation of desired trajec-
tories. Robot skills ought to enclose all the general knowledge of the task to allow
generalization of the skill for reproduction and to form full goal-directed motions and
a set of basic units of action. Robot skills should also present certain properties such
as autonomous behaviour without explicit time dependency and adaptation of their
parameters, flexible learning, basic stability, coupling phenomena of perception and
action, compact representation and ease of categorization of movement trajectories,
reusable for similar and related tasks, modifiable to new tasks and contexts not seen
during demonstrations; robustness against both temporal and spatial disturbances
of movement in dynamic environments and allowing learning discrete and rhythmic
movements.

Adopting non-linear dynamic systems theory has become an increasingly accepted
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practice in several branches of science, with applications to physics, mechanics, chem-
istry, electromagnetism, biology, engineering, and so on. [Strogatz, 1994]. The field
of neural control of movement has long suggested to model movement phenomena
with dynamical systems [Kelso, 1995]. Similarly, ideas of dynamical systems theory
have been introduced for developmental psychological theories of human develop-
ment |Thelen and Smith, 2007|. In the field of cognitive sciences, dynamical systems
theory has also been proposed as a better model for understanding the process of hu-
man cognition |[van Gelder, 1995|, |Beer, 2000|, |[Schoner, 2008|, as briefly discussed
in Chapter In robot control theory many related approaches, such as potential
fields, tried to create flexible attractor landscapes according to which any move-
ment system must move |Okada et al., |, |Tsuji et al., Nov|. Encapsulating the dy-
namics of the movement into a dynamical system encoding is a promising approach
to learning movement trajectories [Billard et al., 2008]. A Dynamical Systems (DS)
approach to skill learning can offer a fast, simple and powerful formulation for rep-
resenting and generating movement plans, learned from demonstrations. The DS
framework allows to comply with the attractor dynamics of the desired behaviour,
modulating it with a set of non-linear dynamic systems that form an autonomous
control policy for motor control. Statistical learning techniques can be used to ar-
bitrarily shape the attractor landscape of the control policy for encoding within the
desired trajectory, moving from an initial state to an end state driven by the at-
tractor dynamics. DS provide efficient and clean means for encoding a skill and
fulfilling most of the desirable properties stated above. DS are intrinsically robust
and can adapt their trajectories instantly in the face of spatio-temporal perturba-
tions |Khansari-Zadeh and Billard, 2010a]. The DS do not explicitly depend on time
indexing and provide closed loop control and are able to model arbitrary non-linear
dynamics |Gribovskaya et al., 2010|. The DS can also be easily modulated to gener-
ate new trajectories that have similar dynamics, performing in areas that where not
covered during demonstrations |Khansari-Zadeh and Billard, 2011]. Use of DS with
statistical approaches permits the development of a representation of movements,
encapsulating the relationships between variables and variations of the task into the
dynamical systems’ parameters [Calinon et al., 2012|. The DS approach could also be
used to exploit its representational properties for movement generalization, recogni-
tion and classification [Pastor et al., 2009]. DS can create a rich variety of non-linear
dynamic models fitted for point attractor and limit cyclic systems allowing encoding
of both discrete and rhythmic movements |[jspeert et al., 2009|.
The dynamic system can be generally expressed as a differential equation,

T = f(x,0), (3.2)

this equation is mostly identical to Equation B.I], except for the left-hand term f
denoting a change of state, instead of a motor command w. The DS is conceive
as a 'kinematic policy’ which generates target values, in kinematic varibles, e.g.,
position, velocity and acceleration |Schaal et al., 2007|; appropriate controllers are
needed to subsequently convert them to motor commands. Explicit time dependency
is removed from the formulation of the DS such that the control policy becomes an
autonomous dynamic system; this is advantageous as maintaining timing counters
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or signals adds a burdensome level of complexity to control; additionally support
for such clocking signals in biological systems is disputed [Schaal et al., 2007]. Au-
tonomous non-linear dynamical systems are a powerful mechanisms to modulate the
control policies by learning the model of the skill by building a stable estimate f of
f based on the set of demonstrations. Ensuring the stability of f is a key require-
ment to provide a useful control policy, since non-linear DS are prone to instabilities.
Necessary efforts are conducted into guaranteeing global asymptotic stability at the
target |Khansari-Zadeh and Billard, 2011].

ILjspeert et al., 2001]| was the first work to emphasize this approach, by designing
a motor representation based on dynamical systems in order to encode movements
and for later replaying them in various conditions. The approach conceived the mo-
tions as movement primitives and named it Dynamic Movement Primitives (DMP)
|[Lispeert et al., 2003|. The DMP can be used as a compact representation of high-
dimensional planning policies. The approach starts with a simple dynamical system
and transforms it, by means of an autonomous forcing term, into a non-linear system
with prescribed attractor dynamics. Non-parametric regression techniques are used to
shape the attractor landscapes to the demonstrated trajectories [Ijspeert et al., 2009].
DMP can be understood as a two dynamical system with a one-way connection such
that one system drives the other one, a canonical system h which drives a transform
or output system g for every considered degree of freedom. The DMP consists of a
system of differential equations given by,

TZ = h(z,0),
Ti = g(z, f,0),

which determine the variables of internal focus x. 6 is a place holder for all pa-
rameters of the system, like goals, time constants, etc. z denotes the state of the
canonical system, and is a substitute for time, and f is a non-linear forcing func-
tion |Schaal et al., 2007|. The output of the system are desired positions, velocities
and accelerations. A suitable controller is needed to convert them into motor com-
mands. Locally Weighted Regression (LWR) was the initial method proposed to learn
the system’s parameters [ljspeert et al., 2002|. |[Hersch et al., Dec| extended the ap-
proach to learning trajectories in multidimensional space, Gaussian models are used
to encoded the trajectories modulating the dynamical system. |[Calinon et al., 2012|
extended the DMP model by formulating the estimation of the parameters of the DS
as a Gaussian mixture regression problem with projection in different coordinate sys-
tems. A DS-GMR model was proposed opening roads for developments, combining
the versatility of dynamical systems and the robustness of statistical approaches.
The original DMP approach operated in a single dimension using a pre-defined
dynamical system as a motion primitive, where the trajectory of every single DOF
was modulated by its own non-linear function and transformation system separately.
|Gribovskaya and Billard, 2009| investigated a method whereby the Gaussian Mizture
Models (GMM) could directly embed the multi-variate dynamics of a motion. Their
work presented a generic framework that combined DS movement control with RPbD
in order to teach a robot. The framework requires two systems, a learning system
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processing the data from the recorded demonstrations of the task for extracting coor-
dination constraints and encoding the trajectory, and a motor system reproducing the
dynamics of the motion while satisfying the constraints learned in the previous system
|Gribovskaya and Billard, 2008|. An iterative procedure was employed to learn a sta-
tistical estimate of an arbitrary multivariate autonomous dynamical system, through
the encoding of the demonstrated data with Gaussian Mixtures. The state of the
robotic system ¢ is assumed to be governable by an autonomous dynamical system.
The motion model is driven by a first order autonomous ordinary differential equation,
with a single equilibrium point,

the problem consists of constructing an estimate f of f from the set of demonstrated
trajectories, the Gaussian Mizture Models (GMM) are used to define the f follow-
ing a statistical approach |Gribovskaya and Billard, 2009|. The GMM define a joint
probability distribution function over a training set of demonstrated trajectories as a
mixture of a finite set of Gaussian distributions. In order to generate the new trajec-
tories, one can sample from the probability distribution function of the learned GMM,
this process is named Gaussian Mizture Models (GMM). The proposed framework has
three advantages, i) it allowed generalizing the motion to unseen context; ii) provides
robustness to spatio-temporal perturbations of the motion; iii) different types of dy-
namics can be embedded |Gribovskaya et al., 2010|. This framework allowed to learn
the non-linear multivariate dynamics for cases in which this correlation between vari-
ables is important, unlike other works which generally discard information pertaining
to correlation across the joints. Storing the correlations among the joints’ variables
can be costly; yet it is also advantageous in that the correlations contain information
on features characteristic of the motion.

The non-linear DS are susceptible to instabilities. An important issue for these ap-
proaches is to considerer the stability of the generated control policies. Guaranteeing
the estimates f results in an asymptotically stable trajectory which is, therefore, a key
requirement, in order to provide useful control policies. The aforementioned method
is not guaranteed to result in a stable estimate of the motion. A learning procedure
called Binary Merging (BM) was introduced by [Khansari-Zadeh and Billard, 2010b].
It tackles the problem of estimating, from the recorded demonstrations, the unknown
non-linear DS, while ensuring local stability at the target based on the provided
stability conditions. The BM approach can build the locally stable estimate f by
minimizing iteratively the number of Gaussian functions required for achieving both
asymptotic stability at the target and high accuracy in estimating the dynamics of
motion. The estimated DS generates trajectories that accurately follow the motion
dynamics based on the metric of accuracy the user defines. However, the method is
sensitive to demonstrations and only effective when demonstrations are very similar.

|[Khansari-Zadeh and Billard, 2011| proposed a learning method, called Stable Es-
timator of Dynamical Systems (SEDS), to learn the parameters of the DS that ensure
all motions to closely follow the demonstration dynamics. The approach follows sim-
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Fig. 3.8: Control flow of LfD framework. &, q correspond respectively to the state
variables and robot joint angles describing the motion. The learning block
infer the model parameters 6 from the set of demonstrations {£,£}P.

ilarly as in |Gribovskaya et al., 2010] and formulates the encoding as a control law
that is driven by a first-order autonomous non-linear ODE with Gaussian Mixtures.
Their work formulates the problem of computing the estimate f and the optimal val-
ues of 6 by solving an optimization problem. Learning the parameters of the GMM
proceeds as a constraint optimization problem under strict stability constraints; this
ensures that the model satisfies the global asymptotic stability of the DS at the
target |[Khansari-Zadeh and Billard, 2010a]. For the optimization objective function,
two different candidates are used. One function based in the log-likelihood, as a means
of constructing the model. And a function based on the mean square error (MSE),
as a means of quantifying the accuracy of estimations that are based on demonstra-
tions. The approach provides a sound ground for the estimation of non-linear DS
which is not heuristic driven and, therefore, has the potential for much larger sets of
applications. Also, by presenting the properties of being time-invariant and globally
asymptotically stable at the target, the DS estimated with SEDS are able to respond
immediately and appropriately to perturbations that could be encountered during
reproduction of the motion.

In this work, the end-effector trajectories, &, in Cartesian space, of a skill motion
will be modelled in terms of a dynamic systems approach, as in [Schaal et al., 2007
for an autonomous dynamical system encoding of the motion. The model of our
motions is learned by estimating the non-linear function f. The frameworks presented
in |Gribovskaya et al., 2010] and |Khansari-Zadeh and Billard, 2011| are followed to
learn the motions as multivariate DS within a LfD statistical approach. A time
independent model is estimated through a set of first order non-linear multivariate
dynamical systems. Figure3.8 presents the control flow of the learning framework. £7
and &7 are the target and real robot state, which could represent position, velocities,
forces, etc. The DS provides the desired outputs &, 5 gi, G; and gy corresponds to the
initial and final positions and velocities of the robot joints respectively. The learning
block infers the model parameters 6 from the set of demonstrations {&, £}P.
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3.5 Encoding of a Robot Skill

As stated in the previous section, to learn, and latter to reproduce, the robot
skills, a computational model of the motion is built in the framework of dynamic
system approaches. The motion dynamics are estimated through a set of first order
non-linear dynamical system equations. DS approach was proposed as alternative
to traditional approaches for motor representation, like spline decomposition and re-
gression techniques. The DS framework provides an effective means to encode trajec-
tories through time-independent functions that define the temporal evolution of the
motions, by representing movements as mixtures of non-linear differential equations
with well-defined attractor dynamics. A DS model of the robot skill is built, encod-
ing the relevant information of the demonstrated skill for reproducing the learned
dynamics of the motion.

3.5.1 Problem Formalization

First let us assume that the state of the robot system can be unambiguously
described using a state variable defined as &. And let the recorded demonstrations be
the set D of N-dimensional demonstrate data points {¢/, £7}2 |, instances of a global
motion. Further assume that the motion is governed by a first order autonomous
ordinary differential equation (ODE):

éD - f(£D)7 (33)

Here, €2 € R”, and its time derivative €2 € R™ are vectors that describe the robot
motion. From Eq. it can be seen that it follows the same form as in Eq. B2l To
compute the evolution of the motion, giving an initial state £ € R”, it is possible to
integrate Eq. through time,

() = /O (e, o)t (3.4)

the analytical computation of the above integral are usually non-trivial, especially
for complex multi-dimensional DS.

Let’s also consider that a set of parameters, 6, can describe the function f(§), as
in Eq. B2, optimal values for the parameters 6 can be obtained employing different
statistical approaches. The learning problem is reduce to building a stable estimate f
of f, and determining the parameter 6, based on the set of demonstrations, {7, £1}2..
The function f, f : R" — R", is considered to be a non-linear continuous and
continuously differentiable function with a single equilibrium point. Without loss of
generality, the attractor, &, can be transferred to the origin, £ =0, so that f(¢) =

f(0) = 0 and by extension f(&£) = f(0) =0.

(3.5)
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The motion of the system is uniquely determined by its state £. Choosing the
appropriate state variables has an important impact on the dynamics to be learned.
Here, motions are to be represented in kinematic coordinates, the desired outputs are
position, velocities and accelerations, which could be in in joint space or task space.
It is assumed that there are appropriate controllers that convert kinematic variables
into motor commands.

Non-linear Regression Techniques

Regression is a problem in statistical analysis for estimating the relationships
among variables. The non-linear regression techniques focus on building a continuous
mapping function f : R® — R™, the function f is a non-linear combination of the
model parameters, building f is based on determining the set of parameters ¢ during
training based on the set, D, of training data points, {&, 512 |, with £& € R™ and
¢, € R™ corresponding to the input and output variables respectively. The value &o
can be predicted from the input &; with the estimate of f,

~

fO = f(f?a 9) (3.6)

notice the similarities of this statement with the previous formalization of the DS
learning problem.

There are numerous regression techniques to build the estimate of f, the statisti-
cal methods can be broadly divided into parametric and non-parametric approaches.
The non-parametric methods are advantageous in that they make little assumptions
about the form of the underlying distribution, they are also well suited to accurately
perform data fitting in low-dimensional spaces. However, they suffer from the curse
of dimensionality. The parametric methods are better suited to model multivariate
datasets, and deal with problems of regression on multi-dimensional data. How-
ever, to choose the underlying parameters effectively they rely on heuristical methods
[Hastie et al., 2009]. Existing approaches to statistical estimating of f mostly re-
lied on either Gaussian Process Regression (GPR) [Rasmussen and Williams, 2006],
[Schneider and Ertel, 2010], Gaussian Mizture Regression (GMR) [Hersch et al., 2008],
[Calinon et al., 2010|, or Locally Weighted Regression, Locally Weighted Projection Re-
gression (LWPR) [Vijayakumar and Schaal, |, [Grollman and Jenkins, 2008].

Gaussian Process

Gaussian Process Regression (GPR) provides an estimate of the function f by
assuming it as a Gaussian process, in which any set of samples has a joint Gaussian
distribution. A set of training data points with uni-dimensional function values &; =
f}il, and {p = fiozpzl, representing respectively the input and output variables. By
conditioning the multivariate Gaussian distribution on the training data, for any point
&7, the GPR is obtained,

F&) 161,80 ~ N (u(&7), B())) (3.7)
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where the estimate p(£7) and the variance 3 (£7) are given by

pu(&r) = K(&, €N (K (&r.61) + oul) o
S(&7) = K(&7.67) — K(&. &) (K (&1, €r)) 7 K (61, €7)

with K, symmetric matrices representing the evaluation of the GP covariance function
across the specified variables.

The formulation of GPR is only applicable to multi-input single-output datasets,
for datasets with multiple outputs it is necessary to train a separate GPR model for
every output dimension. The GPR method builds an accurate estimate of non-linear
functions, however, it is ill-suited for applications requiring fast computation. the
computational costs of GPR scale cubically with the number of training examples.

Gaussian Mixture

Gaussian Mizture Regression (GMR) is a non-linear regression technique which
operates on the joint probability P({r; o). The joint probability is formed by super-
position of linear Gaussian functions,

P(Eriéo) = > 7N (¢néo | 1,%) (3.8)

where 7, 1 and X are respectively the prior, mean and covariance matrix of the
Gaussian function V.

Given the joint distribution P(£; o) and input point £}, the GMR process follows
the output from the posterior mean estimate of the conditional distribution,

o = f(&:0) =E[P(¢ | &30)] (3.9)

with 6 = [, u, ] the parameters of the Gaussian functions.

A more expansive description of the GMR process would be given later in this
section. The GMR method provides an alternative to modelling non-linear trajecto-
ries. It usually requires fewer parameters in comparison to other methods, yet it is
less accurate. One critical concern with GMR based approaches is that they require
heuristic methods to determine an optimal number of Gaussian kernels, also, the final
results are sensitive to initialization.

Locally Weighted Projection

Locally Weighted Projection Regression (LWPR) is an incremental regression tech-
nique which provides an estimate of f in terms of the output from a set of local regions,
defined with a Gaussian function,

w() = o (E—m) TW(E—p) (3.10)

where p are the centres and W is a positive semi-definite distance metric, determining
the influence of the region. The output prediction is computed as the non-linear
weighted sum of the output of all regions,

~

*\ 1 ’UJ*T*
So = F(61) = 5= rgy 2 (& (&) (3.11)
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The LWPR method offers in comparison cost-efficiency for non-linear function
approximation. LWPR describes the system through a finite combination of Gaus-
sian functions. The parameters are estimated in one-shot learning through linear
regression. However, the approach is very sensitive to the choice of parameters at
initialization and relies on manual tuning to achieve high accuracy.

Regardless of the advantages or weakness of these approaches, they cannot be
used as is to estimate the DS of Eq. since they do not take into account the
stability of the dynamical system they model [Khansari-Zadeh and Billard, 2010b|.

Dynamic Motor Primitives

The Dynamic Motor Primitives (DMP) method [[jspeert et al., 2009, was pro-
posed to learn the attractor dynamics of the motion and to deal with the instability
issues. The DMP can be used to generate one dimensional movements with a basic
point attractor system instantiated by the second order dynamics as,

= (B(9—y)—2)+ [
TY =2

(3.12)

with ¢ the goal state, ., 3. time constants, 7 a temporal scaling factor, and v,y
correspond to a desired position and velocity.

For appropriate parameter setting and with f = 0 Eq. form a globally
stable linear dynamic system with g as an unique attractor |Schaal et al., 2007|. The
function f is a non-linear function which can be learned to allow the generation of

arbitrary complex trajectories. The non-linear function f can be defined in the form
of,

N
Z wiwix
iz

f(,9,90) = =——(9 — o) (3.13)
; Vi

where 1); = exp (—h;(z — ¢;)?) are Gaussian basis function with center ¢; and with
h;, and w; are learnable adjustable weight that shapes the trajectory. The function
f does not directly depend on time, but on a phase variable, x,

TE = —Q,T (3.14)

with «, a pre-defined constant. The DMP can be understood as two dynamical
system with a one-way connection such that one system drives the other, with the
canonical system in Eq. B.I4] driving the output system in Eq. B.I2.

For learning the parameters, a non-parametric regression technique from locally
weighted learning can be used to generate the function approximator |[jspeert et al., 2009].
This method allows us to determine automatically the necessary number of basis func-
tions IV, their centres ¢;, and widths h;. For every basis function 1;, which defines a
small region in input space z, any point that falls into this region is used to perform
a linear regression, which can be formalized as weighted regression. The method cre-
ates a piecewise linear approximation of f, in which each linear function piece belongs
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to one of the basis functions. Other function approximators can also be used, like
radial basis function networks, mixture models, Gaussian Process regression, etc., for
example |Calinon et al., 2012|.

The DMP approach however presents two drawbacks; the phase variable employed
to modulate the dynamics makes the system time dependent and sensitive to temporal
perturbations. Also, a DS is learned separately for each dimension, and a heuristic
is needed to synchronize for modelling multi-dimensional systems, this neglects the
combined effect of all the dimensions in the motion.

3.5.2 Multivariate Gaussian Mixtures

To learn the multi-variate dynamics of a motion trajectory, here, an approach
from [Gribovskaya and Billard, 2009] has been followed, as outlined in section [3.4l
In their work an iterative procedure was employed to learn a statistical estimate of
an arbitrary multivariate autonomous dynamical system, Gaussian Mizxture Models
(GMM) are used to directly embed the multi-variate dynamics of a motion through
the encoding of the demonstrated data.

The state of the robotic system ¢ is assumed to be governable by an autonomous
dynamical system, with a single equilibrium point, as per Eq. And the set of
N-dimensional demonstrated data points be represented as {£’, fl P |, as described in
the problem formalization in B35l A probabilistic framework is employed to build
an estimate f , of the non-linear state transition map f, based on the set of demon-
strations. The dynamics of the motion are learned thus, by modelling the estimate f
via a finite mixture of Gaussian functions, f is defined as a non-linear combination
of a finite set of Gaussian kernels using the GMM |Gribovskaya et al., 2010].

Gaussian Mixture Models

Employing mixture models is a popular approach for the statistical modelling of
a wide variety of random phenomena. Mixture distributions provide a convenient
framework to model unknown distributional shapes, for density approximation of
continuous or binary data |[Mclachlan and Peel, 2000]. A mixture model of K com-
ponents is defined by a probability density function,

K

p(&) = p(k)p( | k) (3.15)

k=1

where ¢ is a data point, p(k) is the prior probability and p(¢ | k) is the conditional
probability.

Given our set of demonstrated data points, {&,£}2, each recorded point in the
trajectories is associated with a probability density function. The GMM define a
joint probability distribution p(&?, f’) of the training set of demonstrated trajectories
as a mixture of the K Gaussian multivariate distributions N*, with 7% pu*, and
Y* respectively the prior, mean and covariance matrix, parameters of the Gaussian
component k.
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The parameters in Eq. [3.15] become,

k) = n*
o )k k (3.16)
p(§ | k) =N (& ", E7)
The joint probability distribution, p(¢,€), for the GMM is given by,
K
p(&,&:0) = §j (3T
= (3.17)
xE ok
with pf = {ug;pf} and $F = | F
Yee

where the probability density function of each Gaussian, N*(&%, &% % 32F), in the
model is then given by:

1

____AEETEYTEI) el K (3.18)
(2)2n LF]

NEE & uh 2h) =

The mixture of Gaussian functions would estimate the non-linear function f, thus
the unknown parameters of f, #, becomes the prior, 7%, the mean, p*, and the
covariance matrix, ¥¥, of the K Gaussian functions, such that 0% = (7%, u*, ¥F),
defined as in Eq. B.I7

The mixture modelling method builds a coarse representation of the data density
through a fixed number of mixture components. By considering an adequate number
of Gaussian functions, and adjusting their means and covariances matrix parameters,
almost any continuous density can be approximate to arbitrary accuracy. Finding the
optimal number of components is not trivial and various methods can be found, such
as, the Bayesian Information Criterion (BIC) [Schwarz, 1978], or the Deviance Infor-
mation Criterion (DIC) [Spiegelhalter et al., 2002]. The parameters 6 = (7, u, 3) of
function f, governed the form of the Gaussian mixture distribution. To learn the pa-
rameters a Mazimum Likelihood Estimation of the mixture parameters is performed.
EM proceeds by maximizing the likelihood that the complete model represents the
training data well.

= In(p(¢" | ©)) (3.19)

First, the model is initialized using the k-means clustering algorithm starting from
a uniform mesh and it is then refined iteratively through Fzxpectation-Maximization
(EM) |[Dempster et al., 1977], to find the maximum likelihood function of equation
B.I7 from Eq. as,

= In {Z TN((E, €M) | ih, 2’“)} (3.20)
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The parameters 0% = (7%, u*, X¥) of the GMM are then estimated iteratively until
convergence, trough alternating between an expectation (E) step and a maximization
(M) step. The E-step creates a function for the expectations of the log-likelihood,
using current estimate for the parameters. The M-step computes the parameters,
maximizing the expected log-likelihood of the E-step, these estimates of the parameter

are used for determining the next F-step. The iterations stop when the increase of
t+1

the log-likelihood becomes smaller than a threshold, T < threshold, with the
log-likelihood, £, defined as in Eq. and 3200

E-step:
S TN [y, Thy)
1
e z,m (e, €m) | ity SE)
t+1 Zp(t—l—l (3.21)
M-step:
ko E@H)
Tie+1) = N
,Ltk o Zn 1pt+1 (é-n én)
(t+1) — k
E(t+1)
o Dy (66 — ) (€€ — )T
(t+1) — £k

(t+1)

A more in deep theoretical analysis of the Gaussian Mizture Models (GMM) can
be found on |[Dasgupta and Schulman, 2000|, |[Calinon, 2009|. Figure illustrates
the learning process and encoding of a training data set into a model of mixtures of
Gaussian functions. First, several demonstrations of a trajectory are recorded to build
the D dataset. A model of the trajectories is built encoding the given demonstrations
with K Gaussian distributions, defined by the p and ¥ parameters. To generate a
new trajectory from the GMM, one then can sample from the probability distribution
function p(€, €), this process is called Gaussian Mizture Regression (GMR).

Gaussian Mixture Regression

Gaussian Mizture Regression (GMR) is used for retrieving a generalized trajectory
made up of a set of trajectories used to train the model, where the generalized tra-
jectory is not part of the dataset but instead encapsulates all of its essential features
|Calinon, 2009].
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Fig. 3.9: Illustration of the learning process with GMM-GMR. (top) Recorded train-
ing data of the demonstrated trajectories. (center) The learned GMM
model represented by ellipses centre at ', magnitude and direction of the
ellipses are given by the eigenvectors and eigenvalues of . (bottom) Re-
production of several trajectories trough GMR.
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The GMM computes a joint probability density function for the input and the
output so that the probability of the output conditioned on the input are a Mixture
of Gaussian. So it is possible after training, to recover the expected output variable

f , given the observed input in &. ‘
Given the joint probability distribution, p(¢,§), from Eq. B.I7 and a input query
point £*, the GMR process takes the conditional mean estimate of p(¢ | &), the

estimate of our function £ = f (&) can be expressed by,

€= ST RENEE (S E — i)+ ub) (3.22)

o pl&ed )
S p(&; i, F)

K
with (&) >0 and Y KF(¢) =1
k=1

A review of theoretical considerations of the GMR can be found in [Sung, 2004],
|Cohn et al., 1996|. The GMM encoding of the demonstrations and GMR reproduc-
tion of the learned motions process is illustrated in Figure B9 The model of the
trajectories are learned from several demonstrations and then encoded as a mixture
of Gaussian distributions. To reproduce the trajectories one sample from the prob-
ability distribution of the GMM trough the Gaussian Mizture Regression process.
The GMR approximates the dynamical systems through a non-linear weighted sum
of local linear models. The process for encoding the dynamics of a motion through
Gaussian Mizture Models, and Gaussian Mixture Regression, is illustrated in Figure

5. 101
The notation of Eq. can be simplified through a change of variable where,

k _ sk (yk)—

k_ k k, k
bt = g — ALt (3.23)
krey . PEugXE)
h(E) = S p(&uk,2E)

Substituting Eq. B23] into Eq. B22] produces an expression of the GMR as a
non-linear sum of linear dynamical systems,

K

E=f(&) =D h(E)(AF¢ +b) (3.24)

k=1

Rewriting Eq. in this way is useful to study the influence of each Gaussian
and the stability of the estimate f . Stability of the system is governed by the GMR
parameters, the matrices A*, b* and weighting term h*, which are learned during
training. Figure represents the influence of the GMR parameters in the final
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Fig. 3.10: Illustration of the GMR inference process for reproducing learned trajec-
tories. (top) The non-linear weights h*(£), as defined by Eq. 323, give a
relative measure of the importance of each Gaussian contribution to the
estimate f at point . (bottom) The estimate f is expressed as a non-
linear sum of DS, as per Eq. [3.24. The linear dynamics of every AF¢ +b*
correspond to a line equation with slope A* that runs through the centre
p*. Given an observed input &;, the value of o is estimated from f

reproduction. Each linear dynamics corresponds to a line that passes through the
centres ¥ with slope A*. The non-linear weighting term, h*, in Eq. gives a
measure of the relative influence of each Gaussian locally. Due to the influence of
the non-linear weighting term, A*, the estimate function f(f) is also non-linear and
presents enough flexibility as to model a wide variety of motions. However, it cannot
be guaranteed that the system will be asymptotically stable, and the resulting non-
linear model f(§) can contain spurious attractors or limit cycles even for simple 2D
models |[Khansari-Zadeh and Billard, 2011).

|Gribovskaya et al., 2010| proposes a modification of the GMM procedure to build
the mixture resulting in an estimate, locally stable around the target (GMM-DS). It
is assumed that in the neighbourhood of the origin, the system is governed solely by
the last K Gaussian. In order to guarantee the convergence to the target additional
synthetic data is generated within a small neighbourhood around the origin. In addi-
tion, the center of the last Gaussian is set at the target and it is not updated during
training. The system would be asymptotically stable by ensuring that the eigenval-
ues of AX, from Eq. .24, are all strictly negative. The stability is estimated locally
within a subregion C, inside the robot’s workspace. The function is approximated in
C , referred to as the region of applicability of the learned dynamics, such that,

f:C>C

f 3.25
f&) = f(§),v¢eC (3.25)
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Algorithm: Multivariate Dynamic Systems GMM [Gribovskaya et al., 2010

Input: Demonstrations dataset {¢7,¢° ?:1.

1. Initialize stability subregion C.
2. Compute synthetic data at the target attractor &, to guarantee convergence.
3. Choose initial number of Gaussian components K.

4. LOOP Until stability verification is satisfied.

5. Initialize the GMM parameters with k-means clustering.
6. Train the joint probability distribution p(€%,£%) ~ N(;0)
with Expectation Maximization.
7. Verify local stability at the origin.
8. IF not asymptotically stable at the origin.
9. THEN increase the number of Gaussian components.
10. END.
11. END

Output: f = (N 0Y), -  NE(E0K)}

Tab. 3.1: Encoding Multivariate Dynamics with GMM-GMR.

Initialization of C is data-driven and its size is defined by the amplitude of the
training dataset. After training, initial guesses regarding C are re-estimated, following
a numerical procedure, to empirically verify that C is a region of attraction and that
all the trajectories converge toward the origin; it does not include any other attractors.
This approach presented the drawback that it cannot ensured to find even a locally
stable estimate and it gave no explicit constraint on the form of the Gaussian functions
to ensure stability |[Khansari-Zadeh and Billard, 2011].

Table B.I] summarizes the procedure to model the motion dynamics through Mul-
tivariate Gaussian Mixtures, employing GMM and GMR as proposed in the work by
|Gribovskaya et al., 2010].

3.5.3 Binary Merging

|[Khansari-Zadeh and Billard, 2010b| proposed a method, as outlined in section
B4l to tackle the problem of estimating the non-linear DS while ensuring local sta-
bility at the target. Their work provides a set of stability conditions that can be
used to ensure local asymptotic stability of f when it is formulated with a mixture
of Gaussian functions.

Ensuring that the estimate f of the non-linear dynamical system results in tra-
jectories that asymptotically converge on the attractor, is a key requirement. Here,
f is a stable estimate of f € R™ if it has a single attractor £ : f(£) = 0 and every
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trajectory generated by f asymptotically converges to ¢,

lim f(¢) =€ Ve eR® (3.26)

t—o00

|[Khansari-Zadeh and Billard, 2010b| defined a region D C R™ which covers en-
tirely the part of the state space spanned by the demonstrations, including the origin,
where the motion can be accurately estimated with f,

D={ S€R" : pE)=d }
§F =amin(p(¢)) : k=1...K,i=1...D

(3.27)

where p(&) is the probability of £ as estimated from Eq. BI7 and a: 0 < o < 1 is
a constant. The definition of § ensures that all data points are included in ID. The
region I is then partitioned into K pairwise, disjointed continuous subregions, QF,
via the hyperplanes ®*,

O (& —pd)T-0F =0 (3.28)

with v* being the eigenvector pointing towards the direction of motion. ®* is the
hyperplane through /ﬂg and normal to v*. Each subregion, OQF, is a part of D that is
defined by,

F=0"D Vkel.. K (3.29)

For each subregion Q* ¢ D, k = 2...K, the estimate given by Eq. is trun-
cated so that the dynamics are driven solely by the two dominant Gaussian functions
N* and N*~1. The estimate for points in partition Q' are set by construction to only
be influenced by the dominant Gaussian A'. Thus becoming,

A¢ + bl VEe !
E=f(&) = MMM+ D)+ 5 (3.30)
B () (A*é + bY) VEe N ke2.. K

The origin, the attractor, of Eq. B.30]is asymptotically stable if the parameter of f,
p¥ and Y*, are constructed such that,

pE =£€=0
K _ _Zw K-1 . K-—1 K-1\-1, K-1
M TTH0K) (b Bge (B¢ ) e ) (3.31a)

SK(SK) ! + (SK) (KT <0
(E—p)T(ZH <0 Veet

VE € OF
. . 3.31b
(6= )T ()€ > (6= ) TS0 1€ v A0 )
k=2...K
(WTES>0 VeEedP Vhkel.. K—1 (3.31c)

D is an invariant set (3.31d)



100 3. Learning Robot Skills Models from Demonstrations.

Putting together the conditions in Eq. B3] the system becomes locally asymptoti-
cally stable at the origin in the region defined by D |[Khansari-Zadeh and Billard, 2010b].
It is necessary for the estimate to be not only stable, according to the stated definition,
but also should follow closely the dynamics of the demonstration. This is evaluated
through a measure of accuracy e with which f approximates the demonstration dy-
namics. This is quantified by measuring the discrepancy between the direction and
amplitude of the estimated and observed velocity vectors for all the training points
|Khansari-Zadeh and Billard, 2010b).

1 (1L ( (E9T5E) )
e=— D orf1- +...
D — T

=0 L8 NIl F(g8) Il e

) <<é“ — F(E)T(E f<w>>>>°'5
& I é) e

where r and ¢ are positive scalars that weight the relative influence of each factor, and
€ is a very small positive scalar. An estimate of the dynamics is considered accurate
if € < €42, With e,,4, a given a maximal acceptable error.

The Binary Merging (BM) learning approach proceeds in two steps to build the
stable estimate of f. A first step that initializes the model with a maximum number
of possible Gaussian functions. And a second step that tries to reduce the number of
Gaussian functions to a minimum, satisfying the stability criteria while also keeping
the error of the estimates below maximal error ¢,,,z.

The initialization step, first with a sample alignment the demonstration trajecto-
ries are aligned. The time stamps that result from the sample alignment are used to
initialize the Gaussian mixture. The parameters, 0% = (7% ¥ 3¥), corresponding to
each Gaussian function are then computed as,

7

(3.32)

(L 1
K
oF = $ Hk _ mean(Ek) (3.33&)
| X5 = cov(ZF + 01
)
1
K_ —
TTK
oK _ ] ¥ = computed following Eq. B.31] (3.33b)
ok _ 0|1 -1
\ -1 1

where ZF = {¢k1 €51D  denotes a subset of the demonstrations that belong to
the k Gaussian function, ¢° is a small positive scalar to avoid numerical instability,
and I is an identity matrix of the proper size.

The iteration step proceeds as follows, a pair of adjacent Gaussian functions,
{NF* N*+1Y are picked randomly and merged into a single Gaussian by computing
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Algorithm: Binary Merging BM [Khansari-Zadeh and Billard, 2010b]

Input: Demonstrations dataset {¢7,¢° ?:1.

Initialize parameters. (7, ¢, €maz)-

Transfer the target attractor & to the origin.

Sample align demonstrations to length 7.

Define time indices t* = k., Yk e 1---T.

Initialize the GMM, with the time indices t* = k for K = 7.

LOOP while K > 1 and further merging is possible.
Backup the previous model GMM N¥.
Select randomly an index k € 1---K — 1.

© »® N S oo W=

Compute the parameters, 6%, for a new Gaussian N = {N* : Nk+1},
IF Conditions of stability, B.31] and accuracy, 3.32] are satisfied.

THEN replace N* with N™, remove N**1.
Correct numbering of Gaussian and time indices, K = K — 1.

12. ELSE discard N'™.
13. END
14. END

_
- O

Output: f = (N 0Y), -  NE(E0K)}

Tab. 3.2: Encoding the estimate of the DS with Binary Merging

the new 1% and F associated to the Gaussian. The stability and accuracy conditions
from Eq. B.31 and Eq. are verified for the updated model. If the conditions are
satisfied the two selected Gaussian functions are replaced by the merged Gaussian,
and the new model is now composed of K — 1 Gaussian functions. The algorithm
terminates when there is no possible pair of Gaussian functions that can be merged
without violating the maximum accepted error or becoming unstable. Table
summarizes the procedure to model the motion dynamics through Binary Merging,
as proposed by |Khansari-Zadeh and Billard, 2010b|.

There are some shortcomings when using BM, it has a limited region of applica-
bility, since the stability domain D usually corresponds to a narrow region around
the demonstrations. Additionally, it relies on determining numerically the stability
region, which could become computation costly and intractable in higher dimensions
|[Khansari-Zadeh and Billard, 2011).
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3.5.4 Stable Estimator of Dynamical Systems

|[Khansari-Zadeh and Billard, 2010a| proposed a learning method, called Stable
Estimator of Dynamical Systems (SEDS), to learn the parameters of the DS that en-
sure all motions closely follow the demonstration dynamics and for the global asymp-
totic stability at the target of the estimate f of the non-linear autonomous DS. Their
work provided a set of stability conditions to ensure the global asymptotic stability
of f at the target. However, as opposed to BM, the effect of all Gaussian functions
are taken into account, without any need to truncate the estimate to solely using the
adjacent Gaussian functions.

In order to build a globally asymptotically stable DS, it is needed to set the
parameters, 6, of the estimate of f, such that, by starting the motion from any point
in the state space the energy of the system decreases until it reaches the target.
Assuming that the state trajectory evolves according to Eq. B.24] the non-linear
function § = f({) can be made globally asymptotically stable at the target & € R
by ensuring the following stability conditions,

{bk _ —Akf_

VE=1...K 3.34
AF + (AMT <0 (3:34)

where A* and b* are defined according to Eq. B.23] and < 0 refers to the negative
definiteness of a matrix, details can be found on |Khansari-Zadeh and Billard, 2011].
Conditions from Eq. impose the constraint so that the energy dissipation on
each Gaussian becomes negative everywhere except at the target, where it becomes
zZero.

Established sufficient conditions whereby f(¢£) can be globally asymptotically sta-
ble at the target remain to determine a procedure for computing the unknown param-
eters, OF = (7% ¥ ¥%), of Eq. satisfying the stability conditions. Learning the
parameters of the GMM proceeds as a constraint optimization problem, the SEDS
learning algorithm computes optimal values for ¢ under strict stability constraints,
ensuring that the model satisfy global asymptotic stability of the DS at the target
|Khansari-Zadeh and Billard, 2010a]. For the optimization objective function two dif-
ferent candidates are used. One function based in the log-likelthood, as a means of
constructing the model; and a function based on the mean square error (MSE), as a
means of quantifying the accuracy of estimations that are based on demonstrations.

The optimization problem is subject to the following constraints,

b* = —A*¢  Vk=1...K (3.35a)
AF+(AHT <0 Vk=1...K (3.35b)
¥F =0 Vk=1...K (3.35¢)
0<7F<1 Vk=1...K (3.35d)

K
d ab=1 (3.35¢)
k=1
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Algorithm: Stable Estimator of Dynamical Systems SEDS
|[Khansari-Zadeh and Billard, 2011

Input: Demonstrations dataset {¢%,¢7}P ;.

Initialize optimization parameters.
Transfer the target attractor ¢ to the origin.

Choose initial number of Gaussian components K.

L

Find initial estimate for the Gaussian parameters 6% = (£F, gk $¥) ke 1--- K
running Expectation Maximization.
k

o

Define optimize parameters as 7* = 7% and pug = fif.

6. Convert the covariance matrix such that it satisfied the stability and optimization
constrains as given by Eq. B.33]

7. Compute u’g solving the optimization problem constraints given by Eq. [3.33

8. Solve constraint optimization problem for J(6) as given by the objective function of:
Eq. for the Likelihood.
Eq. 337 for the MSE.

9. IF optimization constraints check satisfied.

10. THEM return.

Output: f = {N'(&6), - , NK(&05)}

Tab. 3.3: Encoding the estimate of the DS with SEDS

The first two constraints of Eq. are the stability conditions from Eq. B34 And
the last three constraints are imposed by the nature of the GMM, from Eq. BIT,
ensuring ¥ being positive definite matrices, and the 7* prior probabilities being
positive scalars, smaller than or equal to one and their sum equal to one.

The SEDS-Likelihood method, using the log-likelihood as a means to quantify the
accuracy of estimations, computes the optimal values of 6 by solving,

D T
)= 7 523 Inpl(€€) 0 (3.30)

where p((£4%€4) | 0) is given by Eq. BTl and 7 = 3.7, T’ are the total number
of points in the demonstration dataset. For selecting an optimal number of Gaussian
functions K for this method, Bayesian Information Criterion (BIC) was used to
determine a trade-off between the optimization of the model’s likelihood and the
total number of parameters needed to encode the data,

BIC =TJ(0) + % In(T)

in which J(6) is the normalized log-likelihood of the model in Eq. and n, is the
total number of free parameters.
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In SEDS-MSE method, which uses the mean square error as a means to quantify
the accuracy of estimations, the optimal values of 8 are computed by solving,

D T

min J(0) = — 5= 57 (€))7 () — ) (3.37)

i=1 t=o

where f(£%") is calculated directly from Eq. and T is, as above, the total
number of points in the demonstration dataset. In order to obtain an optimal
number of Gaussian function K for this method, the demonstrations are split into
training and test datasets. The optimal number of Gaussian functions corresponds
to the minimum value of K that provides an accurate estimate on both datasets
|[Khansari-Zadeh and Billard, 2011).

Table B.3lsummarizes the procedure to model the motion dynamics through Stable
Estimator of Dynamical Systems, as proposed by |Khansari-Zadeh and Billard, 2011].

The resulting models from optimizing with both SEDS-Likelihood and SEDS-MSE
methods benefit from the inherent characteristics of autonomous DS. However, each
objective function has its own advantages and disadvantages. Employing the SEDS-
log-likelithood can be advantageous in that it is more accurate and smoother than
SEDS-MSE. Furthermore, the SEDS-MSFE cost function is slightly more time con-
suming since it requires computing GMR at each iteration. However, the SEDS-MSE
objective function requires fewer parameters than the SEDS-log-likelihood, which may
make the algorithm faster in higher dimensions or when a higher number of compo-
nents are used |Khansari-Zadeh and Billard, 2011].

From the GMM-GMR approach the learning parameters requirements for esti-
mation would be K(1 + 3n + 2n?), for m, u, and X of size 1, 2n, and n(2n + 1)
respectively, with n the dimensionality of the demonstrations dataset. However, for
SEDS-Likelihood the total number of parameters can be reduced since Eq. pro-
vides explicit formulation to compute I from the other parameters. The number of
free parameters to construct the model with SEDS-Likelihood is K(1 + 2n(n + 1)).
For SEDS-MSE the term X; is not used, the total number of parameters SEDS-MSE

3
encoding reduces to K(1 + én(n + 1)). For both approaches, the number of param-

eters grows linearly with the number of Gaussian functions and quadratically with
the dimension. In comparison, the number of parameters in SEDS would be smaller
than those needed for the other methods.

Figure BIT] presents examples of the learned DS from a demonstrated trajectory
with the methods presented in this section: GMM-DS, BM, SEDS-MSE and SEDS-
Likelihood. As mentioned before, the non-linear DS are susceptible to instabilities.
Guaranteeing the estimates f results in an asymptotically stable trajectory and is a
key requirement to provide a useful control policy. The GMM-GMR approach as de-
fined by Eq. B:224cannot guarantee the system’s asymptotically stability. The method
presented by [Gribovskaya and Billard, 2009], Table B.1], look for an estimate of f
that is locally stable around the target, but without guaranteeing that such a model
would be found or considering the accuracy of its reproduction. As can be seen from
BIT(a) the learned model presents a spurious attractor and some of the trajectories
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(¢) SEDS-Likelihood (d) SEDS-MSE

Fig. 3.11: Examples of the learned DS. The letter C pattern demonstrations from
Fig[33 are modelled with the GMM-DS(a), BM(b), SEDS-Likelihood(c)
and SEDS-MSE(d) methods. Reproductions are drawn as red lines. The
target attractor is drawn as a black x at (0,0). The existence of spu-
rious attractors is drawn as magenta ¢. The streamlines of the learned
dynamics are drawn in blue.

are not accurate enough. The BM approach |Khansari-Zadeh and Billard, 2010b],
Table B.2] ensures local stability around a defined region ID. Here, as can be seen
from BITI(b), spurious attractors can still exist outside of I, which also has a limited
region of applicability. The SEDS approach |[Khansari-Zadeh and Billard, 2011|, Ta-
ble B3] provides strict stability constraints ensuring that the model satisfies global
asymptotic stability of the DS at the target. As can be seen from BITl(c)-(d), for
SEDS-MSE and SEDS-Likelihood respectively, reproductions of the learned DS are
guaranteed to be globally asymptotically stable.
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3.6 Reproduction of Learned Robot Skills

As stated before in the problem formalization in the previous section, the sys-
tem motion can be unambiguously determined by the state variable & when governed
by the estimate f of the motion dynamics. Choosing this variable is therefore cru-
cial for the trajectory of the reproduction of the learned robot skill. The learning
algorithms described in section aim at being a generic framework and make no
assumption on the variable that is used for training. Here, the choice is made to repre-
sent the motions in kinematic coordinates, the Cartesian space, with the assumption
that appropriate controllers are available to convert the kinematic variables to motor
commands. Adopting a kinematic formulation is quite suitable for motion control,
since the kinematic variables generalize over a large part of the workspace, and plan-
ning in kinematic space is often more convenient for motor control. Also, kinematic
plans can theoretically be clearly superimposed to form more complex behaviours
[Schaal et al., 2007].

First, it is desirable to validate the performance of the methods presented in
section B0l  For this a set of 2-D sample motions is collected from the valida-
tion data provided by the authors of the original formulation of these methods
in their respective source codes. A total of 8 motions were chosen to compare
the performance of the methods, 4 from |Khansari-Zadeh and Billard, 2011, 1 from
|[Khansari-Zadeh and Billard, 2010b|, 2 from |Calinon, 2009| and finally 1 hand drawn
motion recorded with MLDemos visualization tool for machine learning [Basilio, 2013].
All reproductions are generated in simulation to avoid adding the robot controller er-
rors. The methods’ performance are evaluated over two error measurements. An
accuracy error measurement, e from 3.32] which measures the error in the estimation
of £ magnitude and direction. And a “swept area error” measurement,

D Tt
1

E=5D D AE®).E(t+1),67 6 (3.38)

i=1 t=0

A correspond to the area of the tetragon generated by the points (£(t), £ (¢t+1), &4, 1))
were &8 71 are given by the demonstration datapoints at ¢ and t+1, and £(t), £(t+1),
computed by £(t) = £(t) * dt, are an estimate of the demonstrated trajectories start-
ing from the same initial points. Eq. measures the cumulative error over the
reproduction of trajectories.

Figure and Tables 3.4] summarize the results of validating the methods
with 8 sample 2-D motions. The GMM-DS method, tries to satisfy local stability
conditions, however, it does not ensure the possibility of finding a stable DS. The
BM method, generated the most accurate estimates among the methods, producing
generally better results than both SEDS versions. However, the BM method is also
the more computationally costly and the one which requires the highest number
of parameters among the methods, BM and GMM-DS have the same number of
parameters K(1+ 3n -+ 2n?) yet the value for number of Gaussian K was consistently
higher for BM since this method began at a max number of Gaussian and merged
down from there. Finally, the BM method only ensures local stability of the DS.
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Accuracy Error e Swept Area Error £ # of Ensure
Method Mean ¢ Rangeofe Mean & Range of € Parameters Stability
GMM-DS 0.75348  0.226-1.660 1930.3 199-8766 101(60-165) No(Local)
BM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Local)
SEDS-Likelihood ~ 0.77215 0.628-1.198 2241.3 648-10290  95(52-156) Yes(Global)
SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)

Tab. 3.4: Performance comparison of the methods presented in section [3.0 with a
set of sample 2-D motions. BM generates the most accurate estimate, and
also require the more number of parameters among the methods. The
performance of SEDS-MSFE and SEDS-Likelihood is similar.

The performance of both SEDS methods, Table B3] was comparable, with very
similar results particularly for the accuracy error (€), and slightly better with SEDS-
MSE for the sweep area error (£). The SEDS-MSE method is advantageous in
that it requires fewer parameters than SEDS-Likelihood. However, SEDS-MSFE has a
more complex cost function, making the algorithm computationally more expensive
|IKhansari-Zadeh and Billard, 2011|. Both SEDS methods outperforms BM in that
they ensure global asymptotic stability and are capable of better generalizing motions
for trajectories that are far from the demonstrations. Figure shows results of
estimating the 8 sample 2-D motions of Table with SEDS-Likelihood method.

The motivation for this chapter is to learn and encode the demonstrated motion
dynamics in order to build models of the robot skills as needed by the subsequent
modules of the proposed framework in Figure 3.1l The Robot Skills Models are defined
by the estimate of the motion dynamics, f, as learned by the methods in Section
B3, described in Tables Bl B2 B3l Therefore a robot skill is modelled by the
parameters 6 of f We will use the notation M gg for a Robot Skill Model, determined
by f={N"(&0"), -+, NK(& 6%)}, such that,

Mpgg = {0*,--- 0%} (3.39)

where 0 = {7, u, X} of the N'* Gaussian defined by Eq. BIS8, and K is the total
number of Gaussian functions required to estimate the motions dynamics.

For the robotic system reproduction of motions, the robot skills in this work are
to be represented in the Cartesian coordinate system, the desired output variables
are then positions, velocities and accelerations, in order to control the system in
the operational task space. From |Gribovskaya and Billard, 2009|, the task space
trajectories of the robot’s end-effector are selected so that it can be taught to control
the position and orientation of the motion. The variables in the training set were
chosen as the translation component of a motion of the end-effector, a vector of
Cartesian coordinates z € R3; and the orientation of the end-effector, a pair of
variables {s, ¢} representing the axis and the angle of rotation. According to this
representation, the orientation of a moving referential {x'y’z’'} with respect to a fixed
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Accuracy Error e Swept Area Error £ # of Parameters

Motion BM  SEDS-L SEDS-M  BM  SEDS-L SEDS-M BM  SEDS-L SEDS-M
Anglet 0.332  0.737 0.708 1082 1931 1178 135 120 80
Sinel 0.804  1.051 0.945 6101 7700 5627 195 90 60
Khamesh!  0.371 0.703 0.688 861 969 1021 90 90 60
Trapezoid*  0.353 0.698 0.675 575 984 789 180 75 50
Arc? 0.328  0.640 0.639 1037 1244 1112 90 75 50
Waves* 0.759  0.875 0.887 723 1179 889 300 180 120
U-Curve®  0.404 0.655 0.752 264 1825 1741 150 60 40
5-Curve®  0.509 0.747 0.584 2586 2814 1767 180 75 50

Tab. 3.5: Performance Comparison of Learning Methods on Sample Set of 2-D Mo-
tions. (!) taken from [Khansari-Zadeh and Billard, 2011|, (?) taken from
[Khansari-Zadeh and Billard, 2010b|, (*) taken from [Calinon, 2009], (*)

recorded with MLDemos visualization tool |[Basilio, 2013.

referential {zyz} is described by the rotational axis s € R? and the angle ¢ € [0; 27].
Internally an inverse kinematics controller is available to convert the end effector’s
control variables to appropriated joint space motor commands, 6, theta.

Therefore, the estimate f of the DS that it must be learned from the demonstra-
tions is,

i = f,(x) with ¢ =z € R? (3.40)
for the dynamics of the end-effector’s position (x). And,
o0=fo(s,0)  with £=[s,6], s€R’ o€ 0;27] (3.41)

for the dynamics of the end-effector orientation (o).
Alternatively, the state variable £ can be made to encode the coupled dynamics
of the end-effector’s position and orientation as,

€= fe(€) with €=lz,5,¢, zeR’secR?¢el0;2n] (3.42)

Then the estimate f of the dynamics can be inferred through the GMR process,

=

&= 1) =E[p(¢ | ©)] = D h*(&)(A" +b") where,

k=1

v=f(r)=Ep(|2)] = ; W (z)(Afz + b*) (3.43a)

for controlling the position.



Reproduction of Learned Robot Skills

@L&\;

H

H
20

H
oG
15
10
5
0
L L 5 L L L L
0 250 200 150 100 50 )

z

(a) Kh;mesh )
" \\ / <\ ™
| (a) Are Ec‘wes
TTIINAEY T
Sl
7 LB

Fig. 3.12: 8 2-D motions use to compare the performance of the various methods.
The resulting reproductions correspond to the SEDS-Likelihood Models.

‘._i \t
sof- f:" w0
3 ey 1 o wlf
- i/ e \
A i
“ Hay I \
':' 4 i L\
2 Hay (f Iy )
§ Fi A\
Ny (LN \
250 -200 =150 E" -100 =50 o -350 =300 -250 -200 *|§5‘0 =100 -50 0 50
(a) Angle ine
- L SR -
rapezoi

L
EE

-4

-5

) \\ ‘
-6 -5 -4

&
(a) U-Curve




110 3. Learning Robot Skills Models from Demonstrations.

Accuracy Error e Swept Area Error € # of Ensure
Method Mean ¢ Rangeofe Mean & Range of € Parameters Stability
BM 1.1079 0.179-2.258 1965 589-4548 112.5(45-210)  Yes(Local)
SEDS-Likelihood 1.8395 0.582-4.920 2024 389-6454 81.25(65-91)  Yes(Global)
SEDS-MSE 1.7191 0.458-4.316 2989 985-8028 62.5(50-70) Yes(Global)

Tab. 3.6: Performance comparison of the methods presented in section [3.0 with a
set of sample 3-D motions. The estimates generated with BM are more
accurate, while also requiring the bigger number of parameters among the
methods. Performance of SEDS-Likelihood and SEDS-MSF is very similar,
with SEDS-Likelihood outperforming SEDS-MSE in accuracy estimates,
and SEDS-MSE doing better with Swept Area Error.

= f(0)=E[p(6 | o) Zh’f (Ao + bk) (3.43b)

for Controlhng the orientation.
(&, 6] = f(z,0) = Ep([i,] | [, 0])]

. N N (3.43¢)
h"([x,0])) (A" [z,0]) + b") for a coupled controller.

[M] =

k=1

as defined by Eq. and Eq. B.24

Figure B.I3] and Tables B.6, B.7 summarize the results of validating the methods
with 4 sample 3-D motions. The GMM-DS method, was omitted this time from the
validations since it does not ensure the stable DS it will not be further employed
in this work. The BM method, again, generated the most accurate estimates, pro-
ducing generally better results than both SEDS versions, although its performance
was not always better for all of the task, see Table B.7, this could be because of bad
modelling of the task. Also, just as expected, the BM method presented the higher
number of parameters among all methods. The performance of both SEDS-MSE and
SEDS-Likelihood was very similar with SEDS-MSFE performing slightly better for the
accuracy error (€), and SEDS-Likelihood outperforming SEDS-MSE this time for the
sweep area error (£). It must be taken into account that these results are very task
dependent, and no other true conclusion can be made between these methods except
that they are both sufficiently adequate for their intended purpose in this work. Fig-
ure 313 shows the results of estimating the 4 sample 3-D motions of Table B.7 with
the SEDS-Likelihood method.

The assumption was made from Eq. B3] that the motions are modelled with a
first order time-invariant ODE. The proposed DS are generic enough to represent a
wide variety of motions, however, they would fail to define second order dynamics
accurately. This problem can be solved by defining the motion in terms of position,
velocity and acceleration |Khansari-Zadeh and Billard, 2011]. This means solving
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Accuracy Error e Swept Area Error £ # of Parameters
Motion BM  SEDS-L. SEDS-M  BM  SEDS-L  SEDS-M BM  SEDS-L SEDS-M
iCub-Task' 1.956  4.327 3.869 3112 599 1993 105 91 70
Cup-Task®>  1.522 1.215 1.248 11200 4758 24708 45 65 50
Door-Task®  0.263 1.523 0.923 1989 2796 2684 90 78 60
Cap-Task*  2.416 1.267 1.383 791 1064 1973 210 91 70

Tab. 3.7: Performance comparison of learning methods on a sample set
of 3-D Motions. (!) taken from [Gribovskaya and Billard, 2009,
(?) taken from [Khansari-Zadeh and Billard, 2010b], (°) taken from
[Kheddar et al., 20094], (*) recorded with kinaesthetic demonstrations
with the robot HOAP-3.

Accuracy Error e Swept Area Error £ # of Ensure
Method Mean € Rangeof € Mean & Range of £ Parameters Stability
BM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Local)
SEDS-Likelihood 0.77215 0.628-1.198 2241.3 648-10290  95(52-156) Yes(Global)
SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)

Tab. 3.8: Performance comparison of the methods presented in section [3.3 with a
set of sample selt-intersecting motions.

the problem as second order DS. When considering the motions in its second order
dynamics, that is & = g(z, t), it would be very advantageous if it could be simplified
with a change of variable into a first order ODE,

{3_3 - = [&,0] = f(x,0) (3.44)
0= g(z,v)

By defining the state variable, &, as € = [z, 0] = & = [4, 9] the Eq. simplifies to
€ = f(€) as in Eq. and can be learned following the methods presented in the
previous section.

Figure and Tables B.8] summarize the results of validating the methods
by learning the second order dynamics of a motion. It can be observed from the
trajectories that when encoding the intersecting motion with only the first order
dynamics reproduction failed to reflect the full demonstrated motion, Figure B.14l
Encoding the second order dynamics of the motion allows disambiguation of the
direction of the motion when reproducing a self-intersecting trajectory.

In order for a robot to reproduce a skill a model, M gg, of the estimate f(f) of the
motion dynamics must have been learned beforehand as per the methods presented in
the previous section. Assuming appropriate models exist the first step is to detect a
target object of the skill, the attractor of the modelled dynamics, in a “global referen-
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(a) iCub-Task (b) Cup-Task

(a) Door-Task (b) Cap-Task

Fig. 3.13: 4 3-D motions use to compare the performance of the various methods.
The results correspond to the SEDS-Likelihood Models.

Accuracy Error e Swept Area Error £ # of Parameters
Motion BM  SEDS-. SEDS-M BM  SEDS-I. SEDS-M BM SEDS-L SEDS-M
Loop! 4.348 2.741 2.246 5601 1078 3587 90 65 50
Letter T?>  3.260 7.211 6.448 3315 1773 2846 155 78 70

Tab. 3.9: Performance comparison of learning methods on a sample set of self-
intersecting motions. (!) taken from [Khansari-Zadeh and Billard, 20108,

(?) recorded with MLDemos visualization tool [Basilio, 2013].
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Fig. 3.14: 2 selt-intersecting motions DS use to compare the performance of

the various methods.

Top trajectory is a loop motion taken from

|Khansari-Zadeh and Billard, 2010b|. Bottom trajectory is a letter T mo-

tion recorded with MLDemos visualization tool [Basilio, 2013|. (left) The
result of encoding the first order dynamics of the motion. (right) The re-
sult of encoding the second order dynamics of the motion as it is presented

in Eq. 344
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Algorithm: On-line reproduction of the learned robot skill

Input: Learned Robot Skill Model, Mpgg, of the estimate é of the motion dynamics under-
lying the skill.

1. Detect a target position in the global referential {x, y, 2:} : X

2. Transfer the origin of the task referential frame to the detected target {z:,ys, 2} :
X7 = {07 0; 0}

3. Recompute the current state of the end-effector in the target referential £* =
{zl,yl, 2L}« xp.

4. LOOP until the target position is reached. ¢ = 0.

5. Infer the velocity at the time step ¢ through GMR, Eq.
§(t) = Yy hH(E) (ARE" +bF).

6. Compute the end-effector’s state for the next time step, £(t + 1).
E(t+1)=&(t) +E(t+1) - dt.

7. Compute the robot motor command for the next step,

£ ,é — ¢, g, solving the inverse kinematics problem.

8. Execute the robot command and sense the new ¢ effector position.
9. Update the end-effector state in the target referential
qg— & & ={al.yl, 2L} xp.
10. END

Output: é(t); &)y =€&t—-1)+ € % dt robot skill trajectory.

Tab. 3.10: Procedure for on-line reproduction of the learned robot skills.
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tial frame”, {x;, ys, 2:} : Xg, this could be from the robot’s own viewpoint referential
or any other perception system referential available for the task. The origin for the
task reference frame is then attached to the target, {x;, y;, 21} : X = {0,0,0}. There-
fore, the robot skill motion is controlled with respect to this frame of reference, with
a target attractor at the origin as in the formulation of Eq. B.5l This representation
also makes that the parameters of the DS invariant to changes in the target position.
Subsequently, the current state of the end-effector, {x., y., z.} : Xg, is recomputed in
the referential frame of the target, &* = {x.,y., 2.} : xp. The trajectories of the repro-
duced motion are governed by the modelled dynamics, progressing from the current
state, £*, towards the attractor point of the DS located at the origin of the target
referential frame, x;7 = {0,0,0} , according to the estimated attractor landscape of
the learned DS, see Figures and B.I3l At every step, the end-effector’s next
state, £**1, is inferred by sampling from the GMR, to obtain f ST = & f - dt,
this is repeated successively until the target is reached. The robot reproduction of
the trajectories of the learned motion dynamics can be computed on-line through the
GMR of the modelled robot skill. The process for on-line reproduction of the learned
motion dynamics is summarized in Table

3.7 Robot Skills as Basic Primitives of Movement

A desirable application for the learned Robot Skill Models is the building of a
library of so called movement primitives that can be readily available for later reuse
by the robot when a situation required it to.

For motion control in robotics different motor behaviours can be seen as differ-
ent control policies, representing different actions. It is desired to have methods
for representing human movement compactly in terms of a linear superimposition of
simpler movements, which are termed primitives. The motor primitives, also called,
movement primitives, basic behaviours, units of actions, etc., are sequences of ac-
tions that can accomplish a certain movement goal [Schaal, 1999]. Movement prim-
itives are biological structures that organize the underlying mechanism of complete
movements [Fod et al., 2000]. An approach based on movement primitives relies on
possessing available sequences of motor commands, executed in a certain order, to
accomplish a given motor task. The movement primitives can be viewed as a basic
set of motor programs that are sufficient for generating entire movement repertoires
[Muelling et al., 2013].

A starting point for this approach is in the assumption that complex movement
skills are composed from smaller units of action. The established belief is that human
activity is decomposed into building blocks of elementary actions. There are many
theories which propose human motion being divided into their elementary trajectories
|[Fod et al., 2000].

Dealing with these issues leads to facing the problems of segmentation and clas-
sification of human motion. The work of |Vecchio, 2002| deals with decomposing
continuous trajectories of the human body into their components, which are called
‘movemes’, and aims to build a so called “alphabet of movemes” to represent and
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describe human motion similar to the way phonemes are used in speech. The un-
derlying idea for a robotic system to cope with the complexity of replicating human
motor skills is for the learned, demonstrated movements to be first segmented into
sub-goals from which appropriate primitives can be obtained.

Movement primitives in their most simple form can be thought of as simple as the
elementary actions in the symbolic approach to imitation, with simple point-to-point
movements employed by industrial robots [Schaal, 1999]. Learning motions of such a
low-level of representation failed to scale well to systems with many degrees of free-
dom. Movement primitives would benefit from coding complete temporal behaviours,
that result in state-action representation that are compact and which need to adjust
only a few parameters for a specific goal [Schaal, 1999]. Learning the Robot Skills
Models as in section can be a most suitable way of forming basic primitives of
movement, encoding within the model the motion dynamics of a demonstrated skill.

Learning such basic units of action has long been thought useful for generating
libraries of motor skills. A robotic system equipped with a library of movement primi-
tives with a sufficient number of skills can be thought of possessing an adequate reper-
toire of actions to deal with a vast range of situations. Also, it is generally regarded
that complex motions can be dealt with by building a library of movement primitives
|[Pastor et al., 2009], providing basic components from which multiple desired robot
tasks can be performed by combination and superposition of the primitives.

From leading views of motor control in neurobiology it is generally regarded that
humans do employ basic motor primitives as an underlying mechanism of biological
motor control. Evidence exists from human and animal experiments supporting the
belief that sets of motor primitives are used to build a basis for voluntary motor control
|Konczak, 2005|. It is well accepted in these approaches that for coping with the
complexity of motor skills learning for robots, it is necessary to rely on the insight that
humans decompose motor skills into smaller subtasks. There are many theories about
motor primitives which suggest that they are a viable means for encoding humanoid
movement. Primitives are fundamental building blocks of motor control determining
an effective basis set of primitives is therefore a difficult problem [Fod et al., 2000].

Motor controller components of the movement primitives may be manually derived
or learned. It is important that the representations used for extracting units of actions
also relate to the movement generation |Meier et al., 2011]. The primitives must be
characterized in parametric form to allow generalization and their applicability to
different scenarios. Adequate representations are needed for the movement primitives,
in order to build a library of skills.

The work of [[jspeert et al., 2003| was the first to suggest the idea of using DS
as motor primitives. Their approach employed the DMP to learn and encode the
dynamics of demonstrated motions. The control policies could be used to represent
basic movements that form a library of motions. Defining the primitives in terms of
causal dynamical systems allows then to be parametrized by a small set of dynamical
parameters and an input driving the overall dynamics |Vecchio, 2002].

Various examples can be found to represent movement primitives such as that
repertoires of motions that can be built from learned motion tasks. [Ude et al., 2007]
presents a framework for synthesizing goal-directed actions from a library of example
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movements; different methods can be utilized for the construction of these movement
libraries. |Zoliner et al., 2005b| deals with the integration of learned manipulation
tasks into a knowledge base as well as enabling the system to reason and reorga-
nize the gathered knowledge in terms of re-usability, scalability and explainability of
learned skills and tasks. In |[Pastor et al., 2009] a collection of dynamic movement
primitives is used to build a library of movements by labelling each recorded move-
ment according to task and context. |Vecchio, 2002 proposed understanding human
motion by decomposing it into a sequence of elementary building blocks that belong
to a known alphabet of dynamical systems, which can be composed to represent and
describe human motions and shown dynamical characteristics which are sufficient to
distinguish between them. [Muelling et al., 2013| created a movement library from
Imitation Learning; movements stored in the library can be selected and generalized
using a mixture of primitives algorithm. |Fod et al., 2000| presented a method used
to derive a set of perceptual-motor primitives directly from movement data. The
primitives can be used as a lower-dimensional space for representing movement.

A difficult problem remains in these approaches in the segmenting of complex
movements and classification of the movement primitives. [Meier et al., 2011] ap-
proach aimed at movement segmentation with simultaneous movement recognition,
assuming that a library of movement primitives already existed, and reduced the
segmentation problem to online movement recognition.

The ability to imitate is based on a mapping mechanism which can automati-
cally classify all observed movements onto their set of perceptual-motor primitives
|[Fod et al., 2000]. Building systems that can detect and recognize human action are
an important goal. Thus segmentation and classification become key interrelated pro-
cesses of movement interpretation. The segmentation problem can be divided into
three sub problems, first determining the number of segments, then estimating the
start and end time of each segment and recognizing which primitive from the library
is executed in each segment [Meier et al., 2011|. Understanding motor behaviour be-
comes a process of classifying the observed movements into the known collection of
movement primitives |[Fod et al., 2000].

Distinguishing between general classes of motor skills is useful. [Vecchio, 2002] se-
lects between “reach” and “drawing” motions. The work of [Schaal and Atkeson, 2010
makes a classification along “regulator” tasks which keep the system over a point of
operation. “Tracking” task control systems to follow a given desired trajectory. “One-
shot” tasks defined by achieving a particular goal. And “periodic” movement tasks.
A complex movement would be composed of sequencing and superimposing of these
simpler motor skills.

ILjspeert et al., 2002| showed that trajectories with similar velocity profiles fit sim-
ilar encoding parameters and proposed to use the learned control policies to classify
movements, computing the correlation between them. The goal is to build a base
of robot skills learned from the demonstrations and to select and generalize among
these skills to adapt to new situations. A robot skill could be categorized according
to its velocities and acceleration profiles and the correlation between its variables
into several categories, such as reaching movements, striking or hitting movements,
tracing or drawing movements and coordinated and uncoordinated movements.
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3.8 Summary of the Chapter

Throughout this chapter a review of the field of Learning from Demonstration
(LfD) has been presented along with the process and methods used for learning and
encoding the models of the robot skills. In section basic notions of LfD were
presented. Section B3] reviewed methodologies for gathering demonstrations and the
correspondence problem. Various techniques for teaching and building the demon-
stration datasets were presented, such as kinaesthetic teaching, visual demonstrations,
motion capturing systems for recording demonstrations and the generation of robot
trajectories with virtual reality or simulated environments. The framework employed
through this work to learn robot skill motions from demonstrations was introduced
in section 3.4l The approach is based on learning time independent models of the
motion dynamics, estimated through a set of first order non-linear multivariate dy-
namical systems. Section presented the formalization of the learning problem, a
review of various regression techniques was presented. Also, three algorithms to learn
the dynamics of demonstrated motions were introduced. A first approach to learning
multivariate Gaussian was developed. This original formulation could not guarantee
the learning of a stable estimate of the dynamics. The BM method was presented
next, this method could produce a model of DS with local asymptotic stability at the
target. Finally the SEDS method was reviewed with two objectives functions, SEDS-
likelihood and SEDS-MSE. The SEDS formulation to learn the underlying dynamics
of a motion can guarantee that the estimate of the dynamics is globally asymptotically
stable at the target. Section 3.6 reviewed the methodologies used for the reproduction
of the learned motions dynamics of the robot skills. Comparing the performance of the
methods presented in section Validation was performed by learning the estimates
of 8 2-D motions and 4 3-D motions. The performance of the methods was compared
across the demonstrated motions, the results are presented over Tables 3.4 to B.9
Section B.7 discussed the existing approaches for building libraries of basic movement
primitives with the learned robot skills. A library of robot skills can be built with
the learned models of motion dynamics in order to build an appropriate repertoire
of movements for a robot to perform in several situations. In this work a module
was successfully implemented allowing the robot to learn skills from demonstrations,
we employed three different modalities to teach a robot the skill motions, recording
the robot’s trajectories as manipulated by a teacher with kinaesthetic teaching, em-
ploying vision system to track the teacher demonstrations, and recording the robot
trajectories in an OpenRAVE simulated environment. After studying, comparing,
and implementing various algorithms and techniques a Dynamical System approach,
based on learning time independent models of the motion dynamics through a set
of first order non-linear multivariate dynamical systems, was choose in this thesis
to learn the robot skills employing the SEDS-likelihood method for the remaining
experiments presented in this work.



4. REPRESENTATION OF ROBOT
SKILLS KNOWLEDGE

4.1 Outline of the Chapter

This Chapter describes the development of a knowledge base for the storing and
retrieval of the learned models of the skills. For a robotic system to perform different
skills and tasks in a changing and unstructured scenario, it is important to develop a
framework in which to organize the acquired knowledge in a manner that allows its
retrieval in order to use it to deal with the current context constraints. An important
aspect of the framework developed in this work is the existence of a knowledge base of
the learned robot skills. Figure 1] shows the framework proposed through this work
for the adaptation of learned skills to task constraints, highlighting the knowledge
base for robot skills model discussed in this chapter. To introduce the contents of
this chapter, first a review of the basic notions and concepts of knowledge represen-
tation and reasoning is given; a review of different approaches with a similar aim of
building repertoires of basic motor skills is given next; the representational structure
and organization of the knowledge base is presented; the representations used in the
knowledge base for the storing of the robot skills and the process for searching the
knowledge base are also described. The organization of this chapter is as follows:

e Section L2 presents an introduction to the topic of knowledge. The basic
notions and concepts in the field of knowledge representation and reasoning are
reviewed.

e Section[L3] presents a review of similar approaches aimed at building repertoires
of basic units of action, also known as movement primitives, which can represent
a basic set of elementary robot motor skills.

e Section[4.4] presents approaches for the representation of the object’s knowledge
in a robot skill’s knowledge base.

e Section[L.5] presents approaches for the representation of the action’s knowledge
in a robot skill’'s knowledge base.

e Section [0 presents approaches for the representation of the event’s knowledge
in a robot skill’s knowledge base.

e Section[L.7] presents the developed representational structure of the robot skill’s
knowledge base.
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Fig. 4.1: Module for representation of learned models of skills in a knowledge base,
highlighted over the proposed cognitive framework for learning and adapta-
tion of robot skills in compliance with task constraints. A knowledge base
of the learned Robot Skills Models is built for their storage, classification
and retrieval.

4.2 Knowledge Representation and Reasoning

An important challenge for robotics, and particularly for robots acting in un-
structured dynamic environments, which is a requirement for humanoid robots, is in
dealing with internal representation and understanding the world. Cognitive science
approaches aim at understanding, also with the hope of replicating, the processes of
human intelligence, and the workings of the mind, with an emphasis on, the mental
representations and mental operations involved in the development of thought and
intelligent behaviour. A central point for the development of cognitive theories lies in
studying the nature of knowledge; understanding the mechanism by which knowledge
is acquired, stored, represented and operated upon in a way that generates intelli-
gent thinking and behaviour. The field of philosophy has historically tried to explain
the roots and essences of knowledge. One position, rationalism, supported by the
philosophers Descartes, Spinoza, and Leibniz, among others, believed that knowledge
can be gained solely by employing thinking and reasoning skills about things. In
contrast, empiricism, defended by Locke, Hume, among others, believes that knowl-
edge is acquired primarily from sensory experience [Russell, 2012]. Transcendental
idealism, founded by Kant, and continued by Schopenhauer, and others, tried to rec-
oncile the differences between rationalism and empiricism views, arguing that human
knowledge, and our understanding of the external world depend on not merely our
experience, but in both sensed experience and a priori concepts, innate to the mind
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[Deleuze, 1985|. Experimental psychology theories of behaviourism, such as those
of J.B. Watson, denied the mind, and suggested restricting themselves to examin-
ing the relationship between perceived stimulus and observed behavioural responses
[Baum, 2003|. The constructivism view in philosophy, defined as a term by Jean Pi-
aget, whose ideas could be traced back to Giambattista Vico, and others, states that
concepts are mental constructs proposed in order to explain sensory experience, and
that all knowledge is a compilation of human-made constructions, created through a
series of individual constructs |[Rockmore, 2005|.

The most agreed view by cognitive scientists is that knowledge in the mind con-
sists of mental representations, and that intelligent behaviour and thought are the
resultant products of manipulating, reasoning and operating upon these internal rep-
resentations. People, states the view of cognitive sciences, have mental procedures op-
erating on mental representations that produce thought and action |Thagard, 2005].
Much of the debate in the field is centred upon the class and nature of these knowledge
representations, on the representational mechanisms for acquisition, organization, and
utilization of knowledge, and on whether the internal representations are even needed
at all or another if paradigm is required. All through history, philosophers, psychol-
ogists, and other scientists, have formulated a variety of metaphors for the mind;
for example, comparing it to a blank slate, ‘tabula rasa’, starting empty, without
any mental content or knowledge built into it, and on which impressions are made
recording knowledge from experience and perception. Other comparisons involve the
analogy to a hydraulic device, with various forces operating on it, governing the
energy flows which control behaviours; and to the operations of a telephone switch-
board, with an intercommunicating network of cells, involving complex switching of
information, responding to sensations, perceptions, thoughts, etc., [Thagard, 2005|.

Currently, the dominant analogy in cognitive sciences has been comparing the
mind and the brain to computers, where thinking can be understood as computa-
tional procedures. This metaphor assumes that the mind has mental representations
analogous to data structures in a computer program, and computational procedures
similar to programmed algorithms |Thagard, 2005]. Other theories have also arisen
to challenge the major premise of the computational-representational understanding
of mind (CRUM) thesis as the most suitable one for cognition. Connectionist models
proposed novel ideas expanding theoretical frames of cognitive science about repre-
sentation and computation that use neurons and their connections. The connectionist
analogy is that mental phenomena can be described by interconnected networks of
simple and often uniform units. Where neuron patterns and network connections can
be compared to data structures, and neuron firing and spread activation is analogous
for algorithms |Thagard, 2005|. Recent approaches in cognitive science have taken a
growing interest in dynamical systems. The dynamical systems metaphor promotes
thinking about the underlying forces, vector fields, from which observed patterns of
behaviours emerge [Schoner, 2008|. In this view, the brain is thought of as a dynamic
physical system and the processes in the mind can be described by difference and
differential equations. The driving idea motivating the dynamical systems approach
is that cognitive processes, contrary to the computational hypothesis of discrete rep-
resentational operations, must unfold continuously and simultaneously in real time.
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Therefore, a cognitive system would not be a sequential manipulation of discrete
static representational structures, but rather, a structure of mutually and simulta-
neously influencing change [van Gelder and Port, 1995|. The agents’ behaviour, in
its full complexity, can finally be generated from the complex dynamical evolution
of stable states and their instabilities in an interlinked non-linear dynamical system
[Schoner, 2008]. The systems internal representations may be modelled, thereafter,
not as simple inner states but as dynamical patterns of just about any conceivable
kind [CIark, 200,

Traditional commitment of cognitive sciences to a computational-representational
view of the mind, that is a view of intelligence as a problem of symbol manipulation,
faced increasing challenges and scepticism. These challenges have been explicitly
stated in works of [van Gelder, 1995|, |[Thelen and Smith, 2007], [Wheeler et al., 1994]
[Haselager et al., 2003|, etc. Theirs is a challenge to the isolationist conception of the
mind, and offer a rather radical rejection of representations. Their thesis is based
on the idea that the symbolic computational-representational views of cognition are
mistaken, and that cognitive agents do not require use of internal representation
to act upon the world. The anti-representationalists claim is that computations of
static symbolic internal representations form an inadequate analogy to explain the
continuous dynamically complex patterns of behaviour that cognitive agents display;
moreover, that internal representational mechanisms are not readily employed in na-
ture in biological cognition. Many researchers have looked for approaches trying to
completely disregard the use of representations and internal models as a whole. These
efforts are best summarized by the behaviourist radical mantra of “the world is its
own best model" [Brooks, 1990].

The view of the proponents of this hypothesis is that the representational ap-
proach is incapable of producing timely, suitable cognitive responses. The ontological
commitment incurred by ascribing to a knowledge representation |[Davis et al., 1993,
can be seen as detrimental and counterproductive for developing intelligent physical
agents. [Clark, 1997], addresses these challenges, and argues in favour of affording
complementary approaches for adaptive success, instead of thinking in terms of com-
peting perspectives. Here it is established, as a minimal common ground between
representationalist and anti-representationalist, that complex persisting inner states
are at the heart of cognitive phenomena, and that is not necessarily required a re-
vision of the notion of internal representations, but rather a revision of the ideas on
the kinds of inner states and processes which can possibly serve as vehicles of such
representations. The critical distinction is not between representational and non-
representational solutions but among an action-neutral form of internal representa-
tion, requiring disembodied symbolic computational processing, and action-oriented
forms, in which a behavioural response is embedded into the representation itself
[Clark, 2004]. The call is to beware of approaches relying only in intelligence on the
head, and narrow representational contents, and rather, to take a harder look at tem-
porally extended process that span brain, body and world. The major contribution
of these challenges is for a general broadening of cognitive science from its histor-
ically narrow focus on disembodied, language-like reasoning towards approaches of
embodied, embedded, situated, action and cognition [Beer, 2000].

b
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The theories of embodied cognition underlined that cognition is constrained by the
kind of body we possess, and emphasized the importance of action grounding, and the
role played by bodily states |Borghi and Cimatti, 2010]. The focus in an embodied,
embedded, approach, is in examining possibilities for action provided by the body
and the environment. A necessary emphasis is placed on the close link of cognition
with the sensory and motor processes and the environments in which these are im-
mersed. Models of cognition must be embodied processes that capture the unfolding
of cognition in time, and the associated sensory and motor surfaces embedded in the
environment in which cognitive phenomena takes place |[Schoner, 2008|. Therefore,
an agent’s potential for cognition is bounded to the motor capabilities of its body,
dependent upon its physical characteristics and abilities, and its situatedness and
possibilities of interaction with the environment. The claim is not an outright rejec-
tion of the legitimacy of representations, however in order to be valid, for embedded
cognition, the representations are to be limited, physically grounded to the environ-
ment and oriented toward the specific needs of the given agent [Anderson, 2003|. It is
clear that, despite the many challenges, some form of reasoning and representation of
knowledge mechanism must be featured in a cognitive agent to produce the intelligent
and adaptable behaviour that are desired.

The computational-representational, connectionist and dynamical systems theo-
ries of cognition mentioned earlier, beyond their differences in formalism and the tech-
nologies employed, differ markedly in their theoretical vocabulary and explanation on
cognitive phenomena [Beer, 2000]. However, while there is a substantial difference
between the presented accounts of cognition, this does not render the approaches
incompatible; they can be complementary |Bechtel, 199§|.

The computational theory is based on the existence of mental representations,
and the presence in the mind of “algorithmic” processes that operate upon the rep-
resentations; behaviours are produced by applying processes to the representations
|Thagard, 2005|. The explanatory focus of the symbolic computational model is solely
on the structure and content of the representations and the nature and efficiency of
the algorithms [Beer, 2000]. Various kinds of representation can be considered, such
as rules, concepts, analogies, frames, images, etc.

Connectionist theory is expressed as layered networks and simple, neuron-like,
nodes and links. The connectionist approach employs a more implicit style of repre-
sentation, replacing the symbolic nature of computational approach with numerical
vectors and operations of vectors completion and transformation [Clark, 1997]. Here,
representations involve simple processing units connected to each other and processes
spread activations between the units via their connections, which produces the be-
haviour [Thagard, 2005|. In a connectionist theory the focus of explanation is on
the network architecture, the learning algorithm, and the intermediate distributed
representations that are developed [Beer, 2000].

The dynamical systems theory conveys a very different format than other cogni-
tive theories. A dynamical model is expressed as a set of differential or difference
equations, describing system state changes over time. This focus on system evo-
lution and change over time is an important contribution of the dynamical system
approach [Bechtel, 1998|. Dynamical system parameters, attractors, trajectories, bi-
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furcations, etc., can be regarded with a representational status, storing knowledge
which can influence behaviour |van Gelder and Port, 1995|. Here, thought can be
described by variables governed by a set of non-linear difference equations, these
equations state space and the nature of the systems dynamics can explain stable pat-
terns of behaviours, phase transitions, or the appearance of unpredictable behaviours
|Thagard, 2005|. The explanatory focus of the dynamical systems theory is thus on
the space of possible trajectories and the internal and external forces that act over
the trajectory unfolding over time, and not on the nature of the mechanisms that
instantiate the dynamics [Beer, 2000].

Decisions about how to act are made, for a wide range of activities, based on
what is known about the world. Intelligent behaviour is thus, clearly conditioned
by knowledge [Brachman and Levesque, 2004|. The field of knowledge representation
and reasoning is a part of artificial intelligence concerned with the mechanism of how
an agent can use what it knows to decide what to do. Knowledge representation
deals with how knowledge can be represented and manipulated in an automated way.
The goal of knowledge representation and reasoning is the study of how knowledge
can be, simultaneously, represented as comprehensively as possible and reasoned with
as effectively as possible [Brachman and Levesque, 2004]. The most important issues
related to an agent’s needs in order to behave intelligently and to the computational
mechanism which may allow for knowledge to be readily available to an agent as
required. In knowledge representation and reasoning one’s focus is on the symbolic
structures for representing knowledge and the computational process for reasoning
with those structures that must be created. In dealing with the topic of knowledge
when building intelligent systems, the problems of representation and reasoning must
always be taken together. It is not sufficient to state what needs to be known, in
whatever formal representational language, and it is not sufficient either to develop
reasoning procedures, which are effective for various tasks. There is a necessary trade-
off between these two concerns; and it necessary to take into account the needs that
reasoning with knowledge structures has on the form of languages used to represent
knowledge. It is the interplay between representation and reasoning which makes the
field relevant |[Brachman and Levesque, 2004].

To understand the concepts of knowledge representation |[Davis et al., 1993| pro-
poses to review its meaning in terms of the five fundamental roles it plays. These
roles provide a framework useful for characterizing a wide variety of representations
and knowledge representation technologies; that is, basic representation tools such
as logic, rules, frames, semantic nets, etc., which are used to build knowledge rep-
resentations. For representations the fundamental task is capturing the complexity
of the natural world. It must form an ontological commitment and provide a theory
of intelligent reasoning. Representation and reasoning are inextricably intertwined.
A knowledge representation is also a medium for pragmatically efficient computation
and of human expression |Davis et al., 1993|. Those five roles help to characterize the
spirit of the representations and representation technologies that are developed.

All representations function as surrogates for abstract notions, such as, actions,
processes, beliefs, causality, categories, etc., allowing for a description of them to
be available so they can be reasoned with. However, every representation would
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ultimately be an imperfect approximation to reality, attending to some things and
ignoring others, since a complete description of the world would not be possible or
even practical or desirable. By choosing a representation and representation technol-
ogy a set of decisions are made about what and how to see the world. The stances
a representation takes on these issues and its rationale for those stances are indica-
tors of what the representation says about how to view and reason about the world
[Davis et al., 1993|.

The representation technologies, logic, rules, frames, etc., embody a viewpoint
of the kinds of things that are important in the world. For example, logic involves
viewing the world in terms of individual entities and the relationships between them.
Rules view the world in terms of attribute-object-value triples and the rules of plausi-
ble inference that connect them. Frames view in terms of prototypical objects. Thus,
the commitment to a particular view of the world begins with the selection of a rep-
resentation technology. The selection has a significant impact on the perception of
the world and the task being modelled. Thus, existing representation technologies
would supply its set of guesses about what to attend to and what to ignore in the
world. Choosing among any of them means more than the selection of a represen-
tation, in it a conception of the nature of intelligent reasoning is also being made
|[Davis et al., 1993|. The selected representation would have inevitable consequences
on how one sees and reasons about the world, so it must be selected consciously and
carefully, trying to find one that is appropriate for the task. While the selection of
tools and techniques are important, however, the field of knowledge representation
is also much richer than that. It must be the central preoccupation of the field to
understand and describe the richness of the world |Davis et al., 1993|.

The fundamental commitment for representations is as tools for describing the
natural world; their main role being working as a stand-in for real entities, substi-
tuting them for direct world interaction. The representations convey the gathered
knowledge content, and function as stand-ins for the things that exist in the real
world. Representations thus perform as functional abstractions of the perceived en-
vironment, encoding an agent’s knowledge of its world, objects, actions and events
into manageable internal structures; allowing for it to work, and reason, over the
representations instead of acting directly upon the world. Since reasoning is an in-
ternal process, while the things it needs to reason about exist externally, this func-
tional abstraction is important. The representations are structures standing in for
something else outside the system, by virtue of relations such as similarity, casual
history, and connections with other representations |Thagard, 2005|. An agent sys-
tem, having useful representations, can therefore operate on them, abstracting itself
beyond the world. A representation is a relationship between the two domains, an
inner self and an external world, where the first is meant to take the place of the
second |Brachman and Levesque, 2004|. This notion of representations, as proxies
of the world and bridging interaction with the environment, is a vehicle of human
thought. Performing operations with the representation is a substitute for operating
with real things, that is, a substitute for direct interaction with the world. The role
of representations as surrogates for the world leads to two important questions of
correspondence and fidelity. There must be some form of correspondence between
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its surrogates and its intended referents in the real world. Second is the problem of
how close a surrogate can be to the real thing. A perfect fidelity would be, both
in practice as in principle, impossible to obtain |Davis et al., 1993|. The imperfect
surrogates also leads inevitably to having incorrect inferences. Independent of the
reasoning and representation technologies employed, every sufficiently broad attempt
at reasoning about the world will eventually reach incorrect conclusions. Therefore,
the importance of the selection of a good representation is in minimizing the error for
the specific task [Davis et al., 1993|.

As already mentioned above, choosing a representation involves making a set of
decisions about how to see the world, and making a set of ontological commitments
about what part of the world to focus on. This is useful because the judicious selec-
tions of commitments provides the opportunity to focus attention on aspects of the
world believed to be relevant |Davis et al., 1993|. The natural world offers an over-
whelming complexity, the commitments incurred by the representational stance offers
necessary guidance in deciding the parts of the world to attend to and the ones to
ignore. By determining what and how to see the world, the representations allow one
to cope with what could be otherwise untenable complexity and detail. The commit-
ment that is made by choosing from different ontologies can produce sharply different
views of the task at hand. An ontology can be written down in a wide variety of
languages and tools. The commitment to a particular view of the world, thus, starts
in the selection of a representation technology and accumulates from there as choices
are made about how to see the world in these terms |[Davis et al., 1993]|.

To use a representation, computations must be made with it. Reasoning in purely
mechanist terms can be seen as a computational process. Questions about the com-
putational efficiency are central to the notions of representation, but one can also
not be overly concerned with them to the point of producing representations that
are fast but inadequate for real use |[Davis et al., 1993|. Knowledge representations
must also be means for communication in which to express things about the world.
The representations must fulfil the role of medium for expression and communication.
This role matters since one must be able to speak the language, with heroic efforts,
in order to use it to communicate with the reasoning system |Davis et al., 1993|.

A representation can guide and facilitate reasoning if it has at its heart a theory
of what reasoning to do. Representation and reasoning are inextricably and usefully
intertwined, in this view, reasoning itself is in part a surrogate for action in the world.
A knowledge representation is also a theory of intelligent reasoning. A representation
can be examined in three components, first its conception of intelligent inference. The
second component of a representation theory of intelligent reasoning is the set of sanc-
tioned inferences. Thirdly, more than an indication of which inferences can legally
be made is needed; an indication of which inferences are appropriate is also needed.
Where the ontological commitment tells one how to see, the recommended inferences
suggest how to reason |Davis et al., 1993]|. The concept of reasoning is as disputed
as those of representation, knowledge and intelligence, collecting inputs from various
fields. Recalled by |[Davis et al., 1993|, the mathematical logic view is that, reasoning
is a variety of formal calculation. The view in psychology sees reasoning as a charac-
teristic human behaviour, symbolized by human problem solving. An approach rooted
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in biology takes the view that the key to reasoning is in stimulus-response behaviours
emerging from the parallel interconnection of simple processors. Approaches derived
from probability theory, add to logic the notion of uncertainty, in which reasoning
intelligently means obeying the axioms of probability theory. Reasoning is the for-
mal manipulation of the represented collection of believed propositions in such a way
as to construct representations of new propositions [Brachman and Levesque, 2004].
Different conceptions of the nature of intelligent reasoning lead to different goals and
definitions of success, and different artifacts being created |Davis et al., 1993].

Knowledge representation hypothesis implies that we would want to build systems
for which the intentional stance is grounded by design in symbolic representations.
A knowledge base is a collection of symbolic structures representing what it believes
and reasons with during the operation of the system. A knowledge base system can
be understood at two different levels. At the knowledge level, questions concern the
representation language and its semantics. It deals with expressing adequacy of a
representation language and characteristics of entailments, including computational
complexity. At the symbol level, questions concern the computational architecture
and the properties of the data structures and reasoning procedures, including their
algorithmic complexity |[Brachman and Levesque, 2004]. Broader conception of repre-
sentations are important, recognizing that a representation embeds a theory of intelli-
gent reasoning, the ability to dissect some of the arguments about formal equivalence
of representations, and that the central task of knowledge representation is captur-
ing the complexity of the real world |[Davis et al., 1993|. Human problem solving
depends on what is important and interesting given the situation. A human expert
learns to recognize and to react, they do not think and reason, as a knowledge base
system would do, over an explicit representation. |Dreyfus et al., 2000] would de-
scribe the difference in terms of “knowing-that” and “knowing-how”. “Knowing-that”
is a conscious, step-by-step problem solving ability, with context free symbols, which
we manipulate using logic and language. “Knowing-how” is the natural way one deals
with things, when we just know what to do, and learn to subconsciously, recognize a
situation and react. It generally makes a system slow down having to look up facts in
a knowledge base and reason with them at runtime in order to decide what actions to
take. The ability to make behaviours which depend on explicitly represented knowl-
edge only seems to pay off when it is not possible to specify in advance the ways that
knowledge will be used |Brachman and Levesque, 2004].

4.3 Developing a Repertoire of Robot Skills Knowledge

The main goal for humanoid robotics research is to build human like robots that
can work alongside humans dealing with continuously changing environments and
performing a wide variability of tasks. To achieve a complex behaviour such as this,
it would be necessary to have an inclusive and comprehensive repertoire of robot
skills. For this purpose the concept of movement primitives, also called movement
schemas, basic behaviours, or units of actions, is proclaimed. Movement primitives are

sequences of action that accomplish a complete goal-directed behaviour [Schaal, 1999|,
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as it has been reviewed in Section 3.7

From the field of neurobiology it is generally regarded that humans employ basic
motor primitives as an underlying mechanism of biological motor control. Evidence
exists from human and animal experiments supporting the belief that sets of mo-
tor primitives are used to build a basis for voluntary motor control |[Konczak, 2005].
Neuroscience studies in animals point to two neural structures, spinal fields and mir-
ror neurons, which support the basis for a theory of perceptual-motor primitives
[Mataric, 2000]|. It is well accepted in these approaches, that for coping with the
complexity of motor skills learning for robots, it is needed to rely on the insight that
humans decompose motor skills into smaller subtasks. There are many theories about
motor primitives which suggest that they are viable means for encoding humanoids’
movements.

The movement primitives are sequences of action that accomplish a certain move-
ment goal. The primitives encode groups or classes of stereotypical movements
[Mataric, 2000]. Movement primitives in their most simple form can be thought of as
simple as the elementary actions in the symbolic approach to imitation, with simple
point-to-point movements employed by industrial robots [Schaal, 1999]. To deal with
complex motions, a library of movement primitives can be built [Pastor et al., 2009],
providing basic components from which multiple desired robot tasks can be performed
by combination and superposition of the primitives. A robotic system equipped with
a library of movement primitives, with a sufficient number of skills, can be thought of
as possessing an adequate repertoire of actions to deal with a vast range of situations.
A theory of primitives is a fundamental building block for motor control.

Learning the Robot Skills Models as they were presented in Section can be a
most suitable way to form basic primitives of movement, encoding within the model
the motion dynamics of a demonstrated skill. Such collections of primitives are used
to build a knowledge base from the learned motions of a task. Various examples can be
found on building up a knowledge base from learned motion tasks. |[Ude et al., 2007|
presents a framework for synthesizing goal-directed actions from a library of example
movements; different methods can be utilized for the construction of this movements
library. |Zoliner et al., 2005b| deals with the integration of learned manipulation tasks
into a knowledge base as well as enabling the system to reason and reorganize the gath-
ered knowledge in terms of the re-usability, scalability and explainability of learned
skills and tasks. In [Pastor et al., 2009| a collection of dynamic movement primitives
is used to build a library of movements by labelling each recorded movement according
to task and context.

The work of [[jspeert et al., 2003| was first to suggest the idea of using DS as
motor primitives. Their approach employed the DMP to learn and encode the dy-
namics of demonstrated motions. The control policies could be used to represent basic
movements that form a library of motions. Defining the primitives in term of causal
dynamical systems allows then to be parametrized by a small set of dynamical pa-
rameters and an input driving the overall dynamics. |Schaal et al., 2003|, presents a
conceptual imitation learning system which alludes to the concept of movement prim-
itives to generate action behaviours. Perceptual elements are transformed into spatial
and object information and are mapped onto a set of existing primitives, where a set
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of movement primitives compete for a demonstrated behaviour. Motor commands
are generated from input of the most appropriate primitive. Learning can adjust
both movement primitives and the motor- command generator |[Schaal et al., 2003|.
Effectiveness of imitation learning with these dynamic system primitives was success-
fully demonstrated in a humanoid robot that learned a series of movements such as
tennis forehand, tennis backhand and drumming sequences from a human teacher
ILjspeert et al., 2003|.

[Mataric, 2000|, proposed to structure the motor system into a collection of move-
ment primitives, which then serve both to generate a movement repertoire to the
humanoid robots, and to provide prediction and classification capabilities for visual
perception and interpretation of movement. The movement primitives or behaviours
are the unifying mechanisms between visual perception and motor control in their
approach. They represent the generic building blocks of motion that can be imple-
mented as parametric motor controllers [Mataric, 2000]. Such a primitive lets a robot
reach toward various goals within a multitude of tasks; this allows for a small number
of general primitives to represent a large class of different movements, such as reaching
various places on and around the body. The general system segments the trajectory
over time these segments are, at each point, matched to the expected output of each
of the primitives with the observed input and the best match is selected. The out-
put of the classification is a sequence of primitives and their associated parameters.
These then go to the motor control system and activate the primitives in turn that
reconstruct the observed behaviour |[Mataric, 2000].

|[Fod et al., 2000] presented a method for representing human movement in terms
of a linear superimposition of simpler movement primitives. The primitives can be
used as a lower-dimensional space for representing movement. In their model, the per-
ceptual system is biased by the set of motor behaviours the agent can execute. Thus,
an agent can automatically classify observed movements into its executable repertoire.
In |Jenkins et al., 2000] perceptual-motor primitives formed a biologically-inspired
notion for a basis set of perceptual and motor routines. Primitives serve as a vocab-
ulary for classifying and imitating observed human movements, and can be derived
from the imitator’s motor repertoire. Their notion of a motion vocabulary comprises
movement primitives that structure a human’s action space for decision making and
predict human movement dynamics. Through prediction, such primitives can be used
to both generate motor commands for specific actions and perceive humans perform-
ing those actions, using a known vocabulary of primitives |Jenkins et al., 2007].

[Vecchio, 2002| developed a study of primitives of human motion, termed “movemes”,
using tools from dynamical systems and systems identification, decomposing it into a
sequence of elementary building blocks that belong to a known alphabet of dynamical
systems, which, in turn, can be composed to represent and describe human motions.
[Vecchio et al., 2003| address the problem of defining conditions under which collec-
tions of signals are well-posed according to a dynamical model class and, thus, can
generate the “movemes”. Also, developed segmentation and classification algorithms
in order to reduce a complex activity into the sequence of “movemes” that have gen-
erated it. |[Vecchio, 2002| attempted to define primitives in terms of causal dynamical
systems, that could be parametrised by a small set of dynamical parameters and by
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an input which drives the overall dynamics. An “alphabet of movemes” is built to
represent and describe human motion. Their experiments showed that it was possible
to distinguish between the “movemes” in drawing tasks.

|[Zoliner et al., 2005b| built up a knowledge base of manipulation tasks by ex-
tracting relevant knowledge from demonstrations of manipulation problems. Their
work dealt with the integration of learned manipulation tasks into a knowledge base,
as well as enabling the system to reason and reorganize the gathered knowledge in
terms of re-usability, scalability and explainability of learned skills and tasks. The
main goal was comparing newly acquired skills or tasks with already existing tasks
and knowledge and deciding whether to add a new task representation or to expand
the existing representation with an alternative. Gathered knowledge is reorganized
and structured on the level of manipulation segments, enabling an execution system
to select from multiple alternative operations |Zoliner et al., 2005b].

[Ude et al., 2007]| presents a framework for synthesizing goal-directed actions from
a library of example movements, different methods can be utilized for the construction
of this movements library. The approach used a general representation based on
fifth order splines. The proposed approach enables the generation of a wide range of
movements that are adapted to the current configuration of the external world without
requiring an expert to appropriately modify the underlying differential equations to
account for perceptual feedback. In |Forte et al., 2012| trajectories are generalized
by applying Gaussian process regression, using the parameters describing a task as
query points into the trajectory database.

In [Pastor et al., 2009] a collection of dynamic movement primitives is used to
build a library of movements by labelling each recorded movement according to task
and context. Their work provides a general approach for learning robotic motor skills
from human demonstration. Generalization can be achieved simply by adapting a
start and a goal parameter in the equation to the desired position values of a move-
ment. Feasibility of the approach is demonstrated with a pick-and-place operation
and a water-serving task and could generalize these tasks to novel situations.

[Meier et al., 2011] approach aimed for movement segmentation with simultane-
ous movement recognition, assuming that a library of movement primitives already
existed, and reduced the segmentation problem to online movement recognition. In
[Muelling et al., 2013| the goal was to acquire a library of movement primitives from
demonstrations and to select and generalize among these movement primitives to
adapt to new situations. The primitives stored in the library are associated with a
set, of parameters that form an augmented state that describes the situation present
during demonstration; these parameters are used as components in a mixture of mo-
tor primitives algorithm. To generate a movement, the system selects movement
primitives from the library. A parametrized gating network is used in the mixture
of primitives algorithm to activate components based on the augmented state and
generate a new movement using the activated components.

The motor controller components of the movement primitives could be manually
derived or learned. In this work a framework to build the models of the robot skills
using Learning from Demonstration techniques, as described through Chapter Bl was
chosen to learn the basic primitives of action. Traditionally, learning motions at a
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low level representation failed to scale well to systems with many degrees of freedom.
The learning of movement primitives, therefore, would benefit from coding the com-
plete temporal behaviours that result in state-action representation that are compact
and which need to adjust only a few parameters for a specific goal [Schaal, 1999].
Primitives must be characterized in parametric form to allow generalization and their
applicability to different scenarios. It is important that the representations used for
extracting units of actions also relate to the movement generation |[Meier et al., 2011].
The representation of the robot skills must be flexible and compact enough to be able
to store, use and retrieve this knowledge in efficient ways and allow the robot have a
comprehensive repertoire of skills. Adequate representations are needed for the skill
primitives in order to build a repertoire of robot skills.

4.4 Representing Objects in the Robot Skills Knowledge

Before one can start to deal with the issues of building a representation of the
world and the commitments it must ascribe to for the representations of knowledge
and the process of reasoning to work, a key decision must be made on which as-
pects of the world one will focus on and which aspects of the world one will choose
to ignore and how the knowledge about the world would be structured. For any
representational system the question of what is needed to be modelled and what
can be ignored or abstracted away is a fundamental issue |[Anderson, 2003|. The
abstractions are necessary because no system can possible manage a world model
that includes the whole of the world. Knowledge of the world, in a cognitive agent,
can come from different sources and present different formalism. Knowledge about
one’s environment can come through perception, knowledge about a current situation
may come from planning, reasoning and prediction, knowledge about other agents
can come via communication and knowledge of the past come from memory and
learning |Langley et al., 2009|. It is an important ability for an intelligent agent to
deal with these various forms of knowledge in an effective manner. For instance, an
agent must have the ability to recognize situations or events as instances of known
patterns, and to assign these objects, situations or events to known concepts or cat-
egories |Langley et al., 2009]. Also, the ability to select among alternative actions
and make decisions is needed. Therefore, an agent must be able to represent and
store knowledge that would enable its activity. Preceding discussions have dealt with
the numerous views that claim a rejection of the internal representation paradigm for
developing cognitive agents, nevertheless, it is our belief that some form of representa-
tions is not only inevitable but also necessary and adequate for robotics. However, the
representations must be limited and physically grounded to the environment; good
representations must be selective and oriented to a particular use by a particular
agent |[Anderson, 2003].

One way to see the world, borrowing representational ideas from natural lan-
guages, would have us dealing with “objects”, such as people, houses, etc., and “re-
lations” among “objects”, or “properties”, such as red, round, etc., and “functions”,
such as fatherof, etc. Where almost any assertion can be thought of as referring
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to “objects”, and “properties” or “functions” |Russell and Norvig, 2010]. Traditional
representations in artificial intelligence have focused on the symbolic discrete repre-
sentation of objects and actions |Geib et al., 2006]. The objects-actions dichotomy is
an important abstraction for the performance of robots as embodied cognitive situated
agents. A majority of approaches in cognitive architectures focus on skill knowledge
of how to generate or execute sequences of actions, while often relegating equally im-
portant conceptual knowledge dealing with categories of objects, situations or other
concepts |Langley et al., 2009]. Therefore, much of an agent’s knowledge must consist
of skills, concepts and facts about the world. From what has been considered so far,
one is lead to a view of the world consisting of objects, concepts, actions, skills, situ-
ations and events. The importance of dealing with objects when developing robotic
agents which must perform in the world seems quite evident, since most of a robot’s
operations in the environment would be bound to the manipulation of an object. It
seems clear that the representational attributions must be oriented to dealing with
objects in the environment and the actions that can be executed on them. In order to
deal with changing dynamic environments’ representations must also have the ability
to handle different situations or events. Recognizing different events or situations in
the environments and the objects and actions that pertain to the current configura-
tion of the environment is a crucial ability that the robotic systems discussed here
must be able to possess.

Prior to populating a knowledge base with object classes it is necessary to state
out what is called an ontology. An ontology determines the kinds of things that can
be said to exist. The word “ontology” means a particular theory of the nature of
being or existence |Russell and Norvig, 2010]. In philosophy, as an ontology is un-
derstood the study of the nature of being, becoming, existence, or reality, as well as
the basic categories of being and their relations. An ontology defines, in the context
of computer science, a set of representational primitives with which to model a do-
main of knowledge [Gruber, 2009]. The ontology defines the concepts, relationships,
and other distinctions that are relevant for modelling a domain. By means of an
ontology one determines the kinds of objects that will be important to the agent,
the properties those objects will be thought to have, and the relationships among
them |Brachman and Levesque, 2004]. Committing to an ontology requires choosing
a particular view of the world. Once the choices are made one is left with a represen-
tational vocabulary specifying the domain, with definitions for typical classes or sets,
attributes or properties, and relationships among class members [Gruber, 2009]. On-
tologies can’t provide complete descriptions of everything, but they leave place-holders
where new knowledge for any domain can fit in [Russell and Norvig, 2010|. Ideally, an
ontology would try to unify different areas of knowledge, general purpose ontologies
should be applicable in more or less any special purpose domain. However, general
ontological engineering has so far seen only limited success |[Russell and Norvig, 2010].
Agreeing to an ontological representation is a difficult proposition, and usually most
applications in artificial intelligence make use of special purpose knowledge engineer-
ing, designing their own ontology, tailored for a particular use.

Organizing objects into categories is a vital part of knowledge representation
|[Russell and Norvig, 2010|. It is essential to circumscribe the basic types of objects
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Fig. 4.2: Representing knowledge of objects. (left to right): The real-world object.
3D model representation of the object. Convex bounding volume represen-
tation of the object. Representation of the object in Cartesian, spherical
or cylindrical coordinates.

our knowledge base would have, and to determine the set of attributes that our ob-
jects can have. In general, a good ontology should require only a few general rules.
Once the types of our objects have been established one can capture the properties
of the objects |[Brachman and Levesque, 2004|. The ontology provides a set of fea-
tures that serve to identify objects that can fit typical categories. Onme infers the
presence of certain objects from perceptual input, infers category membership from
the perceived properties of the objects, and then uses category information to make
predictions about objects |Russell and Norvig, 2010].

A typical problem building a representational approach is that knowledge about an
object could be scattered around the knowledge base |[Brachman and Levesque, 2004].
The organization of the knowledge of objects in the world towards a manageable
structure of objects’ knowledge is a critical aspect of the design of a knowledge base.
Organizing objects into categories is a vital part of knowledge representation; the
approach is to group facts or rules in terms of the kind of objects they pertain to.
Categories are the primary building blocks of knowledge representation schemes, the
real world can be seen as primitive objects and composite objects built from them
|[Russell and Norvig, 2010]. Objects naturally fall into categories, but can also be
members of multiple categories. The objects can also be made of parts, the rela-
tionship among an object’s parts is essential to it being considered a member of
a category. Building taxonomies is also an important aspect of general common-
sense knowledge; the subclasses relations organize categories into taxonomy hierar-
chies |Russell and Norvig, 2010].

The framework of first-order logic encodes knowledge about the objects as log-
ical expressions, each cast in terms of predicates and arguments, plus statements
that relate these expressions in terms of logical operators. A model in first-order
logic consists of a set of objects and an interpretation that maps constant symbols
to objects, predicate symbols to relations on those objects and function symbols to
functions on those objects |Russell and Norvig, 2010|. Production systems on the
other hand, provide a more procedural notation, which represents object knowl-
edge as a set of condition-action rules that describe plausible responses to differ-
ent situations |Langley et al., 2009]. Semantic networks provide graphical aids for
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visualizing the knowledge base and algorithms for inferring the properties of an
object base on its category membership. Semantic networks allow the capability
of representing individual objects, categories of objects, and relations among ob-
jects |Russell and Norvig, 2010]. The description logics system provides formal lan-
guage for constructing and combining category definition, and for deciding subset
and superset relationships between categories. The notation of description logics
was designed to make it easier to describe definitions and properties of categories
|[Russell and Norvig, 2010|. [Geib et al., 2006|, proposes the pairing of objects and
actions in a single interface representation. Object-Action complexes are suggested
as a framework for representing actions, objects, and the learning process that con-
struct such representations |Kriiger et al., 2009|. [Lemaignan et al., 2010] presents
an embeddable knowledge processing framework along with a common-sense ontol-
ogy designed for robotics.

A system dealing with objects in the real world must deal with various differ-
ent forms and types of knowledge. Representing the objects’ knowledge requires
a structured approach. [Minsky, 1975], suggested the idea of using object-oriented
groups of procedures, which where called frames. The frame concept offers a rep-
resentation of an object or category, with attributes and relations to other objects
or categories, assembling facts about particular object and event types and arrang-
ing the types into a large taxonomic hierarchy analogous to a biological taxonomy
|[Russell and Norvig, 2010|. Frames focus mainly on the recognition and description
of objects and classes. The frame data structure specifies concepts in terms of at-
tributes, called slots, and their values, called fillers. One would have special systems
for important objects, but also a variety of frames for generally useful “basic shapes”.
[Minsky, 1975] pictured a great collection of frame systems stored in permanent mem-
ory, when the perception evidence suggests one will fit a frame is evoked to working
memory.

The frame knowledge structure can be seen as an instance of an object-oriented
representation analogous to the development in an object-oriented programming lan-
guage. This could allow the frame representation of objects to share many advan-
tages of object-oriented programming systems, like the specification of general classes,
logical control, inheritance of methods, encapsulation of abstract procedures, etc.
|IBrachman and Levesque, 2004]|. In general, there are two types of frames, individual
frames used to represent single objects, and generic frames, used to represent cate-
gories of classes of objects |Brachman and Levesque, 2004]. Through inheritance of
properties one can organize and simplify the knowledge base using categories. Much
of the reasoning done with frames involves the instantiation of individual frames out
of the generic frames. Filling some of the slots with some values and inferring others.
The reliance on default values for when a reliable inferring of the slots is not possible
is one important aspect of the frame system [Hayes, 1979]. A generic object frame
holds all necessary information for the recognition and identification of an object into
a category class, and any positional information and constraints relate to it and its
situation in the environment. Object instance in the knowledge base would be de-
scribed by the characteristic attributes of the objects; this could be, for instance, its
color, shape, size, id tags, or any other relevant intrinsic information property of the
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Object Frame: Example of generic object frame
and instances of an object frame

(Object-frame) gObj
(Color) none (/Color)
(Volume) 0 (/Volume)
(Model) none (/Model)
(Roles) obstacle (/Roles)
(

(

(

Position)

Cartesian) 0 0 0 (/Cartesian)

/Position)

(Object) ObjA (Object) ObjB

(instanceOf) gObj (instanceOf) gObj

(Color) Blue (/Color) (Color) # FFFF00 (/Color)

(Volume) none (/Volume) (Volume) none (/Volume)

(Model) none (/Model) (Model) none (/Model)

(Roles) tool (/Roles) (Roles) obstacle (/Roles)

(Position) (Position)

(Cartesian) 120 34 56 (/Cartesian) (Cartesian) 30 -45 78 (/Cartesian)

(/Position) (Spherical) 95 35 -56 (/Spherical)
(/Position)

Tab. 4.1: Object Frame example for a generic object frame and instantiations of
particular object frames.

object that allows for its identification.

Figure presents different modes for the representation of an object location
knowledge. The leftmost image corresponds to a real-world scene, representing the
object as it is. Managing a full model of the world is a very demanding task. The
real-world object can be represented by its 3D model; this could be directly computed
from sensory input or retrieve from memory given a prior recognition step. Complete
3D models are not always necessary, a simpler convex bounding volume representation
capturing the occupied space of the object can suffice, for instance when thinking of
the object as an obstacle to avoid in a path. Typical tasks in robotics need only
to rely on the knowledge of the object position in either of Cartesian, cylindrical or
spherical coordinate frames of reference, making an object representation in terms of
its point coordinates a valid one for this objectives. It must be noted that having
one or other representation can lead to a very different set of computations and tasks
that the robot could be able to perform with an object. Yet, these representations are
not exclusive and any combination of these modes could be present in a knowledge
base if the system is designed for it. In this work the data structure of Frames is
used to store knowledge about the objects in the environment in our knowledge base.
Table .1l shows an example of the object frame. A generic object frame is described,
and two instances derived from the generic frame are also present. An instance of
an object frame inherits from the properties and default values of the generic frame,
but this does not prevent it having properties and updating its values on its own.
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An object frame could also represent instances of two or more generic frames or be
composed of other object frames as sub-parts. Important properties of the object
frames their name, position and role values for their identification, localization and
relationship to the rest of the knowledge base.

4.5 Representing Actions in the Robot Skills Knowledge

As outlined in the previous section, the representational attributions of objects
and actions, and perhaps more importantly the interrelation between the objects
and action representations, is a fundamental concern when executing tasks in the
world. The main role of a humanoid robotic system is to act and achieve tasks
and goals operating in complex environments. The robots’ actions would generally
involve the presence of an object, or several objects, plus the possible interaction
with human partners. Deciding on the model for the representation of actions is
an essential undertaking for robotics and cognitive science research efforts. Think-
ing beings ought to be considered as acting beings in which cognition is a situated
activity |[Anderson, 2003|. It is important to note that actions are not performed
in a vacuum, the cognitive process does not occur in isolation, actions are not per-
formed disconnected from their embodied presence and the effects they have on the
world |[Nehaniv and Dautenhahn, 2001]. These effects would be described in terms of
combinations of actions, states and goals.

Robotic systems, executing tasks in unstructured environments, must have func-
tional representations for actions that facilitate the robot performance with objects
and their environment. In section [£.2], the challenges to the symbolic internal repre-
sentations and the stance for an embodied approach to cognition were reviewed. The
embodied view of cognition’s most pressing concern lies in the interaction between an
agent’s body with the environment [Haselager et al., 2003|, and a distrust of the idea
that cognition and knowledge representations are purely symbolic mental processes
separated from action in the world. However, despite the various challenges, an out-
right rejection of internal representations also seems to be an incomplete approach.
To produce the intelligent and adaptive behaviours that we desire, a cognitive agent
must feature some form of reasoning and representation of knowledge.

Human problem solving abilities involve the cooperation between internal rep-
resentations, computations and environmental interactions. [Clark, 1997] addressed
the challenges to internal representations and argued in favour of adopting comple-
mentary approaches rather than thinking in terms of competing perspectives. Repre-
sentations, in order to be valid for embedded cognition, are to be limited, physically
grounded to the environment and oriented towards the specific needs of the given
agent |[Anderson, 2003|. Therefore, a distinction must not be made between repre-
sentational and non-representational solutions but among the action-neutral forms
of internal representations, requiring for disembodied symbolic computational pro-
cessing and more action-oriented forms of representation, in which the behavioural
response is embedded into the representation itself [Clark, 2004]. Real world cognitive

processes occur in very particular environments and are employed for very practical
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ends and exploit the interaction and manipulation of external props [Anderson, 2003].

The previous discussion points to the realisation that the ways in which a robotic
system can act hinges on what its embodiment and the environment allow. This is
tied to the object and situation oriented concept of affordances |Kriiger et al., 2009].
When thinking of actions’ representations the concept of affordances is essential, as
the concept of an ontology was for the discussion of object representations. The
representations of objects and actions are related in terms of their affordances. The
system’s actions are embedded in affordances’ representations of objects and action
pairs [Sahin et al., 2007]. The concept of affordances refers to the perceived and ac-
tual properties of things; particularly to properties that are fundamental to determine
how a thing could possibly be used [Norman, 1988|. An affordance is the relationship
between a situation, usually including an object of a definite type, and the actions that
it allows |Kriiger et al., 2009|. The concept relates to the perceived features in an en-
tity, regarding how they can be used to do something. The affordances are proprieties
of the objects and of the kinds of interactions they can support. An affordance is the
observed availability of things to certain intervention [Anderson, 2003|. Affordances
of an object are thought to be directly perceived by the agent, perception is shaped
in terms of actions; the world constantly invites action |[Anderson, 2003|. However,
an affordance is not accurately explained as an element of an object representation,
they are also related to the environment and to acting agents. An affordance is also a
relationship between the abilities of an agent and the features of an environment; it is
equally a reality of the environment and of the actions of an agent and it can be both
physical and psychical and, at the same time, neither [Gibson, 1986]. Hence, affor-
dances refer to the actions’ possibilities that the object presents in an environment.
Yet, not only the tools, but also the rest of the environment can provide affordances
in a situation |[Nehaniv and Dautenhahn, 2001]. The affordances of the environment
are what it offers to the agent, what it provides or furnishes is a relationship with the
environment, the object, and the agent. An affordance can point both ways, to the
environment situation and to the observer morphology [Gibson, 1986]. Affordances
depend not only on the objects and their design but also on their embeddedness to
the environment and on the particular bodily structure and configuration of the agent
who might use them |[Nehaniv and Dautenhahn, 2001]. Finally, an affordance can be
defined as an acquired relationship between a behaviour, or action, of an agent and
an entity, for instance an object, such that the application of the behaviour on the en-
tity generates a certain effect |[Sahin et al., 2007|. |Barck-Holst et al., 2009| presents
two approaches to modelling affordance relationships between objects, actions and
effects. A first approach uses a voting function to learn which objects afford which
types of grasp. The second approach uses an ontological reasoning engine for learn-
ing affordances. [Varadarajan and Vincze, 2012| describes AfRob, an extension of an
affordance network or robotic applications. AfRob offers modules to enable robots to
interact and grasp objects through the generation of grasp affordances.

Now, attention must be turned to the mechanism for action representation. In or-
der to be general actions must be characterized in parametric form |Fod et al., 2000].
When thinking in terms of robotic control, computations for actions are captured as
continuous transformations of continuous vectors over time. These vectors may be
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used to represent different continuous values, like absolute points in three dimensional
spaces, joint angles, force vectors, etc. |Geib et al., 2006|. Efforts in artificial intelli-
gence research has typically focused on modelling high-level conceptual state changes
that result from the execution of actions, and not on the low level continuous detail of
action execution. The representation in artificial intelligence focuses on discrete sym-
bolic representations of objects and actions, generally employing propositional or first-
order logic |Geib et al., 2006|. In order to describe dynamic environments and the ef-
fects actions have on the world in a symbolic logic formalism situation calculus can be
used. The basic concepts in the situation calculus are situations, actions and fluents
|[Fangzhen, 2007]. A situation is an instant of the state of the world [Funge, 1999].
Situation are defined as a period of time during which a certain set of properties hold;
whereas the actions are the cause of state transitions |Belleghem et al., 1995|. The
actions are what make the dynamic world change from one situation to another when
performed by agents |[Fangzhen, 2007|. The fluents are situation-dependent functions
used to describe the effects of actions [Fangzhen, 2007|. Any property of the world
that can change over time is known as a fluent [Funge, 1999]. Another formalism is
the use of event calculus. The event calculus is a formalism for reasoning about action
and change. In event calculus there is one real line of time points, and the events
are the occurrence of an action at a certain point in time |Belleghem et al., 1995].
Both the situation and event calculus provide rich frameworks for solving problems
in dynamic systems. Situation calculus and event calculus share the property of being
initiated and terminated by actions |Belleghem et al., 1995|. In situation calculus the
actions are hypothetical and time is tree-like. In the event calculus, there is a single
time line on which actual events occur. |Mueller, 2007].

In [Kriiger et al., 2009] object action complexes are proposed as a framework for
representing actions, object and the process that constructs such representations at
all levels. The object action complexes can be used as an interface between the very
different representation languages of robot control and artificial intelligent planning
|Geib et al., 2006]. They combine the representation strengths of STRIPS planners,
the concept of action affordance, and the logic of event calculus |[Kriger et al., 2009].
Pairing actions and objects in a single representation interface captures the needs of
both high level action representation and low level control |Geib et al., 2006|. The
execution of object action complexes is done in a hierarchical system with different
level coding actions at different levels of abstraction |Kriiger et al., 2009].

As has been discussed throughout this section, the principal aim of a situated agent
is to take actions appropriate to its circumstances [Beer, 2000]. Fitting representa-
tions are essential for that goal. General approaches from artificial intelligence and
logic base reasoning see the world more in terms of discrete time experiences. How-
ever, real-world action is a continuous time phenomena. State and action represen-
tations are dynamic entities |[Kriiger et al., 2009|. Cognitive systems are not discrete
sequential manipulations of static representational structures, but rather, a structure
of mutually and simultaneously influencing change [van Gelder and Port, 1995]. In
order to acquire an internal representation of an affordance, an agent must carry out
a complex encoding of the sensory stimulus; to reproduce the corresponding action,
an agent must decode the encoded representation of the actions into proper signals.
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Fig. 4.3: Representing knowledge of actions. (left to right): Agent action execution
in the real-world. Representation of the action as a point to point vector
trajectory. Representation of the action as an attractor landscape of skill
dynamics. Representation of the action encoding the skill dynamics in a
Mixture Gaussian Model.

The embodied approach of cognition calls for the representations to be encoded in
the body and not in the head |[Anderson, 2003|. A dynamical system theory approach
to cognition provides a way to overcome the separation between mind and the world
that was largely prevalent in most work on artificial intelligence |[Bechtel, 1998]|. A
dynamical approach is promising for providing a unified theoretical framework for
cognitive science, especially when coupled with a situated embodied perspective on
cognition [Beer, 2000]. The working hypothesis of the dynamical approach is that
through increasingly sophisticated use of internal states to mediate between percep-
tion and action, more cognitive behaviours emerge from the dynamics of situated
action [Beer, 2000].

Various proponents of a dynamical system approach to cognition also advocate for
a complete rejection of representations, notably the work of |[van Gelder, 1995|. Yet,
as addressed in section 2] the provision of an inner model is not an impediment for
real-time success, but actually enhances fluent real time action |Clark and Grush, 1999|.
Most of these challenges stem from a mistaken idea that representations are useful
as a representation for the system must be contemplated as a representation by the
system processing [Clark, 1997]. The dynamic systems theory provides an alterna-
tive to the traditional formats of representations considered in cognitive science, yet,
despite the differences between the approaches, they need not be incompatible they
can be complementary |Bechtel, 1998|. A dynamical relationship of a representation
with what it represents does not undercut its status as a representation. Something
can stand-in for something else being coupled to it in a dynamical manner, and de-
termining its response by being so coupled, which alters the thing being represented
|Bechtel, 1998|. A wide variety of aspects of dynamical models can be regarded as
having a representational status, such as states, attractors, trajectories, bifurcations,
and parameter settings |[van Gelder and Port, 1995|. The dynamical models are not
based on the transformations of representational structures, the representation in a
dynamical systems theory has radically different formats from others used in cogni-
tive science |Bechtel, 1998|. However, the dynamical systems can store knowledge and
have this stored knowledge influence their behaviour [van Gelder and Port, 1995|.

Research in cognitive science has explored a wide variety of representational for-
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Action Frame: Example of action-affordance frame

(Action-Affordance) gAct

(ObjectList) gObjl gObj2 gObj3 (/ObjectList)
(iniConditions) 0 (/iniConditions)

(Skill) Mps1 (/Skill)

(Action) Actl

(instanceOf) gAct (SkillModel) Mpsl
(iniConditions) ... {/iniConditions) (Prior) 0.302 0.295 0.403 (/Prior)
(Skill) Mpgs1 (/Skill) (Mean)

-424.72 173.09 487.24 -747.64
-118.99 4.04 534.15 -72.19
-295.90 538.47 -1030.21 -644.18 (/Mean)
(Object) gObj2 (/Object) (Covar)
4.04e+3 -5.63e+3 1.33e+4 1.09e+4
-5.64e+3 9.60e+3 -2.65e+4 -1.70e+4
1.33e+4 -2.65e+4 1.02e+5 4.60e+4
1.09e+4 -1.70e+4 4.61e+4 3.65e+4
8.42e+3 -7.55e+2 -3.23e+4 8.17e+3
-7.55e+2 1.34e+2 2.11e+3 -1.17e+3
-3.23e+4 2.11e+3 2.07e+5 -2.96e+4
8.17e+3 -1.17e+3 -2.96e+4 1.27e+4
2.43+4 1.27e+4 -6.27e+4 4.01le+4
1.27e+4 8.81e+3 -3.83e+4 2.05e+4
-6.27e+4 -3.83e+4 2.81e+5 -6.72e+4
4.01e+4 2.05e+4 -6.72e+4 1.01e+5 (/Covar)

Tab. 4.2: Action-Affordance Frame example for generic action frame and instance
of a particular action frame and skill model.

mats; the dynamical system theory introduces new notions, such as the concepts of
trajectories and dynamic attractors. One important contribution of dynamical sys-
tem theory is that it focuses on representations that change as the system evolves
[Bechtel, 1998]. A crucial difference between traditional symbolic computational mod-
els and dynamical models is that the rules that govern how the system behaves
are defined over the entities that have representational status in a computational
model, whereas for a dynamical model, the rules are defined over numerical states
[van Gelder and Port, 1995|. For a dynamical system theory approach, the processes
within the system are not defined over representations |[Bechtel, 1998|. Namely, the
dynamical systems can be representational without this meaning having the rules
that govern their evolution defined over representations |[van Gelder and Port, 1995|.
The dynamical system theory is revolutionary in adopting a different concept of
explanation than the mechanistic conception adopted by most cognitive scientists
|Bechtel, 1998|.

All through Chapter [ the framework for teaching and learning the robot skills
by Robot Programming by Demonstration was presented. The robot skills ought to
enclose the knowledge of the task to allow generalization of the skill for reproduction
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and to form full goal directed actions. The idea of employing autonomous dynam-
ical systems was proposed as an alternative approach for representing movements
as mixtures of non-linear differential equations with well-defined attractor dynamics
[Tispeert et al., 2001]. The dynamic system can be generally expressed as differential
equations of the form & = f(z,0), as per Eq. . Autonomous non-linear dynam-
ical systems are a powerful mechanism to modulate the control policies by learning
the model of the skill building a stable estimate of f based on a set of demonstra-
tions. The dynamical systems approach to skill learning can offer a fast, simple and
powerful formulation for representing and generating movement plans. The dynam-
ical systems framework allows it to comply with the attractor dynamics of a skill,
modulating it with a set of non-linear dynamical systems that form an autonomous
control policy for motor control. Statistical learning techniques are used to arbitrar-
ily shape the attractor landscape of the control policy for encoding in it the desired
trajectory. The end-effector trajectories of a skill action are modelled in terms of a
dynamic systems approach, as in [Schaal et al., 2007] for an autonomous dynamical
system encoding of the action. The Robot Skills Models are learned by estimating the
non-linear function f, a time independent model of the action is estimated through
a set of first order non-linear multivariate dynamical systems as in the frameworks
presented in |Gribovskaya et al., 2010| and [Khansari-Zadeh and Billard, 2011], de-
scribed in Section B3, following the method of Table B3l Therefore the robot skills
are modelled by the parameters 6 of f M pg defines a Robot Skills Model determined
by f = {NY(&0Y), - NE(E65)}, where 6 = {m, 1,2} of the N Gaussian func-
tion, defined by Eq. B.I8 are the prior, 7%, the mean, p*, and the covariance matrix,
¥* of the K Gaussian and they encode the representation of the skill action in a
dynamical system approach.

Figure shows different representations for a skill action. The leftmost images
display a tennis swing skill execution of the action by a humanoid agent. Common
action representations in robotics rely on vector trajectories describing explicitly the
positions for the robot control at every point. Dynamical systems theory allows to
represent the skill action in terms of their attractor dynamics. A dynamic system
representation allows it to focus on the internal and external forces that act over the
trajectory unfolding over time. Here, the dynamics of the skill action are encoded in
a statistical approach employing the Gaussian mixture models.

Table shows an example of the action-affordances frame. Generic action frames
have an associated Robot Skills Model of the encoded skill action dynamics. As stated
by [van Gelder and Port, 1995], the dynamic models representation status are defined
over numerical states. In addition to the model of the skill, the action frame links
actions with the corresponding objects that afford them. Generic action frames list
all available objects for such action, the particular instances of an action frame,
created by the system in the environment, presents only one object affordance for the
execution of the action. For instance, lets consider a (Pick) action. A generic (Pick)
action-affordance frame would hold a robot skill model encoding the action and a list
of objects which afford the action, like spoons, forks, knifes, etc. While particular
instances of the action frame, such as (Pick Spoon) serve as representational tools for
the execution of an action upon a specific object found in the environment.
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4.6 Representing Events in the Robot Skills Knowledge

Sections 1.4 and have discussed mechanism for representing objects and ac-
tions respectively. However, focusing only on these two aspects would not be enough
to develop the knowledge representation structures needed by the humanoid robotic
systems that are the aim of this work. In addition to objects and actions the rep-
resentational attributes need to take into account the state of the world grounding
the representations to the environment, the task at hand and the current situation
or present events. As discussed in section A2 one of the roles of representations
is as stand-ins for external things outside the system. A robotic system would use
representations to operate on them and not directly over the world. The system
representations should include objects, actions, tasks goals and world event config-
urations, as in the representations of Figure [L3l This does not require building up
complete models of the agent’s body and the environment, the stand-ins are only
needed for those aspects that are relevant for guiding behaviour [Bechtel, 1998|. The
major goal for humanoid robots, cognitive systems and embodied situated agents is
to take the actions which are appropriate to take in the present circumstances of the
world. There are many resources in service of this objective, including the physical
properties of an agent’s body, the structure of its immediate environment and its
social context [Beer, 2000].

One of the most important properties of the world is change. Change is having an
action move you from a given situation to a new one |[Brachman and Levesque, 2004].
Propositional logic representations have limitations, such as tying directly the notion
of time. Situation calculus gets around these limitations by replacing the notion of
linear time with branching situations |[Russell and Norvig, 2010]. Situation calculus
takes into account situations and actions in the domain |[Brachman and Levesque, 2004].
The situations are complete states of the world at some point in time, and a se-
quence of actions leading from some initial situation to the given actual situation
|[Brachman and Levesque, 2004|. Situation calculus was designed to describe a world
in which actions and situations are discrete, instantaneous and happening one at a
time, making situation calculus limited in its applicability |[Russell and Norvig, 2010].
Event calculus was introduced as an alternative formalism which is based on points of
time rather than on situations. Event calculus opens the possibilities of talking about
time, and time intervals. Events, actions and time could still be represented either in
situation calculus or event calculus representations [Russell and Norvig, 2010].

The object action complexes, described in [Geib et al., 2006|, define instantiated
state transition fragments to be a situated pairing of an object and an action that cap-
tures a fragment of the planning domain’s state transition function. The fragments
are defined as a tuple (s;, mp;j, Objmp,, si+1), comprising the initial sensed state of the
world s;, a motor program instance mp;, the whole object containing the component
the motor program was defined relative to Obj,,,,, and the state that results from exe-
cuting the motor program s;, ;. The instantiated state transition fragments contain all
of the information the robot has about the two states of the world |Geib et al., 2006].
Much of the world space in S will be irrelevant for a particular complex since it is
not required for the performance of the action and the action will not affect it, the
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system should avoid expending resources in observing these non-relevant parts of the
world |Kriiger et al., 2009]. It is important to reduce the world space to only the
features pertinent to the current action. The representation in |Geib et al., 2006| are
bounded unto two states of the world, an initial state and a desired end state, and to
planning state transition function from one to another. The discussion in Chapter
discourages us from this type of planning approach for applications such as humanoid
robotics.

For our goal the representations are to be at one time larger, but also more struc-
tured and more intimately connected, combining knowledge of action and objects
with the situations of the environment, the system tasks and the effects of execu-
tion. [Minsky, 1975], suggested the idea of using object-oriented groups of procedures
to recognize and deal with new situations. The term frame was used for the data
structure that represents these situations |[Brachman and Levesque, 2004|. Frames
were put forward as a set of ideas for the design of a formal language for express-
ing knowledge [Hayes, 1979]. A Frame is a collection of questions to be asked about
a hypothetical situation; it specifies issues to be raised and methods to be used in
dealing with them [Minsky, 1975]. To use frames is to make a certain kind of as-
sumption about what entities will be assumed to exist in the world being described

[Hayes, 1979].

Frames are essentially bundles of properties. A frame is a data-structure intended
for representing a stereotyped situation [Minsky, 1975]. Attached to each frame are
several kinds of information. Some of this information is about how to use the frame.
Some is about what one can expect to happen next. Some is about what to do if
these expectations are not confirmed [Minsky, 1975]. Tt is made up of slots which can
be filled by expressions named fillers which may themselves be other frames. Given a
frame representing a concept, we can generate an instance of the concept by filling in
the slots. A frame instance denotes an individual, and each slot denotes a relationship
which may hold between that individual and some other [Hayes, 1979]. An individual
frame could look like ( Name-frame: < slotl fillerl >, < slot2 filler2 >, ...). To
help understand the concept consider a generic room frame as representing the general
idea of a room with generic slots that can later be filled by individual room frames,
such as a kitchen room, living room, bedroom inheriting from the generic room frame
and filling them with their own special characteristics. The individual frames are a
specialization of the general one, [Brachman and Levesque, 2004]. ( Kitchen-frame:
< Is-a: room >, < Role: cooking >, ... ).

Frame theory adopts a structured approach, assembling facts about particular
objects and event types and arranging the types into large taxonomic hierarchies
|[Russell and Norvig, 2010]. The idea behind the approach is that when one encoun-
ters a new situation one would select from memory a structure called a frame. This is
a remembered framework to be adapted to fit reality by changing details as necessary
[Minsky, 1975]. Collections of related frames are linked together into frame-systems.
The differences between the frames of a system can represent actions, cause-effect
relations, or changes in conceptual viewpoint [Minsky, 1975].

It is useful to think about frames as a network of nodes and relations. The
top levels of a frame are fixed, and represent things that are always true about the
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supposed situation. The lower levels have many terminal slots that must be filled
by specific instances or data [Minsky, 1975]. Collections of frame systems are stored
in memory, and one of them is evoked when perceptual evidence makes it plausible
that the scene will fit [Minsky, 1975]. When a proper frame is retrieved its slots are
filled with available information, its default assignments become instantly available,
and the more complex assignment negotiations are completed later as they become
available |[Brachman and Levesque, 2004]. Certain assignments to the slots terminals
are compulsory, others are optional, and others take default assignment values in
the absence of better information. The theory states that frames are never to be
stored in long-term memory with unassigned terminal values. Instead, frames are
stored with weakly-bound default assignments at every terminal, where values can
be changed dynamically when more suitable information is deemed to be accessible
[Minsky, 1975]. The process of matching a proposed frame suitable to represent the
current situation is controlled by the system current goals and by information attached
to the frame |[Russell and Norvig, 2010].

The representations of events are, thus, largely concentrated on two major frames,
one of the system tasks and goals’ knowledge, and one representing the current state
of the world knowledge. Representations of the task event knowledge consist of the
agent’s knowledge about what it is doing or trying to achieve. This is the knowledge
about its purpose, its commands, its goals, both global and local, its planned actions,
and the relationships between them and the state of execution of the task in the world.
Task event frames would hold knowledge for the requested execution of a task. Such as
the task goal, task actions, including proper instances of required action frames, task
start, end and invoking conditions, etc. Task events are instantiated from recognizing
matching invoking conditions for the event frame or by directly giving the system high
level commands for a task execution corresponding to a particular task event. The
representation of world event knowledge consists of the agent’s knowledge about the
situation of the environment its operating in. That is, knowledge about objects and
places and their relationships. The representation of a world event frame would try
to maintain an accurate model of the agent’s environment, as it is being explored, so
the world frame holds knowledge of objects being perceived as well as the most recent
assumptions of objects no longer in the current view that are reasonably thought to
still lie around. Continuous operation of the robot and its perceptual system provides
updates and reinstantiations of the world event. To clarify these points we can revise
the example raised in Chapter [, represented in Figure A robot is requested to
place a spoon inside a cup on top of a saucer plate on a table. Aside from object and
action frames already stored in the knowledge base, two frames are created at the start
of the robot operation. A world event frame is created from the robot’s perception
of its environment, so in this case it would reflect knowledge about detected objects
such as the cup, the spoon, the plate or any objects that are present and perceived by
the robot, representing, for the robot system, their positions, states, etc. The world
event frame representation correlates to the world state dimension from Figure [5Gl
The task event frame is constructed from the given task robot command representing
the knowledge of the task execution, in this case it describes task goals, state, steps.
The task event frame representation correlates to the goal dimension from Figure [[L5l
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Fig. 4.4: Representing event knowledge. (left) Chessboard state during play. A
chess master can recognize from this state, world event, the pieces and
patterns important to its objective. (top) Board is reduced to relevant
knowledge which would lead the player next moves, active view event.
(bottom) Whites have a checkmate, task event goal, in three moves. (right)
Football game just after the snap. A professional QB can read the defensive
coverage, world event, to instantly recognize favourable matchups. (top)
Field is reduced and only the position of the marked players is important for
the play. (bottom) Having a right read on the defence leads to a successful
completion of a pass, task event goal, to an open player for a first down.

When an agent encounters a new situation a viewed event scene is analysed by as-
sembling and instantiating frames, the system should watch for certain kinds of events
and inject proposed reasons, motives, and explanations for them [Minsky, 1975]. In
computer vision systems images seem to change so quickly, as fast as the scene does,
that performing the computations for instantiating the representations at such pace
does not seem to be computationally efficient. theory proposes that
changes in the frame-structure representation proceed at their own pace. The sys-
tem makes small changes whenever possible. In such a complex problem it is not
possible to cope with many details at once. At each moment, one must work within
a reasonably simple framework, and the illusion of continuity is due to the persis-
tence of assignments to terminals common to different view-frames |[Minsky, 1975|.
Almost any event, action, change, flow of material, or even flow of information can be
represented to a first approximation by a two-frame generalized event [Minsky, 1975].
While the different viewpoints help to insulate the parts of the potential contradiction
from one another [Hayes, 1979|.

Since computational resources are limited, what is important to consider here is an
agent capacity for discrimination and focusing attention. Humans do not process the
whole of a scene, one constantly discriminates information from a scene, categorizing,
grouping and discarding chunks of information. An engage worker would generally
focus all of its attention into a very small region of features deemed important for its
labour. Hence it is desirable to have some indication as to which parts of the world
to focus attention on, and to be able to discriminate from the whole information of
the world only the important features of the current situation toward the current
action. Here, questions arise as to what is relevant, where must attention go, what
point of view to take, how to construct this focus view that would drive what is taken
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Event Frame: Example of the task and world event frame
and instances of an active view event frame

(Task-event) gTask (World-event) Env1

(Goal) ... {/Goal) (Time) 1 (/Time)

(ActionSet) actl act2 (/ActionSet) (ObjectSet) objl obj2 obj3 (/ObjectSet)
( (

( (

execState) 0 (/execState) Places) ... (/Places)
Conditions) ... (/Conditions) Relationship) ... (/Relationship)

(ActiveView-event) fview
(Action) act2 (/Action)
(Objects) objl obj3 (/Objects)
(Conditions) ... (/Conditions)

Tab. 4.3: Event frame example for a generic task event frame.

from the world to furnish one’s thinking and acting. To determine what would be
the agent’s active view, its focus on executing attention, we propose to start from the
two event frames, representing the task and world knowledge, and build from them
a single frame of what constitutes the relevant aspects of the current event of the
world, focusing on the knowledge for task execution. This event frame, called here
an active view event frame, consists of knowledge from objects and relationships in
the environment taken from the world event frame according to what the task event
frame requires towards a frame of active focus that would drive the agent execution.

Figure 4] presents two examples of human ability to discriminate from world
knowledge of a scene, an appropriate simpler frame that focus on only the relevant
parts to achieve a desired goal. In the leftmost images a chess board is depicted
at some stage of a game, which would form a world event frame of the situation of
the chess environment. A chess master can recognize from this state, the pieces and
patterns important to its objective, which in a chess task is clearly the goal of check-
mating your opponent represented in a task event frame. In the right top image the
board is reduced to present only relevant knowledge which would lead to the player’s
next moves, that is, the active view event. With the information from its world and
task event, a player recognizes its patterns for action, in this case a suffocation mate,
attacking with the bishop at b2 and the knight at d4 [Weteschnik, 2006|. In the right
bottom image, the player with whites has a checkmate in three moves starting from
the original board state in the world event. The rightmost images show a capture
snapshot from a football game just after the snap, forming the world event frame
for that situation. A professional quarterback can read the defensive coverage to
instantly recognize favourable match-ups helping him to achieve completion of the
move, which would represent a task event frame. In the right top image the field is
reduced and only the position of the marked players is considered important for the
execution of the move, which constitutes the active view event. With the information
from its world and task event a player recognizes its patterns for action, in this case
the backward position of the defensive players allows for an open space in the middle
of the field for the receiver to exploit. In the right bottom image, having a right read
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on the defence lead to a successful completion of the pass to an open player for a first
down.

Table shows an example of the event frames. Generic world event frame and
task event frame are described and an instance of the active view event frame derived
from the world and task frames is also presented. A world event frame holds a set of
object frames instantiated from the environment, and of places or special locations of
the environment, like an exit door etc., and frames describing relationships between
them. The task event frame bears knowledge of the set of action frames required
for achieving the task goals, the state of execution of the task and the conditions for
invoking, executing, and ending execution of actions. The active view event frame is
focused towards the knowledge necessary for instantiating execution, the frame only
has the action and object frames that relate to the execution of the current activity
the agent is engaged with.

4.7 Structure of the Robot Skills Knowledge Base

The final aim is to populate a knowledge base of the robot available skills for
reproduction. The knowledge base would need to hold all necessary information for
reproduction of the skills. A robot task would be considered to be of the form ( robot
pick blue ball ), ( robot place cup on plate ), etc. in which an action is described
requesting an operation upon an object for a goal oriented task. Therefore, a direct
link between objects and skill actions can be intuitively established.

The first attempt at building a knowledge base of robot skills consisted on the pair-
ing of objects and actions. The elements in the knowledge database were represented
in two principal directions of objects and skill actions [Herndndez et al., 2009|. The
task contemplated in [Kheddar et al., 2009b| required for a robot performing actions
over an object that is found in the environment. A knowledge base of the robot skill
was proposed, where the models of the skill would reside and a humanoid robot could
access the necessary learning to perform different motor skills. By linking actions to
manipulatable objects in the representation of the skills knowledge, robot systems
would be capable of generalizing learned motions of manipulation.

In [Hernandez et al., 2009] an object was represented by any necessary informa-
tion for the recognition and identification of that object, and any constraint related
to it, such as, Tag, Color, Size, Shape, etc. Similarly an action would correspond
to the necessary information from the model of the skill to reproduce said action.
The elements in the database were, in an analogy to object-oriented programming,
instances of a class object, defined by its characteristic attributes and available skill
actions. The knowledge database contained a series of known objects that the robot
could identify in its environment. Linked to any instance of an object there were one,
several or no skill models’ operations associated with it.

SkillModel A

Objecti[attributes] = Action ,
SkillModel B
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Fig. 4.5: Instance of the Object-Action Skill Knowledge Database representing ob-
jects and actions in the scene filled with various instances and behaviours.

It was also possible to build sequences of actions to be performed, therefore,
expanding the functionalities of the Skills Database implementing “behavioural” in-
stances, Figure

Skill1+—>Skill2+>Skill3 - Behaviour

A behaviour, consisted of a sequence of actions, with their associated objects, that
need to be executed to achieve a goal.

SkillA[object]

Behaviour
SkillB[object]

Thinking in terms of objects and actions is not only intuitive but also convenient
for a representational undertaking in robotics. Object and actions are at the basis
of robot performance, and manipulating and reasoning with them is important for
robots, as can be seen from the efforts in object action complexes [Kriiger et al., 2009].
However, representing the manipulation task as pure action sequences is not flexible
and also not scalable [Zoliner et al., 2005b]. Sections [£4] and have shown
that representational attributions must also include information about the world and
situations, events and goals, for effective situated performance.

From our earlier attempts |[Hernandez et al., 2009], it was clear that information
of objects and actions alone was not sufficient to capture the entire state of the world.
Since for a single task or behaviour there could be more than one pairing ( object,
skill model ) the addition of at least one more dimension could be required in order
to prevent ambiguities. See Figure @l The objects and actions frames don’t provide
sufficient and complete information for a robot situated in its environment to be able
to perform its task adequately. To resolve this problem, as has been shown from
section [£.6], considering two more representational directives is suggested: one for the
task goal, and one for the configuration of the current state of the world, mainly
objects position and relations with themselves, the robot and a human operator.
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Fig. 4.6: Representations of the robot skills in the knowledge base in the object and
action directions

An agent’s knowledge must consist of skills, concepts and facts about the world.
From what has been discussed in this chapter, world knowledge is thought to consist
of objects, actions, and task, situations and events. The representations perform as
functional abstractions for the perceived environment encoding the agent knowledge
about its objects, actions, and events, into manageable internal structures standing,
in for things outside the system.

In addition to the presence of objects and actions representations, as established
above, the representational attributes need to take into account the state of the world,
grounding the representations to the environment, the task at hand and the current
situation or present events. The discussion in Section established the importance
of grounding representations to the environment and cognition to situated activity.
The cognitive processes in the real world occur in particular environments employed to
achieve a particular practical end, and must exploit the possibilities of interaction and
manipulation in the environment. It is necessary to work with symbols and modes of
reasoning related to the perception and action of a particular system [Anderson, 2003|.
Embodied agents interacting with the real world must develop predictive models that
capture the dynamics of the world in order to achieve its goals [Kriiger et al., 2009].
The dynamical system approach works on the hypothesis that through increasingly
sophisticated use of internal states to mediate between perception and action, more
cognitive behaviours emerge from the dynamics of situated action [Beer, 2000].

The representations carry information about the objects or events being repre-
sented. The function of a representation is in the carrying of specific information ori-
ented toward the needs of the given agent. Representations must be highly selective,
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related to their eventual purpose, and physically grounded. Different mechanisms
could very well be needed for high level and low level representations, such as the
representations of high level abstract concepts of object frames, and the low level
dynamic motion control of action execution; plus the coordination of their behaviour
within the events of the environment. The system representations must include ob-
jects, actions, and events configurations as stated in Sections [4.4] and 4.0

Objects are all entities that exist in the world, only real physical perceived enti-
ties are being considered but the approach could be extended to take into account
abstract and imaginary entities whose existence lies outside the world plane. Actions
are all processes, transformations, etc., that can be performed or operated over an
object. Here, “actions” refers to robot skills expressed in terms of a dynamical system.
Actions must provide real effects on the world yet they could be generalized to include
abstract and imaginary actions, like the act of thinking. As “events”, one thinks of all
situations, states, scenarios and configurations of the world that one can be in and
recognize one’s self to be in. The state of the world instantiates the world event with
all that can be perceived in it; the pairing of the world event and a task event lead
to recognition of the relevant features of the world, in term of its task, to instantiate
a focused active view frame where thought can take place and actions are invoked.

Section presented various approaches aimed at building libraries or databases
of learned motion primitives as ways of having comprehensive repertoires of robot
skills, allowing a robotic system to deal with a vast range of situations. Most of
these approaches, while providing information on how the movement primitives can
be learned and generated, generally offered little advice on how the library of skills
could be used in the environment to select and adapt the primitives to deal with
different conditions.

The knowledge base needs to hold all necessary information for reproduction of
the skills in the environment. Knowledge of the task would be distributed among the
representation of objects, actions and events of the goal and the state of the world.
A task is then represented by the phrase “Do an Action (A), To an Object
(O), For achieving Goal (G), When State of the World is (W)”. Therefore,
the tuple formed by ( Do = Action(A), To = Object(0), For = Goal(G), When =
World State(W)) holds all necessary information for the reproduction of the task.
The skill knowledge module representation presented in this chapter, see Figure [4.1],
would allow the robot to extract from the received perceptual input knowledge about
objects, goals and current state of its working environment. The robotic system would
be able to retrieve an appropriate skill action from the knowledge base by finding the
answer to the phrase “Do Action (?) ... ” for its current task constraints when
being presented with the triple (Object, Goal, World State).

Figure shows the representation of the skills in the knowledge database in a
three dimensional space defined by the (Object, Goal, World State) triple. Selecting
from their intersection an adequate model of the skill for the reproduction of the task.

For example, let us consider, as a general typical task for humanoid robots that op-
erate in a domestic environment together with other human agents, a kitchen setting
and the cooperative labours that could arise from it such as the setting up or clearing
of a table, the cleaning of dishes, the storing of groceries, etc. Tasks behaviours could
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Fig. 4.7: Representation of the skills in the knowledge base. The intersection of the
triple (Object, Goal, World State) allows to select the adequate model of
the skill for reproduction.

be ( robot pick red spoon ) and ( robot place spoon in blue cup ) in which we’ll have
(Do = action, To = Spoon,.q, For = task _event, When = world__event), where the
world situation and the state of execution of the task will help choose whether the
proper action would be (Do = pick) or (Do = place) in performing the pick and place
behaviour.

The structure of knowledge can be of various kinds, such as programming by ex-
ample, Hebbian neural network, probabilistic look-up table, behavioural cloning, etc.
[Nehaniv and Dautenhahn, 2001]|. In |Geib et al., 2006] object action complexes are
defined as instantiated state transition fragments of a situated pairing of an object and
an action generalized by the tuple (s;, mp;, Objy, s;+1) comprised of two abstracted
states (s; and s;41) a set of motor programs mp; and an object class Obj,,. Here, a
somewhat similar organization, in terms of the elements that construct the tuple, is

used. A structure built on frames, as proposed by [Minsky, 1975|, has been adopted.

Frames are a computational device for organizing stored representations in mem-
ory, and for organizing the processes of retrieval and inference which manipulate
these stored representations [Hayes, 1979]. The theory of frames is an effort to move
away from attempts trying to represent knowledge as collections of separate simple
fragments [Minsky, 1975]. Frames’ data structures are used to represent recognizable
situations. The frame approach has been extraordinarily influential, with wide appli-
cations in relationship recognition, data monitoring, and propagation and enforcement
of constraints |[Brachman and Levesque, 2004]. The hold idea of frames is based on a
theory for structuring chunks of memory grouped into packets of related facts, which
can contain other packets, where any number of packets can be activated or made
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available for access at once. The invocation of few appropriate packets creates an
execution environment tailored to contain only the relevant portion of the system’s
global knowledge [Minsky, 1975]. The major force is not at a representational level,
but rather at the level of implementation, the frames theory works as a suggestion
about how to organize large memories, mainly in a non-clausal form [Hayes, 1979

In order for a process to use a representation, the process must be coordinated
with the format of the representation, only states appropriate to the process will
count as representations |Bechtel, 1998|. The process for using the representations
begins by instantiating the appropriate frames. Once a frame is proposed to repre-
sent a situation, a matching process tries to assign values to each frame’s terminals
[Minsky, 1975]. When fillers for all the slots of a particular frame are discovered then
it means one has found a frame of such class. The data structure of a frame is made
up of slots filled with attributes, which can be made of other frames, as organized in
terms of a class hierarchy, analogous to an object-oriented programming paradigm.
When instantiating a frame its slots will be filled with the values present in the system,
any slots with unavailable information will be filled by default attributes associated
with the class categories. Default values are assumptions reasonably made when the
state of knowledge holds no information to the contrary. Default assumptions involve
an implicit reference to the whole state of knowledge at the time the assumption was
generated, any event which alters the state of knowledge is liable therefore to upset
these assumptions [Hayes, 1979]. Reliance on default values in [Minsky, 1975] is based
upon the realization that thinking begins with defective networks that are slowly, if
ever, refined and updated.

Figure presents the control data flow for the process of using the representa-
tions in the knowledge base for extracting the task constraints and the appropriate
Robot Skills Models within the knowledge module presented in Figure L1l and the
framework of Figure 2.6l The knowledge of the environment and goals is represented
in terms of the World Event Frame and Task Event Frame, with Object and Action
Frames representing knowledge about available objects and actions in the knowledge
base respectively. From the knowledge of these frames an Active View Event Frame
is built of the focused knowledge promoting the agent’s execution. Looking up the
knowledge base for the given object and action affordance frames yields the needed
models of the skill, M pg, for building the task model.

To serve adequately the demands of a constantly changing environment, it is
necessary not only to pick items out of their general setting, but to know what parts
of them may flow and alter without disturbing their general significance and functions
|Bartlett and Bartlett, 1995]. The process for using the representations begins with
the reception of perceptual input. From a given scene the system instantiates frames,
generally governed by the precedence of visual evidence. From the perceived given
input the first step for extracting a task constraint is the matching of the world to
an instance of the World Event Frame and the instantiation of the Task Event. The
matching process which decides the suitability of a proposed frame is partly controlled
by knowledge of the system’s current goals and partly by information attached to
the frame [Minsky, 1975]. From information collected in the World and Task event
frames, which in turn are made up of other object and action frames, the system
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Fig. 4.8: Knowledge base control flow for using the knowledge representations. The
World Event Frame and Task Event Frame are instantiated, and an Active
View Event Frame is built from them with the constraints of the task.
From object and action affordance frames in the knowledge base the needed
models of the skill are taken for building the task model.

would have information about its current goals and the situation of the environment;
yet this is not enough to ground the representations in order to effectively use them
for supporting its performance. As has been discussed previously, the representations
must be selective, physically grounded and leading to situated activity. Extending the
notion of selective representations leads to closing the gap between perception and
action. The perception field is always already an action field, the perceived world is
always known in terms directly related to an agent’s current possibilities for future
action [Anderson, 2003|. Out of the perceived knowledge of the world, which we
collect in the World Event Frame, the required models for action must be invoked for
the system’s operation. [Minsky, 1975] imagined that thinking and understanding,
be it perceptual or problem-solving, was concerned with finding and instantiating a
frame, breaking large problems down into many smaller jobs to be done. Maintaining
a full model of the world is a large problem and one that contributes to the failure of
planning approaches dealing with changing environments, but a problem with which
it is not necessary to deal with, in such complex environments one can never cope with
many details at once. At each moment, one must work within a reasonably simple
framework. contend that any problem that a person can solve at all, is
worked out at each moment in a small context and that the key operations in problem
solving are concerned with finding or constructing these working environments.

Therefore motivation for creating an Active View Event Frame is clear from the
need to focus attention and discriminate from the information of the world and task
events and the important features of the current situation toward the current action.
To construct this focus view that would drive what is taken from the world to furnish
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one’s thinking and acting, we build a single frame of what constitutes the relevant
aspects of the current event of the world, focusing on knowledge for task execution.
The Active View Event Frame, consists of knowledge from objects and relationships
in the environment taken from the world event frame according to what the task event
frame requires to drive the agent execution, and constitutes the system’s output for
the current world and task constraints. The frames representation is envisioned as
packets of data and processes, and so are the high level goals [Minsky, 1975]. When a
frame is proposed, its packet is added to the current knowledge so that its processes
have direct access to what they need to know, without being choked by access to
the entire knowledge of the whole system. One must choose from one’s collection of
clustering methods by using the goals in a micro world context [Minsky, 1975].

For an agent working in an unstructured environment, the focus of its perception
must be directed towards its executing action. Knowledge of its environment and task
would be collected into their appropriated frames and a focused active view frame
would be built, taken from their global knowledge and breaking it down into a simpler
framework from which computations and knowledge take place.

Revisiting the kitchen setting, and the task ( robot place spoon in cup ). A pro-
totypical scene is given in which the objects relevant to the task are recognizable
together with clusters of other currently unimportant objects. The frames of objects
and actions’ knowledge are instantiated along with an event frame for the configura-
tion of the environment and an event frame invoked with the knowledge of the task
from the desired given task behaviour. Knowledge from the event frames is reduced
into a simplified active frame ignoring information not pertaining to the execution of
the current task.

Figure presents the organization of the knowledge base in terms of the frames
described in Sections [£.4], and To help better understand these points, we
review an example, as before, considering a simple case in which a humanoid robot
is requested to place a spoon inside a cup, and place the cup on top of a saucer plate
on top of a table, as if it serving a cup of tea or coffee. The robot would begin is
operation in a kitchen setting scene in front of a table with various identifiable objects
typical of the tasks which would be collected into the World Event Frame and the
necessary instances of Object Frames for the objects present in the scene. Naturally,
in our example we would have spoon, cup and plate objects, as the robot explores
its environment it will recognize any object as it finds them, relevant to its task or
not, and will fill the World Event Frame with its respective Object Frames instances.
Additionally the system is provided with the Task Event Frame representing the
knowledge of the task and the instances of the Action Frames. In this example to
complete the requested task, the robot would be required to perform several simpler
tasks or subtasks, such as picking up the spoon, grasping the cup and placing the cup
on top of the saucer plate, etc. The Task Event Frame holds knowledge of the state
of execution of the task and Action Frames instances for the knowledge of the robot
skills for reproduction.

The Task Event Frame and the World Event Frame represent the knowledge of the
state of execution of the task and the environment, with Object and Action Frames
representing the available objects and actions. The Active View Event is created from
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Fig. 4.9: Knowledge base structure and organization of the knowledge representa-
tions. World Event Frame and Task Event Frames represent the knowledge
of the state of the environment, with Object and Action Frames represent-
ing the available objects and actions. From the knowledge of this frames
an Active View Event Frame is built of the focused knowledge required to
drive the agent execution, and the system’s output for the current world
and task constraints.

all these knowledge frames reducing the view of the world into a simpler scene with
the important Object Frames for the task, with their proper roles assigned for the
execution of the action. The full scene in Figure is broken down into the reduced
scene of the Active View Event Frame which promotes the execution of the action as
in the Figure 7l Now let us return to our example at some point during the task
execution. Imagine for instance the execution of the ( robot place spoon inside cup
) tasks. To perform the task it is assumed that the spoon object has already been
picked by the robot and is in one of its hands, so the target object for the task is
the cup. The World Event Frame and the Task Event Frame are filled as discussed
above and as in Figure The Active View Frame is built form these knowledge
frames to create a focused, simplified frame with only the knowledge pertaining to
the action being performed. In our case this means a reduced frame where only the
relevant Object instances are included, the spoon, the cup and the plate, and only
the executing Action frame instance is included to extract the necessary Robot Skill
Model for the action execution.

Different approaches on related topics focused on the management of knowledge
by robotic system exists, such as KnowRob, [Tenorth and Beetz, 2013| or RoboEarth,
[Waibel et al., 2011]|. However these systems lie at a higher more abstract level of the
cognitive hierarchy while our framework lies at a lower level of action execution.
Further research requires study and comparison of other systems, in particular the
ones that may be used to complement the framework developed in this work.
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4.8 Summary of the Chapter

Throughout this chapter the development of a knowledge base for the storing
and retrieval of the learned models of the skills has been described. In section
an introduction to the topic of knowledge was presented, and its importance for de-
velopment of cognitive robotics. The embodied view of cognition and its challenges
to the traditional approaches of symbolic representations were studied. Also, basic
notions and concepts in the field of knowledge representation and reasoning were
reviewed. Section [£3] presented a review of similar approaches aimed at building
repertoires of basic units of action, also known as movement primitives, which can
represent a basic set of elementary robot motor skills. Learned motion primitives can
be used as ways of having comprehensive repertoires of robot skills. Most of these
approaches generally offered little advice on how the library of skills could be used in
the environment to select and adapt the primitives to deal with different conditions
or their mechanism for representing their knowledge. In sections [4.4], and the
approaches and problems for building representation of objects, actions, and events
knowledge were presented, respectively. Finally, section [L7, presented the develop-
ment of a knowledge base for the storing and retrieval of the learned models of the
skills, and the representational structure of the robot skills’ knowledge base devel-
oped in this chapter. The embodied view of cognition calls for representations to be
limited, physically grounded to the environment and oriented towards a particular
use. The principal aim for the humanoid robot is to take actions, as situated agents,
that are appropriate to its circumstances. Fitting representations are essential for
this goal. Our representational framework focuses on a lower level of abstract repre-
sentation aiming at action execution, while most other systems lie at a higher more
abstract level of the cognitive hierarchy, however this could allow both approaches to
complement each other. In this chapter, the developed representations for our robot
were presented. Object and actions are at the basis of robot performance, therefore
thinking in terms of objects and actions was not only intuitive but also convenient
for a representational undertaking in robotics. However, representational attributions
must also include information about the world and situations, events and goals, for
effective situated performance. A structure built on frames has been adopted in this
work; the frames are a computational device for organizing stored representations in
memory, and for organizing the processes of retrieval and inference which manipulate
these stored representations. In our system the knowledge of the environment and
goals is represented in terms of World Event Frame and Task Event Frames, with Ob-
ject and Action Frames representing knowledge about available objects and actions
respectively. From the knowledge of these frames, an Active View Event Frame is
built of the focused knowledge promoting the agent’s execution. Figure presents
the organization of the knowledge base in terms of the World Event, Task and Active
Event Frames, Object and Action Frames as described in Sections [£.4], and



5. GENERATION AND ADAPTATION
OF ROBOT SKILLS

5.1 Outline of the Chapter

This chapter presents the algorithms developed for the generation and adaptation
of robot skills. Humanoid robots are required to perform a wide repertoire of tasks
working beside humans in complex dynamic environments. While Learning from
Demonstration (LfD) approaches provide adequate methods used for learning and
encoding the models of the robot skills for every conceivable scenario the robot may
encounter would be a daunting undertaking, therefore, mechanisms for the generation
and adaptation of new robot skills from previously learned skill models are needed.
Figure 5. shows the framework proposed throughout this work for the adaptation of
learned skills to task constraints, highlighting the generation of task models discussed
in this chapter. This chapter describes the process by which, using the already learned
model of a robot skill and the extracted constraints knowledge of the current task, the
model of a skill is adapted to reproduce a new task. Different modes are presented
for the adaptation, update, merger, combination and transition between the Robot
Skills Models. The organization of this chapter goes as follows:

e Section B.2] presents developments for the generation and adaptation of the
robot skills. A review of related approaches aiming at the adaptation of learned
skill models is given. Also, the framework employed through this work to adapt
and generate the task models is presented.

e Section 0.3 presents the adaptation of a task model by operations on its inher-
ent dynamical properties. The Robot Skills Models are learned in a Dynamical
Systems (DS) approach. DS are intrinsically robust to spatio-temporal per-
turbations, do not explicitly depend on time and can be generalized to unseen
initial conditions.

e Section [0.4] presents the adaptation of a task model by updating a robot skill.
Models of a skill must be updatable, when given new information for the repre-
sentation of a skill, the system must allow for the models to be improved. This
section describes methods by which Robot Skills Models can be updated.

e Section 0.5, presents the generation of a task model by merging robot skills.
Skills can be generated by merging two or more models into a new skill, multiple
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Fig. 5.1: Module for the generation of task models from the robot skills in the knowl-
edge base and the constraints of the task, highlighted over the proposed
cognitive framework for learning and adaptation of robot skills.

desired robot skills may be composed from superposition of various models. This
section describes methods by which Robot Skills Models can be merged.

e Section [0.6] presents the generation of a task model by combining robot skills.
Models of a skill can be combined to generate new models that encompass a
larger spectrum of the attractor dynamics. This section describes methods for
the combination of Robot Skills Models.

e Section 5.7, presents the generation of a task model by transitioning between
robot skills. To generate complex behaviours, the system must sequence and
transition between models of the robot skills. This section describes methods
by which the system can shift smoothly among the reproduction of different
Robot Skills Models.

5.2 Generation and Adaptation of Robot Skills

Humanoid robots are thought to collaborate and interact together with humans,
sharing the same space, tools and activities. For humanoid robots to act fluently in
unstructured environments, interacting with different objects and people, they must
be able to perform dynamically changing tasks that require great adaptations. Flexi-
ble and generic control methods that can adapt to various tasks and robots constraints
are necessary. Learning systems are required to acquire skills and mechanisms are
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needed to endow systems with the capacities to adapt their acquired skills, expanding
the system’s knowledge and ability to act in the environment.

Traditionally available control algorithms are not nearly versatile, robust or flexi-
ble enough to achieve the complexity levels of the biological systems which are to be
emulated |Peters et al., 2003|. In order to benefit from the full potential of humanoid
robots a learning approach is required [Schaal, 1999].

One of the aims of this work is learning models of robot skills which are then
used to build a knowledge base of the robot skills knowledge for a humanoid robot
reproduction. To teach and learn the robot skills a LfD framework was implemented
in Chapter Bl The motivations for adopting an Imitation Learning approach were
stated in the previous chapters, the most important characteristics are that it provides
intuitive and user-friendly methods to teach tasks to a robot by demonstrating the
skills without requiring the user to have expert programming skills, it reduces the
cost of developing automated planning and manual programming of robot control,
and speeding up the learning process, as opposed to reinforcement learning methods,
reducing complexity of search spaces, giving prior knowledge of task performance.

The focus of the LfD approaches is the development of algorithms that are generic
in their representation of the skills and in the way they are generated. LfD methods
allow a human user to teach a robot how to accomplish a given task simply by
demonstrating the task and generalizing the demonstrated movements across a set of
demonstrations |Gribovskaya et al., 2010]. The robot cannot simply reproduce a skill
by copying an observed behaviour, it must have the capability to generalize it. One
common approach for generalizing a skill consists of creating a model of the skill based
on several demonstrations, performed in slightly different conditions exploiting the
variability inherent to the various demonstrations |Calinon, 2009|. Imitation Learning
focuses on three important issues: efficient motor learning; the connection between
action and perception; and modular motor control in the form of movement primitives
[Schiaal, 1099].

To achieve the complex behaviours, such as those needed for a humanoid robot to
work alongside humans, it would be necessary to have inclusive and comprehensive
repertoires of robot skills. For these purposes movement primitives, basic units of ac-
tion to complete a goal, are promoted. The assumption that complex movement skills
are composed from smaller units of action is well accepted for these approaches. The
insight that human activity is decomposed into building blocks of smaller elementary
actions is an established belief which can help to cope with the complexity of motor
skills learning for robots. There are many theories about motor primitives suggesting
human motion be divided into its elementary trajectories |Fod et al., 2000].

To learn such basic units of actions is considered a useful approach for generating
libraries of motor skills. Endowing a robotic system with a library of movement
primitives filled with a sufficient number of skills can provide it with an adequate
repertoire of actions to deal with a vast range of situations.The motor controller
components of movement primitives could be manually derived or learned. It is
important to allow their generalization and applicability to different scenarios that
the primitives be characterized in parametric form and be provided with adequate
representations. Chapter [ reviewed approaches to deal with complex motions a
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library of movement primitives and presented the development of the knowledge base
for the storing and retrieval of the Robot Skills Models learned in Chapter 3] as basic
primitives of action.

Therefore, it is necessary to extend the classical LfD approach of learning a skill
model in a way that allows the adaptation of a robot previously learned motion skills
to new unseen contexts.

The Learning from Demonstration (LfD) approaches previously reviewed offered
natural, fast and implicit means of teaching a robot new skills. However, despite its
clear advantages, it would be impractical for the human operator to teach the robot
the skills for every needed task and for every foreseen situation, since the number
of demonstrations the human must provide to the robot to generate a new model
of a skill could turn it into a tiresome and time-consuming process and it wouldn’t
be possible to cover every necessary task and every unforeseen situation. For this
reason, enhancing the LfD with the capacity to adapt and generate new skill models
is important. Additionally, despite the fact that the LfD offers the capability to
generalize the learned model, the generalization is relatively limited to changes in
initial conditions or to rather small perturbations during the execution. To expand
the scope of a learned model to areas unexplored by the demonstration would require
different mechanism. Hence, to extend the classical LfD approach of learning a skill
model in a way that allows the adaptation of a robot previously learned motion skills
to new unseen contexts is necessary.

To reproduce a task adapted for an unseen context the robot is provided with
knowledge of the state of the environment and the constraints of the task extracted
from its perceptual input and other high level orders it could possess. Using both,
the already learned model of a skill, and the extracted constraints information of the
current task, the model of the skill is adapted to reproduce the task. Figure 5.2
illustrates the process for enhancing a classical LfD approach to generalize a skill to
allow adapting a robot’s previously learned skills models. The traditional approach in
LfD from [Billard et al., 2008] as represented by the top scheme in Figure [5.2] presents
a somewhat static control scheme, akin to an open loop controller, and it won’t be
sufficient to reproduce a task when the state of the environment is too dissimilar from
how it was when the demonstrations were given to encode the model of the skill. By
adding environmental and task knowledge as input to the scheme, in the bottom of
Figure B2 the control diagram could be thought of as a close loop controller, with
a feedback signal from the constraints of the task and the environment, which allows
the model of a skill to be adapted accordingly to its context.

Reproduction of robot skills, if they are to be general enough, needs to present
the capacity for adaptation and to generate new skills when the current situation
of the world and its constraints of the task demand them. Working in dynamically
changing environments, it is necessary to adjust the desired trajectories appropri-
ately, or to generate new ones by generalizing from previously learned knowledge
[Schaal et al., 2007|. The robot skills learned with the methodology described in
Chapter [B] would present stable trajectories that accurately reproduce the demon-
strated motion dynamics, however, there is no guarantee that outside the area of the
demonstrations the reproduction of these trajectories would provide a meaningful or
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Fig. 5.2: Augmenting the LfD approach for the generalization of a skill to allow
adapting a robot previously learn skills models. (top) Generalization of
a skill by extracting the statistical model across multiple observations.
(bottom) Adaptation of a learn skill to new context by extracting the task
constraints with a new observation and using the environment information
to modified previously learned models of the skill.

proper behaviour in accordance to what would be expected from the task. As an
example, consider a case in which the robot has been taught motion skills in order
to grasp a cup approaching from the left side; and later it’s requested to grasp a cup
positioned to its right, it would be the impulse of the robot, governed by its model of
the skill, to approach the object from the left as the demonstrations showed it. How-
ever, such behaviour would not only be unnatural to achieve the task but potentially
unsafe for the robot or other entities in the environment.

The Robot Skills Models were learned by employing a Dynamical Systems (DS)
approach. The DS framework allows to comply with the attractor dynamics of the
desired behaviour, modulating it with a set of non-linear dynamic systems that form
an autonomous control policy for motor control. A DS approach was chosen be-
cause it allowed certain desirable properties. DS are intrinsically robust in the face of
spatio-temporal perturbations. DS do not explicitly depend on time and are able to
model arbitrary non-linear dynamics. DS can also be easily modulated to generate
new trajectories that have similar dynamics. By learning the skills under a probabilis-
tic approach employing Gaussian Mizture Model (GMM) the parameters governing
the attractor dynamics of the motion are fully encoded into the parameters defining
the Gaussian functions. The learned Robot Skills Models would form a set of basic
primitives of action from which a knowledge base of skills was built in Chapter [

An approach based on movement primitives relies on possessing available se-
quences of motor commands, executed in a certain order, to accomplish a given
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motor task. Movement primitives are biological structures that organize the under-
lying mechanism of complete movements |Fod et al., 2000]. It is generally believed
that humans employ basic motor primitives as an underlying mechanism of biological
motor control. Evidence exists from human and animal experiments supporting the
believe that sets of motor primitives are used to build a basis for voluntary motor
control |[Konczak, 2005|.

By working under a theory, based on the existence of basic primitives, from which
full human motions are made, it seems clear that following the issue of how to create,
build and learn these basic units of action primitives, the next question would be fo-
cused on how these primitives can be manipulated; how primitives can be combined to
form higher level movement primitives; how sequencing and recognition of sequences
of movement primitives can be accomplished [Schaal, 1999]. The idea is that actions
can be decomposed into sequences of reusable primitives; primitives might be pre-
served in memory and adequate primitives might be retrieved from it. Humans can
generate diverse actions by combining behaviour primitives |Arie et al., 2012].

To generate complex human like motions from a learned set of basic primitives
units, the Robot Skills Models, and be able to reproduce various complex task be-
haviours, methods for operating and manipulating upon the primitives must be de-
veloped. The robot skills must be adaptable to conditions of its operating environment
even when differing substantially from its original demonstrations. Also, the models
of a robot skill must be updatable, when given new information for the representa-
tion of a skill the system must allow for the models to be improved. Additionally,
the action primitives approach must be able to generate new skills by merging two or
more primitives into a new skill, multiple desired robot skills may be composed from
superposition of various primitives. Another important property is the combination
of the Robot Skills Models to generate new models that encompass a larger spectrum
of the attractor dynamics. A final desirable operation over the basic set of primitives
skills consist of sequencing and transition between models of robot skills in order to
generate complex behaviour with smooth transformation among the reproduction of
different skill motions.

The bulk of the work in LfD or RPbD and movement primitives approaches has
been centred on the development and validation of algorithms that would allow the
learning and encoding of the skill motions, which would constitute the movement
primitives, to take place. Little work has been focused on the development of tech-
niques that would endow the system with the ability to operate upon its movement
primitives and generate new and more complex behaviours. Yet some examples of
these efforts can be found.

[Muelling et al., 2013| presented a framework to learn cooperative skills from in-
teraction with a human. First, a set of elementary movements are learned from a
human teacher by kinaesthetic teaching. Subsequently, the system generalizes these
movements to a wider range of situations using our mixture of motor primitives ap-
proach. The resulting policy enables the robot to select appropriate motor primitives
as well as to generalize between them.

The work of [Shukla and Billard, 2012| focused on combining several learned DS,
with distinct attractors, resulting in a multi-stable DS. Their work presented an
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Augmented-SVM model, which inherits region partitioning ability of well know Sup-
port Vector Machine (SVM) classifiers and is augmented with novel constraints de-
rived from the individual DS.

In |[Khansari-Zadeh and Billard, 2012| a novel approach is presented to real-time
obstacle avoidance based on DS, that ensures impenetrability of multiple convex
shaped objects. Obstacle avoidance proceeds by modulating the original dynam-
ics. The modulation is parametrizable and allows to determine a safety margin and
to increase the robot’s reactiveness in the face of uncertainty in the localization of
the obstacle.

|[Kulvicius et al., 2012| focused on an approach for joining movement sequences
by modifying the learned DMP exemplified on handwritten application. The method
is based on the modification of the original DMP formulation. The new method can
reproduce the target trajectory with high accuracy regarding both the position and
the velocity profile and produces smooth and natural transitions in position space, as
well as in velocity space.

In |Gomez et al., 2012a] a novel robotic learning technique based on Fast Marching
Square is presented. The method assumes that the task taught to the robot can
be codified into a path planning problem. Their method takes into account the
environment, since it modifies the path planning algorithms of the system instead of
modifying the motion control.

The work of [Palm and Iliev, 2010| records the operator’s motions by a data-
capturing system; they are then modelled via fuzzy clustering and a Takagi-Sugeno
modelling technique. The resulting skill models use time as input and the operator’s
actions as outputs. The robot executes the recognized skill by using the corresponding
reference skill model. Drastic differences between learned and real world conditions
which occur during the execution of skills by the robot are eliminated by using the
Broyden update formula for Jacobians. This method was extended for fuzzy models
especially for time cluster models.

discussed a set of primitives for generating control commands for
any given motion by modifying trajectories appropriately, or generating entirely new
trajectories from previously learned knowledge.

[Calinon et al., 2012] derive a task-parametrized model that can adapt motion and
impedance behaviours in real-time with respect to the current position/orientation
of frames. The proposed extension is built upon the product properties of Gaussian
functions.

|Tani and Ito, 2003| investigated the self-organization of behavioural primitives
in a neural network model in the context of robot imitation learning. The model
is characterized by the parametric biases which adaptively modulate for embedding
different behaviour patterns in a single recurrent neural net, in a distributed way.
Diverse behaviour patterns other than learned patterns were generated because of self-
organization of non-linear map between the parametric biases and behaviour patterns.

|Arie et al., 2012| describes a model dealing imitation learning generalization by
focusing on the problem of action compositionality. A robot was trained with a
set, of different actions concerning object manipulations which can be decomposed
into sequences of action primitives. Then the robot was asked to imitate a novel
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compositional action, composed of prior-learned action primitives. The results showed
that the novel action can be successfully imitated by decomposing and composing it
with the primitives by means of organizing unified intentional representation hosted by
mirror neurons, even though the trajectory level appearance show difference between
those observed and those self-generated.

The robot would receive from the different modules of perception and interaction
the required appropriate commands ordering the reproduction of a skill, and would
extract the constraints of the task and its environmental configuration to instantiate
the appropriate knowledge frames as described in Chapter @ With this information
taken from the knowledge base, together with the pertinent Robot Skills Models cor-
responding to the requested task, the module for the generation and adaptation of
robot skills is called to adapt the robot skills accordingly and to generate the task
models for the robot reproduction of the task, Figure 5.l For the operation of the
module, two distinct processes are required. A first step calls for a skill model to
be adapted, if necessary, to comply with the conditions of the task in which it will
be reproduced or to be updated with new information. A second step requires the
generation of a task model, allowing the reproduction of the encoded knowledge of the
skills by the robot in order to perform a requested task. The versatility and usability
of a robot skill approach depend on the capacity to manipulate the skills. These ma-
nipulations of the skills must allow for the adaptation, update, merger, combination,
and transition between the Robot Skills Models as necessary.

Methods for model combination or joining can be found in the field of machine
learning and pattern recognition. Performance improvement can be obtained by com-
bining multiple models together in some way, instead of just using a single model in
isolation [Bishop, 2006]. One method involves the learning of different models and
then using the average of the predictions made by each model. An alternative form
of model combination is choosing one of the models to make the prediction as a func-
tion of the input variables, in this way different models become responsible for making
predictions in different regions of input space [Bishop, 2006]. These methods are very
dependent on the decision process. A way of softening the weights in the decision
process can be done by moving to a probabilistic framework for combining models.
These methods are known as mixtures of experts; models can be viewed as mixture
distributions conditioned by the input variables. A mixture of experts can be given:

=

p(tle) = m(w)pe(tle) (5.1)

k=1

In which the mixing coefficients 7 () are known as gating functions and the individual
component densities py(t|x) are called experts. The idea behind this is that different
components can model the distribution in different regions of input space and the
gating functions determine which components are dominant in which region. The
efforts in LfD approaches and the theory of generating movement primitive robotic
skills can only have a real implementation value for developing humanoid robotic
systems if the models of the skill can be operated upon to generate new behaviours
of increasing levels of complexity.
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5.3 Operations with Robot Skills

A knowledge base of robot skills was developed in the previous chapter. The
Robot Skills Models in this work has been learned by employing a Dynamical Systems
(DS) approach, built as basic primitives of movements encoding within the model
the motion dynamics of a demonstrated skill. Autonomous dynamical systems were
proposed as an approach for representing movements as mixtures of non-linear differ-
ential equations with well-defined attractor dynamics [[jspeert et al., 2001|. The DS
framework allows it to comply with the attractor dynamics of the desired behaviour,
modulating it with a set of non-linear dynamic systems that form an autonomous
control policy for motor control.

The DS framework provides a effective means to encode trajectories through time-
independent functions that define the temporal evolution of the motions. The motion
dynamics are estimated through a set of first order non-linear dynamical system
equations. It is assumed that the motion is governed by a first order autonomous
ordinary differential equation, & = f (£), as in Eq. B3

A DS approach to skill learning can offer a fast, simple and powerful formulation
for representing and generating movement plans learned from demonstration. The DS
framework allows to comply with the attractor dynamics of the desired behaviour,
modulating it with a set of non-linear dynamic systems that form an autonomous
control policy for motor control. DS provide efficient and clean means for encoding
a skill and fulfilling various desirable properties.

The DS framework presents three advantages, i) DS can be easily modulated to
generate new trajectories that have similar dynamics, performing in areas that were
not covered during demonstrations, |[Khansari-Zadeh and Billard, 2011]; ii) DS are
intrinsically robust and can adapt their trajectories instantly in the face of spatio-
temporal perturbations [Khansari-Zadeh and Billard, 2010a]; iii) DS do not explicitly
depend on time indexing and provide closed loop control and are able to model
arbitrary non-linear dynamics, |Gribovskaya et al., 2010].

The concept of a dynamical system is quite general. Dynamical Systems are
mathematical objects that unambiguously describe how the state of some system
evolves over time [Beer, 2000]. DS theory offers a wide variety of tools for visual-
izing and analysing the temporal behaviour of such systems. There are two types
of dynamical systems differential equations and iterated maps or difference equa-
tions |Strogatz, 1994|. Differential equations define a vector field, which assigns an
instantaneous direction and magnitude of change to each point in the state space.
The sequence of states generated by the action of the dynamics is called a solution
trajectory. The set of all possible solution trajectories is called the phase portrait.

Of particular interest is the possible long-term behaviour of a dynamical system.
Over time, the state of many dynamical systems eventually ends up in a small subset
of the state space called a limit set. Two simple types of limits sets are equilibrium
points and limit cycles. For stable limit sets or attractors, all nearby trajectories
converge on the limit set, so that small perturbations away from the limit set will
return there. In contrast, any perturbation from an unstable limit set will not return
to that limit set, but will instead be carried elsewhere by the dynamics [Beer, 2000].
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The appearance of phase portraits is controlled by the fixed points £ defined by
f(€) = 0 representing equilibrium point solutions [Strogatz, 1994]. The qualitative
structure of the flow can change as parameters are varied; fixed points can be created
or destroyed, or their stabilities changed. These changes in the dynamics are called
bifurcations. Bifurcations provide models of transitions and instabilities as some
control parameter is varied [Strogatz, 1994].

5.3.1 Stability Concerns

A key matter when adopting a Dynamical System approach to modelling the
robot skills for creating control policy of the movement primitives is the requirement
to ensure the stability of learned DS |Khansari-Zadeh and Billard, 2011|. Falling
into an unstable behaviour or a divergence from the desired trajectory would be a
potentially dangerous occurrence when controlling a robot, more specially a humanoid
robot which may be performing together with other humans. Therefore, analysing
the behaviour of the system is essential, as is determining whether it is stable. Stable
DS would benefit from inherent properties crucial to modelling movement primitives
robot skills.

The stability analysis of DS is usually around its equilibrium points. In this
work the notation & defines an equilibrium point, a point £ is an equilibrium point if
£(0) = € initially and then &(t) = £ for all time, an equilibrium is defined to be stable
if all sufficiently small disturbances away from it damp out in time [Strogatz, 1994].
The equilibrium points can be determined by computing the real roots of EqB.3l The
stability of a given equilibrium point £ can be defined as follows.

¢ = £ is a locally stable equilibrium point if for each R > 0, there is r = 7(R) > 0
such that if the initial state £(0) — & < r, then the evolution of the system in time
satisfies £(t) — & < R for all t > 0.

€ = £ is a locally asymptotically stable equilibrium point if it is stable and r can
be chosen such that if £(0) — & < 7, then it implies lim; o, £(t) = &.

¢ = £ is a globally asymptotically stable equilibrium point if the asymptotic
stability holds for any initial point, lim,_ £(t) = &, for all £(0) € Rd.

Studying the stability of DS can generally be divided into linear and non-linear
systems. An autonomous linear DS has the following general form:

E=Af+Db (5.2)

where A € R¥? and b € R? are a constant matrix and a vector. The stability
of linear dynamics in Eq. is global asymptotic at the unique equilibrium point
€ = —A~'b if and only if the real part of all eigenvalues of the matrix A are strictly
negative. Eq. correspond to the linear terms of Eq. for the GMR.

Stability analysis of linear dynamical systems is well studied, in contrast, there is
no unique method to analyse the stability of non-linear DS, and theoretical solutions
exist only for particular cases |Gribovskaya et al., 2010]. The Lyapunov methods are
the most common and general approaches for studying the stability of non-linear
DS. The stability analysis via the standard Lyapunov Stability theorem requires first
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finding a non-negative energy function V' (§) > 0, and second verifying if it always
decreases in a neighbourhood around the equilibrium point &.

The non-linear DS given by Eq. is asymptotically stable at &, if a continuous
and continuously differentiable Lyapunov function V(§) can be found such that

V(E) >0 VE€QCR&E#E
V(€) <0 VEeQCRI&E#E (5.3)
V(&) = 0&V () =0
In this case, the domain (2 is called the stability domain or region of attraction,
and should correspond to a level set of V(). If the stability domain is expanded
to the whole state-space 2 = R? and V(¢) — oo as [[£]] — oo then & is globally
asymptotically stable.
|[Khansari-Zadeh and Billard, 2011| algorithm SEDS was employed to learn the
estimates for the DS, as described in Chapter Bl SEDS computes the optimal values
for the parameter 6 while ensuring the estimate f to be globally stable in R? given
sufficient stability conditions.
An arbitrary non-linear DS given by Eq. is globally asymptotically stable at
the target £ € R? by ensuring the following stability conditions,

b = —A%¢ Vk=1...K in Bq. B34

=1... as in Eq.
AF 4 (AMT <0 a

where A¥ and b* are defined according to Eq. B:23, and < 0 refers to the negative

definiteness of a matrix.

A proof and details can be found on |Khansari-Zadeh and Billard, 2010a]. Eq.
[3.34 provides us with sufficient conditions to make DS globally asymptotically stable
at the target £&. Such a model is advantageous in that it ensures that starting from
any point in the space the trajectory always converges on the target.

5.3.2 Generalizing to Unseen Conditions

As we have reviewed adopting a DS framework was advantageous because it of-
fered several valuable properties inherent to the nature of the Dynamical Systems. DS
could be modulated to generate trajectories that have similar dynamics, performing in
areas that were not covered during demonstrations |[Khansari-Zadeh and Billard, 2011].

Generalization of the motion to an unobserved part of the space results im-
mediately from the application of the function to the new set of input variables
|Gribovskaya et al., 2010]. The ability to generate a trajectory from an arbitrary ini-
tial position to the target with a relevant velocity profile is a strong point of encoding
motion with DS. This generalization process consists of exploiting the variability in-
herent in the various demonstrations and to extract the essential components of the
task. These essential components should be those that remain unchanged across the
various demonstrations |[Calinon, 2009].

DS can encode movements and replay them in various conditions, Figure B3l
present, results of the generalization of the motion in different starting conditions
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Fig. 5.3: Generalize the motion to different starting conditions. (left) The result of
starting one of the motion tested in Chapter(3, 5Curve, at different starting
points. (right) The result of starting one of the motion tested in Chapter
[3, Sine, at different starting points.

tested on the reproduction of a couple of motions learned in Chapter?. Generalization
properties allow the system to adapt a robot reproduction of the skill to changes in
the environment relating to the position of the targets at the onset of motion.

The DS do not define a single trajectory but a family of solutions within the
attractor landscape of our system, therefore adapting to different starting positions
comes naturally under the DS framework, just as in the potential field approaches, Dy-
namical Systems approaches in motor control create vector fields according to which
movement system is supposed to move. DS trajectory based thinking creates simpler,
although less flexible, attractor landscapes, but scales easily to higher dimensions and
enables machine learning to shape the landscapes |[jspeert et al., 2009].

5.3.3 Robustness to Perturbations

Another advantage of adopting a DS framework is its inherent robustness to
perturbations. DS are intrinsically robust and can adapt their trajectories instantly
in the face of spatio-temporal perturbations [Khansari-Zadeh and Billard, 2010a].

A major strength of the DS approach is its ability to cope with perturbations in
real-time. As a perturbation is understood, the unexpected changes the position of
the attractor or the robot’s joints could present during motion. The learned dynamics
with a position of an object mapped into an attractor can successfully track the object.
Such flexibility combined with the guarantee of ultimately reaching the object is one of
the major advantages of the proposed method in comparison with traditional planners
|Gribovskaya et al., 2010].

The DS framework provides a robust robot controller in the face of perturba-
tions during the reproduction of a learned robot skill. Perturbations are produced
by displacement of the target object or of the robot trajectory during reproduction
attempts. The robot can smoothly adapt its generalized trajectory to handle dy-
namic perturbations during the reproduction. We must distinguish between spatial
and temporal perturbations. Temporal perturbations are produced when the robot




5.3. Operations with Robot Skills 169

Fig. 5.4: Robustness to a perturbation of the target position during reproduction.
(left) The result of perturbation with one of the motion tested in Chapter[3,
Arc, moving the target during execution. (right) The result of perturbation
with one of the motion tested in Chapter [3, Angle, moving the target
during execution. Trajectories are drawn in red with different starting
points. A black star marks the target position and the black dotted line the

displacement from the perturbation. The moment when the perturbation
takes place is marked by a black asterisk.
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Fig. 5.5: Robustness to a perturbation of the robot trajectory during reproduction.
(left) The result of perturbation with one of the motion tested in Chapterl[3,
Arc, moving the robot during execution. (right) The result of perturbation
with one of the motion tested in Chapter[3, Angle, moving the robot during
execution. 'Trajectories are drawn in red with different starting points.
A black star marks the target position. The displacement of the robot

trajectory from the perturbation is marked by the red dashed line enclosed
by black circles at the moment of perturbation.
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trajectory is momentarily stopped because of a safety issues or an object blocking
its path. Spatial perturbations typically derive from the dynamic interaction with
an environment in which an object or robot’s arm could be displaced by an external
perturbation.

Figure presents results of the adaptation of the motion to a spatial perturba-
tion in the position of the target tested on the reproduction of a couple of motions
learned in Chapter [ The moment when the perturbation takes place is marked by
a black asterisk. The trajectories are instantly recovered from the perturbation and
don’t display noticeable changes in their execution towards their new target position.
Figure shows results of the adaptation of the motion to perturbations in the robot
trajectory during execution tested on the reproduction of a couple of motions learned
in Chapter Bl The moment when the perturbation takes place is marked by a black
circle enclosing the displacement of the robot trajectory marked by the red dashed
line. The DS recovers its trajectory instantly from the perturbation and doesn’t
display noticeable changes in its execution towards its new target position.

Dynamical systems offer a particularly interesting solution to an imitation process
aimed at being robust to perturbations which are robust to dynamical changes in the
environment |Billard et al., 2008|. Learning the robot skills as DS which are time-
invariant and globally stable, the system is able to handle both temporal and spatial
perturbations, while performing the motion as close to the demonstrations as possible.
A controller driven by a DS is robust to perturbations because it embeds all possible
solutions to reach a target in one single function |[Khansari-Zadeh and Billard, 2010a).
The system is generic regarding tasks it may reproduce; furthermore, it may work
with limited and inaccurate information about the environment, as it does not require
any costly replanning.

5.3.4 Obstacle Avoidance

Working with humanoids in the natural environment requires that the robotic
systems work in cluttered environments, where they may face several objects during
the task execution. Collision avoidance capabilities would have to be present for these
systems.

Obstacle avoidance is a classic problem in robotics and many approaches have
been proposed to solve it. One may distinguish between local and global methods, de-
pending on whether the obstacle influences the behaviour either locally or everywhere.
Global methods, such as those dealt with by path planning algorithms, ensure finding
a valid solution, if it exists. However, these methods cannot offer the reactivity sought
for swiftly avoiding obstacles that appear suddenly |[Khansari-Zadeh and Billard, 2012].

In Artificial Potential Fields, obstacles are modelled as repelling potential fields
which are designed to automatically push a control system to circumnavigate them
in an on-line reactive way which prevents the robot from colliding with the obstacle.
An appropriate repulsion force should be computed so that it repels the trajectory
sufficiently away from the obstacle while avoiding getting stuck in local minima. Such
reactive behaviour assumes that obstacles may appear in an unforeseen and sudden
way, such that pre-planning is not possible or useful [Ijspeert et al., 2009
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The approaches based on attractor dynamics are another variant of the potential
field method, which uses heading direction, rather than the Cartesian position of the
robot. The Dynamic Potential Field approach extends the potential field principle
by also considering the velocity along the path |Khansari-Zadeh and Billard, 2012].

ILjspeert et al., 2009| suggested a model for obstacle avoidance with the use of
a coupling term in their DS approach. On the way to the goal state, an obstacle
is positioned at o = [0,0003]7 and needs to be avoided. A suitable coupling term
C; = [Cy1C,2Cy 3] for obstacle avoidance can be formulated as C; = yRygexp(—LS¢).
The angle ¢ is interpreted as the angle between the velocity vector ¢ and the difference
vector (0 — y) between the current position and the obstacle. R is a rotation matrix
which causes a rotation of 90 degrees about the vector r perpendicular to the plane
spanned by ¢ and (o — y).

In |[Khansari-Zadeh and Billard, 2012| a novel approach is presented to real-time
obstacle avoidance based on DS that ensures impenetrability of multiple convex
shaped objects. Their approach induced a modulation on the generic motion due
to the presence of an obstacle. First, start with an object centred on &° and provide
a convex bounding volume formulation of the outer surface of the obstacle and define
£ = £ — £° to simplify notation. A continuous function F(E), which projects R? into
R, has continuous first order partial derivatives and increases monotonically. By con-

struction, the relation I'(§) = 1 holds at the surface of the obstacle. A modulation
matrix is given by M(§) = E(§)D(€)E(€)~! The dynamic modulation matrix M (€)
propagates the influence of the obstacle on the motion flow. The effect of the dynamic
modulation matrix is maximum at the boundaries of the obstacle, and vanishes for
points far away from it [Khansari-Zadeh and Billard, 2012|. The modulation matrix

can be applied to the original dynamics given by f so as to have,

£=M(E)[(E) (5.4)

From |Khansari-Zadeh and Billard, 2012| a motion that starts outside the obsta-
cle, T(£(0)) > 1, and evolves according to Eq. does not penetrate the obstacle.
Therefore, the dynamic modulation matrix M (é) can be used to deform a robot mo-
tion such that it does not collide with an obstacle. The magnitude of the modulation
can be tuned by modifying the eigenvalues of the dynamic modulation matrix.

When in the presence of multiple obstacles, the single modulation matrix is inef-
fective and should be modified to include the effect of all the obstacles. Considering
K obstacles with associated reference points £%* and boundary functions I'*(¢¥), for
k = 1.K. the dynamic modulation matrix for each obstacle can be expressed by
MF(€F) = E*(EF) DR (EF)E*(¢F)~1. The combined modulation matrix that considers

the net effect of all the obstacles is then given by,

M(é) = [ [ Mt eh) (5.5)

The modulation is parametrizable and allows to determine a safety margin. For
proof and further explanations see [Khansari-Zadeh and Billard, 2012|. The approach
should be incorporated as part of the Robot Skills Models in future work.
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5.4 Update of Robot Skills

In previous chapters the techniques to learn the models of robot skills and the
development of a knowledge base to store and access them to have a set of basic
primitive actions on which to generate complex human like motions have been pre-
sented and developed. Now it is necessary to come up with methods to operate upon
the Robot Skills Models. A first desirable manipulation over the learned robot skills
would naturally be the ability to update and refine the models in order to adapt the
skill with new information. As outlined at the beginning of this chapter, learning and
encoding the models of the robot skills for every conceivable scenario the robot may
encounter would not be feasible, therefore, updating previously learned models is a
key mechanism for generating new models and expanding the application and versa-
tility of the robot skills. A robot skill must be updatable; when given new information
for the representation of a skill the system must allow for the models to be refined.
The update approaches are related to those efforts to develop incremental learning
techniques. Unlike other approaches which assume that data comes in blocks, the
incremental learning approaches work for the case when novel data points arrive one
by one. Incremental learning approaches that gradually refine the task knowledge
as more examples become available pave the way towards LfD systems suitable for
real-time interactions between humans and robots |Billard et al., 2008|.

Intuitively, a new model of the skill could be generated by including the new
demonstrations D,,,, of the skill with the previous dataset D,,;, and just retrain the
model of the skill, with the complete dataset D = D,,ig + Dpew, as it was described
in Chapter Bl This would produce a new model, yet, several issues arise. First, for
this approach to be possible it would be required that all the training information
from the demonstrations’ dataset be stored in memory. Storing all this information
should not be required. New available data must allow to refine a model of the mo-
tion without the need for keeping the whole training demonstrations data in memory
|Calinon, 2009|. Secondly, trying to update the skill model with all the previous
demonstrations could present a problem of diluting the influence at the new demon-
strations if is paired with a much bigger dataset. Intuitively, it can be seen that if
all the information that was available is the current GMM estimate, then a single
novel point would never carry enough information to cause significant change in the
Gaussian components [Arandjelovic and Cipolla, 2005|. Also, by using the combined
dataset of old and new demonstrations there could be issues on the compatibility of
the recorded demonstrations, which would need to be adjusted before training with
the possible loss of information.

The system must be capable of updating and refining its model of a skill when
presented with new relevant information for the skills, taking only the stored knowl-
edge of the Robot Skill Model in memory by updating its learned parameters 6 based
on the new demonstration.

The problem of incrementally updating a GMM, taking only into account new
incoming data and a previous estimation of GMM parameters has been proposed
for on-line data stream clustering. |[Song and Wang, 2005| suggested an approach to
incrementally updating the estimate taking only the newly arrived data and the pre-
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viously estimated model. Their approach first creates a new GMM from the new
incoming data, and then creates a compound model by merging the components of
the old and the new GMM. Their incremental Gaussian mixture model estimation
algorithm merges Gaussian components that are statistically equivalent. For each
cluster in the new GMM, it is determined if there is a statistically equivalent covari-
ance and mean with any of the components of the old GMM, then a new component
is created by merging them. If not it will add the remaining components adjusting
their weights accordingly. The main drawback of the suggested approach is that it is
computationally expensive and tends to produce more components than the standard
EM algorithm |Calinon, 2009|. Also, they fail to exploit the available probabilistic
information by failing to take into account the evidence for each component at the
time of merging [Arandjelovic and Cipolla, 2005].

Other approaches suggest the use of the temporal coherence properties of data
streams to update the GMM parameters. [Arandjelovic and Cipolla, 2005 propose
a method consisting of a three-stage model update each time a new data point be-
comes available. First, model parameters are updated under the constraint of fixed
complexity. Then new Gaussian components are postulated by model splitting and
components are merged to minimize the expected model description length. Their
model assumes that data varies smoothly in time, which allows the GMM parameters
to be adjusted when new data is observed.

[Calinon, 2009| proposes two approaches to deal with these problems, where the
need is for adjusting an already existing model when new data points are given. A first
method proposed a reformulation of the problem in |Arandjelovic and Cipolla, 2005|
for a generic observation of multiple data points. The idea is that an adaptation
of the EM algorithm in Eq. B2 by separating the parts dedicated to the data
already used to train the model and the one dedicated to the newly available data,
with the assumption that the set of posterior probabilities remain the same when
the new data is used to update the model. The model is first created with N data
points &; and updated iteratively during 7" EM-steps until convergence to the set of
parameters (&, p% YE)*_ . When a new demonstration is given, T EM-steps are
again performed to adjust the model to the new N data points éj, starting from an
initial set of parameters (7%, ik S5)E_ = (zk, pk $E)E_ and iterating until a new
updated model is estimated.

It is important to note that for this approach to work, it is assumed that the cumu-
lated posterior probability does not change much with the inclusion of the novel data
in the model; this is only true if the new data is close to the model |Calinon, 2009].
This restriction is important because it cannot always be guaranteed and more im-
portantly most times it is not even wanted, since the desirable refinement of the
model requires sufficient departure from the original skill for the update process to
be meaningful. To illustrate the result of this method Figure shows the result of
updating a learned model of a skill with a new demonstration.

[Calinon, 2009| also presented an alternative to the above method using a stochas-
tic process to update the parameters. An initial GMM model (7%, % SF)k_ is first
created using the EM algorithm in Eq. B2I1 When an update is required with
new given data a process of GMR regression is performed over the learned model to
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Fig. 5.6: Direct incremental method update of a skill. (left) Model of the learned
skill, with demonstrations in black. (center) New demonstration, in ma-
genta, over the learned skill model. (right) Updated model of the skill.
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Fig. 5.7: Generative method update of a skill. (left) Model of the learned skill, with
demonstrations in black. (center) Model of the learned skill, with the new

demonstration in magenta and the generated trajectories in red. (right)
Updated model of the skill.

stochastically generate a dataset from the model. Therefore a new dataset is created
composed of this generated demonstration and the new observed dataset; the GMM
parameters of the updated model are then retrained with the FM algorithm. For this
purpose a learning rate a was defined, along with the number of samples, n = ny +ns
used for the learning procedure, where ny; and ns are respectively the number of ex-
amples from the new observation and number of examples generated stochastically
by the current model. The training set of n trajectories is used to refine the model by
updating the current set of parameters using the EM algorithm |Calinon, 2009]. The
value for o € [0; 1] can be set to a fixed learning rate or depend on the current number
of demonstrations used to train the model, also a can be computed recursively for
each newly available demonstration.

To illustrate the result of this method Figure B.7 shows the updating a learned
model of a skill in the same way as the one that was presented for the previous method
in Figure

For the adaptation of a task model by updating a robot skill in this work a
method similar to the one presented above from |Calinon, 2009| is employed. Models
of a skill must be updatable when given new information for the representation of a
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Algorithm: Update the learned robot skill
Input: Learned Robot Skill Model, Mrs, with parameters 0% = (7%, u*, ¥%).

1. Record new demonstration trajectory for the update of the skill.
2. Generate stochastically ngyen trajectories from the current model by the GMR.
3. Determine the parameter a = of € [0;1];k = 1.K
4. Create a new update demonstration dataset {¢, £ Yupdate
5. Generate the new update model of the skill.
6. END
Output: Updated Robot Skill Model, Mgs,, ..., with parameters ijpdate = (7, uk, k).

Tab. 5.1: Procedure for updating a learned model of a robot skill.

skill without having to store the training demonstrations data in memory. A Robot
Skill Model, Mpgg, is first learned by means of the SEDS algorithm presented by
|[Khansari-Zadeh and Billard, 2011| as described in Chapter [ with learned parame-
ters OF = (7%, ¥, ¥F). We are considering only the case when the model is refined after
receiving one update demonstration for the skill, so therefore, the number of samples
n, used for the learning procedure would be n = ngen+1, with ngzen being the number
of examples generated stochastically from the current model by the GMR. For our
method the new update demonstration dataset {¢, ¢ }update Would be grouped into K
clusters according to the number of Gaussian functions determined for the original
Robot Skill Model, and the parameter o would be defined as o* € [0;1];k = 1..K,
and it would determine a measure of the relative importance of the area in cluster
k the update demonstration should have for refining the model over the stochastic
demonstrations generated from the learned model. When generating the stochastic
demonstrations sampling out of the GMR with the learned parameters 6 of the robot
skill random samples are taken starting around the given demonstration. To induce
more weight on the update dataset or the generated dataset as determined by the
parameter o*, data points of the generated dataset which are too far removed from
the update dataset according to a threshold dependant of o will be discarded.

To illustrate the result of this method Figure shows the result of updating
a learned model of a skill. The process for updating a learned Robot Skill Model is
summarized in Table Bl

5.5 Merger of Robot Skills

As it has been stated throughout this chapter, efforts at learning and generating
movement primitives robotic skills can only have a real implementation value for
developing humanoid robotic systems if the models of the skill can be operated upon
to generate new behaviours of increasing levels of complexity. It is necessary to come
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the update of the skill for the same demonstration as the above examples,
the parameter o are define to govern the influence of new data on the
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model to reproduce the curve at the top of the trajectory.
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up with methods to manipulate the Robot Skills Models. Encoding models of the
robot skills for every conceivable need the robot may find itself in is not plausible,
hence, it is key for approaches to be able to generate new skills by merging different
skill primitives into a new skill. The ability to generalize skills and adapt them
to a new situation is fundamental for the LfD concept; performing the task under
different circumstances from those present during demonstrations, given appropriate
adaptation, can allow an acquired skill to carry out more complex task than the
teacher is capable of demonstrating [Khansari-Zadeh and Billard, 2011].

The learned DS models encode specific motion skills, which can be seen as build-
ing blocks used to generate more complex motions. Multiple desired robot skills may
be composed from sequencing or superposition of various primitives skills. The mod-
ularity of the DS approach is essential as it would allow to control a wider repertoire
of movements from a smaller set of basic skills [Schaal, 1999]. Intuitively, one could
consider an approach to merging two or more models of a skill simply by adding and
averaging together their learned parameters § = (7, i, ¥2) in order to obtain a new skill
model through a linear superposition. The models would represent the distributions

f1(€) and f2(€) respectively as from Eq. BT,

N
1€ = Z TN (&, )
)= TN (&, 5)

j=1

A weighted sum of these densities would give the merged model

F(&) = af'(&) + BF(E) (5.6)

The weights o and [ scale the prior of the components to give the new GMM, with
N + M components, by simply concatenating the descriptions of each GMM,

N+M
F€) =Y T NHE& Uk EF)

k=1

the first N components terms are specified from f1(£), while the remaining com-
ponents come from f2(£). The prior 7% are exactly the 7 or 7/ of f1, f? scaled by
alpha or 3 accordingly, while the p* centres and ¥* covariance matrix are copied
from their source GMM. While this approach may work in some cases it is important
to note that direct superposition of the skills does not allow to control the manner
in which the new model is generated. Also the non-linear sum of two or more stable
DS would not necessarily generate a stable new model and special attention should
be considered in this regard |Khansari-Zadeh and Billard, 2011).

The work of |[Hall et al., 2005| presents a modified approach to merging a pair of
GMM to produce a third GMM; this closely approximates the GMM which would
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be constructed by a standard algorithm for fitting the data, having the concatenation
of data sets of the two mixture models as input.

fE) e f(€) = f(& &) (5.7)

There are three main steps to their approach, first concatenating the models by
trivially combining the GMM into a single model, as per Eq. [E.6], to produce a
model with M + N components. Then simplifying the GMM of the concatenated
model by merging components using a weighted summation of their parameters.
[Hall et al., 2005| merged components by combining their parametric descriptions,
not by adding the density functions. Finally, selecting the optimal number of com-
ponents 1 < K < M + N for the GMM that best explains the distribution.

[Muelling et al., 2013| presented a framework to generalize learned motor primi-
tives to a wider range of situations using a mixture of motor primitives approach. The
resulting policy enables the robot to select appropriate motor primitives as well as to
generalize between them. The goal was to acquire a library of movement primitives
from demonstrations and to select and generalize among these movement primitives
to adapt to new situations. The primitives are associated with a set of parameters re-
ferred to as the augmented state. A new movement is generated for a new augmented
state selecting a primitive to use as components of the mixture of motor primitives
algorithm |[Muelling et al., 2013|. The algorithm activates components using a gat-
ing network based on the augmented state and generates a new movement using the
activated components.

The mixture of motor primitives generates a new movement for the current sit-
uation triggered by the augmented state by computing the weighted average of all
movement primitives in the library, the resulting policy f(£) generated by the algo-
rithm is given by

552 (8)f(E)
f§) ==5—— (5.8)

where the function 7°(§) generates the weight of f* given the augmented state

L
£. The sum of all weights > ~7*(d) form the gating network of the mixture of motor
j=1
primitives algorithm |[Muelling et al., 2013|. The gating network weights the move-

ment primitives based on their expected performance within the current context,
ensuring only appropriate movement primitives can contribute. The weights are
modelled by an exponential family distribution. The resulting motor policy f(&)
is composed of several primitives weighted by their suitability in the given context of
the task; the weights are adapted to the task based on the outcome of previous trials
[Muelling et al., 2013].

In this work, in order to generate a new skill based on the merger of several Robot
Skills Models, previously learned and stored in the knowledge base, we developed
a method taking from the above approaches. First we review a couple of useful
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Fig. 5.9: Process of merging two robot skills to generate a new model. (left) Repre-
sentation of the two learned models of the robot skill and their non-linear
terms h*. (right) Representation of the new robot skill model generated
from the merger process and its non-linear terms h*.

mathematical properties from the SEDS formulation chosen to learn the skills,

if f(€) is SEDS,and o >0€R

E=af(&) is SEDS

consider M SEDS models f'(£),i € 1.M (5.9)
M

£=Y a'fi(¢)a’ >0 is SEDS

i=1

The models of the robot skills can be expressed as a non-linear sum of linear
dynamical systems of the form

h*(€)(A*E +bF)  asin Eq.

]~

£=f(&) =

k=1

Here, recalling the expression of the non-linear weighting function h*(¢), as in
Eq. B23] it can be found that it shares a similar formulation with the expression of
the weights 7/(6) for the gating function of Eq. The merger of the Robot Skills
Models can be carried out with a model combination approach expressed in mixtures
of experts model as from Eq. B], in which the mixing coefficients 7 (x) of the gating
function are given by the non-linear weighting function h*(¢), and the py(t|x) density
is given by the linear DS A¥¢ 4 bF.

The process for the merging of robot skills would proceed as in the above ap-
proaches; first, the GMM of the robot skills are joined into a single model. Then
a new weighting function l~z(§) for the single model must be built out of the origi-
nal weighting terms h*(£) from the merged models, ensuring the Gaussian with the
biggest weight in every region of the trajectory provides the largest influence over the
new GMM model in that region and that the new weighting function ﬁ({) still meets
the constraint of the mixing coefficient as in Eq. B22, 0 > h*(¢) > 1 and >_ hF () = 1.
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Fig. 5.10: Merger of two learned GMM skill models to generate a new skill. (left)
Learned models of the robot skill. (center) Merging process of the two
models to generate a new one. (right) Merged skill model.

Then a new weighting function h*(€) would be given by h*(€) = a* (&, h)h*(€) where
a® (&, h) is a scalar function that weights the original h*(¢) of the models, and ensures
the constraints of ﬁ({) Figure illustrates the process of merging two robot skills
to generate a new skill model.

Figure illustrates the result of merging two robot skills to generate a new
skill model. The process for updating a learned Robot Skill Model is summarized in
Table (.3

5.6 Combination of Robot Skills

Operations over the models of the robot skills must include the capacity to gener-
ate skills in order to allow carrying out more complex task than those the teacher is
capable of presenting during demonstrations. The Robot Skills Models must be com-
binable into new models capable of generating skills, encompassing a larger spectrum
of the attractor dynamics. One important gain from the combination of robot skills
comes from increasing the accuracy of the generalized behaviour. The convergence
of the motion to the target is ensured, yet, due to the lack of information for points
far from demonstrations, a model may reproduce some trajectories that are not con-
sistent with the usual way of doing the task. The presented behaviours of the robot
may not be optimal in these cases; however, such results are inevitable, given that
the information from demonstrations is incomplete and the inference for points too
far from them is not reliable. The generation of a model by combining robot skills is
necessary in order to improve the task execution.

The more direct and intuitive approach would rely on providing the robot with
more demonstrations over regions not covered before. By showing the robot more
demonstrations and re-training the model with the new data, the robot should be able
to successfully accomplish the task |[Khansari-Zadeh and Billard, 2011]. However,
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Algorithm: Merger of the learned robot skill
Input: Learned Robot Skill Models, M}y, M%q, ..., M.

1. Compute the new model as Zszl RE(&)(AFE + bF).

2. Compute the parameters o for the new model.

3. Build the weighting function &, as h(&) = o¥ (€, h)h*(€).
4. Generate the new merged model of the skill.

5

. END

Output: Merged Robot Skill Model, Mgs,,.,,.., given by Zle hF(€)(AFE 4 bF).

Tab. 5.2: Procedure for merging learned models of a robot skill.

this approach would not seem to be the most flexible and general, and also robots
performing tasks in the real world cannot reliably expect to have an available teacher
to provide them with more demonstrations whenever their knowledge of a task doesn’t
suffice.

The work of |[Chatzis et al., 2012| reformulate GMR models, introducing the con-
cept of quantum states, which can be constructed by superposing conventional GMR
states by means of linear combinations; their approach is especially suitable for learn-
ing complex demonstration trajectories. In [Shukla and Billard, 2012] the focus is
on combining several learned DS, with distinct attractors, resulting in a multi-stable
DS, as could be the case of different attractors representing several grasp points of
a single object. Their work presented an Augmented-SVM model, which inherits re-
gion partitioning ability of well know Support Vector Machine (SVM) classifiers and
is augmented with novel constraints derived from the individual DS. A DS composed
of multiple stable attractors provides an opportunity to encode multiple dynamics,
directed towards different attractors, into a single DS. Restricting the motion dynam-
ics to a single attractor constrains considerably the applicability of these methods to
realistic grasping problems. From a robotics viewpoint, a robot controlled using a

DS with multiple attractors would be able to switch online across grasping strategies
[Shukla and Billard, 2012].

The stability at multiple targets is an important concern; this problem has been
addressed largely through neural networks approaches. For instance, Hopfield net-
works can offer a powerful means of encoding several stable attractors in the same
system. However, the dynamics to reach these attractors was not controlled for; nor
was the partitioning of the state space that would send the trajectories to each at-
tractor. A naive approach to building a multi-attractor DS would be to first partition
the space and then learn a DS in each partition separately this would however rarely
result in the desired compound system [Shukla and Billard, 2012]. Due to the influ-
ence of non-linear dynamics, trajectories that initialize in one region could cross the
boundary and converge to the attractor of the other region. In a real scenario, cross-
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ing over may take the trajectories towards unreachable regions. Also, trajectories
that encounter the boundary may switch rapidly between different dynamics leading
to jittery motion |[Shukla and Billard, 2012].

To ensure the trajectories remain within the region of attraction of their respec-
tive attractors, an approach can be adapted in which each of the original DS is
modulated so that the generated trajectories always move away from the classifier
boundary. [Shukla and Billard, 2012| developed a system that ensured strict classi-
fication across regions of attraction for each DS, closely following the dynamics of
each DS and ensuring that trajectories in each region reached their desired attrac-
tors. |Shukla and Billard, 2012| presented the Augmented-SVM model for combining
non-linear DS through a partitioning of the space. The resulting model behaves as a
multi-stable DS with attractors at the desired locations.

|[Khansari-Zadeh and Billard, 2011] presents an embedding of different ways of
performing a task in one single model. As stated above, sometimes it may be nec-
essary to execute a single task in different ways starting from different areas in the
space and a single DS driving the motion is not sufficient. Their work uses SEDS
to integrate different motions into one single dynamic. The robot follows distinct
trajectories starting from different points in the workspace. Two different SEDS
models, Mkg, M%¢ can be combined just by concatenating their parameters, such

1.2
that the parameter of the new model can defined as 7 = M, p = [p'p?] and
(! +m2)

¥ = [X'¥?]. While reproductions locally follow the desired motion around each set of
demonstrations, they smoothly switch from one motion to another in areas between
demonstrations |[Khansari-Zadeh and Billard, 2010a]. The proposed method offers a
simple but reliable procedure to teach a robot different ways of performing a task;
however, a more complex method is required in order to provide a better fit for the
multiple dynamics and prevent possible interference among models when switching
between different dynamics in trajectories close to the border of each attractor region.

In this work, in order to generate a new skill made of the combination of several
Robot Skills Models previously learned and stored in the knowledge base, we developed
a method taking from the above approaches. Two different SEDS models are first
combined by concatenating their parameters. Then, an area of influence for the DS
attractor is defined based on the non-linear weighting function h*(¢) of the SEDS
models expressed as a non-linear sum of linear dynamical systems as in Eq. A
new weighting function h(€) = a*(&, h)h*(€) for the single model must be built out
of the original weighting terms h*(¢), as in the merging of the models, however in
this case the h*(¢) terms must be strongly biased such as that the influence over the
trajectory comes at any time from only one model, therefore, the o*(¢, h) function
must have a completely different form that for the merging of the robot skill models.

Figure 51T and illustrate the results for combining two and three robot skills
to generate a new skill model. The process for updating a learned Robot Skill Model
is summarized in Table 5.3l
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Fig. 5.11: Combining the dynamics of two skills into a single task model.
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Fig. 5.12: Combining the dynamics of three skills into a single task model.
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Algorithm: Combination of learned robot skill

Input: Learned Robot Skill Models, M}q, M%g, ..., M.

[rt 7257

1. Calculate the prior 7, as T = " )

. Calculate the mean i, as ji = [u*p?...u"]

2
3. Calculate the covariance ¥, as ¥ = [S'¥2..%7]

4. Build the weighting function h, as h(£) = o (&, h)R*(€).
5. END

Output: Combine Robot Skill Model, Mps,, ..., given by S.0_ h¥(€)(AF¢ 4 bF).

Tab. 5.3: Procedure for combining learned models of a robot skill.

5.7 Transition between Robot Skills

A desirable operation over the basic set of primitive skills consists of the sequencing
and transition between robot skill models in order to generate complex behaviours
with smooth transformation among the reproduction of different skill motions.

The simplest way to join several DS would be just to perform one robot skill until
it reaches the end point of the motion and then, continue with the reproduction of
the next DS starting at that point; that is, the end point of the first DS is used as the
starting point of the second DS and so on. This approach is very simple, but it clearly
has certain drawbacks, mostly stemming from the unnatural slowing and restarting
behaviour that the close-to-zero velocities at the end of the movement trajectory in
the original DS would produce.

|[Kulvicius et al., 2012 focused an approach for joining movement sequences mod-
ifying the learned DMP exemplified in a handwritten application. The method is
based on the modification of the original DMP formulation. The new method can
reproduce the target trajectory with high accuracy regarding both the position and
the velocity profile and produces smooth and natural transitions in position space, as
well as in velocity space.

Smooth transitions between the DS representing the robot skills could be produced
by modifying the parameters of the DS to generate a transcritical bifurcation at the
moment the first DS reaches its attractor, pushing the system dynamics towards the
attractor of the second DS. In a transcritical bifurcation a fixed point interchanges its
stability with another fixed point as the parameter is varied |Strogatz, 1994]. In this
type of bifurcation an attractive stable fixed point is exchanged, when they collide, so
the unstable fixed point becomes stable and vice versa. A robot skill would reproduce
the trajectory as in a normal case towards its target attractor, when the first motion
is close to reaching the attractor, the bifurcation would change the stable nature of
the attractor in order to move the system from this state towards the target attractor
of the following skill DS.
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These types of approaches, as well as others, are important case studies. Per-
forming different tasks and executing different robot skills with smooth, natural and
stable transitions between them is an important goal for humanoid robotics.

5.8 Summary of the Chapter

Throughout this chapter a review of the algorithms developed for the generation
and adaptation of the robot skills has been given. Humanoid robots working beside
humans in complex dynamic environments are required to perform a wide repertoire of
tasks. Efforts to generate robotic skills can only have a real implementation value for
developing humanoid robotic systems if the models of the skill can be operated upon
to generate new behaviours of increasing levels of complexity. Section presents a
review of related approaches aiming at the adaptation of learned skill models and the
developments for the generation and adaptation of the robot skills. Section pre-
sented dynamical properties inherent to the models of a robot skill, such as robustness
to spatio-temporal perturbations, independence on time, and generalizable to unseen
initial conditions. Stability conditions required for generating stable DS representa-
tions of the skill were reviewed as well as a method to expand applicability of the
DS approach with mechanism for obstacle avoidance. In this chapter, processes by
which, using the already learned model of a robot skill and the extracted constraints
knowledge of the current task, the model of a skill can be adapted to reproduce a new
task were described. Different modalities were developed and implemented that allow
for the adaptation and generation of new skill models based on the already learned
models of skills stored in the knowledge base. Different modes are presented for the
adaptation, update, merger, and combination of the Robot Skills Models. Section [L.4]
presented the adaptation of a task model by updating a robot skill. Updating pre-
viously learned skills is a very important ability for humanoid robots, allowing them
to increase and improve their available skill set. A developed method for updating
a robot skill was presented in Table .1l Section presented the generation of a
task model by merging robot skills. Skills can be generated by merging two or more
models into a new skill. New models of a skills can be generated by merging two or
more models into a new skill in order to expand the robot skill set and increase its
range of action. A developed method for merging robot skills was presented in Table
B2l Section presented the generation of a task model by combining robot skills.
Models of a skill can be combined to generate new models that encompass a larger
spectrum of the attractor dynamics and allowing to generalize the models of the skills
to regions outside their original demonstrations. A developed method for combining
robot skills was presented in Table 5.3l Section 0.7 discussed the generation of a task
model by transitioning between robot skills. For humanoid robots to be capable of
working successfully in the capacity in which they are envisioned, it is of vital im-
portance that they present ample and robust skill sets. The ability to learn robot
skills is a key aspect, yet learning by itself is not sufficient, the capacity to operate
over the learned robot skill, such as the merger, update and combination of skills, is
necessary.
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6. REPRODUCTION OF ROBOT SKILLS

6.1 Outline of the Chapter

This chapter presents the reproduction of the generated task models by a hu-
manoid robot platform operating under task constraints. The robot reproduction of
skills follows the framework presented in Chapter 2 employing the systems developed
for learning robot skills in Chapter Bl the representation of robot skill in a knowledge
base in Chapter [ and the generation and adaptation of robot skills in Chapter Bl
Figure shows the framework proposed throughout this work for the robot skills’
adaptation of learned models to task constraints. In this chapter the implementa-
tion of the various systems developed in the framework for learning and adaptation
of skills to task constraints are also presented, see Figure 6.1l Finally, experimen-
tal results and analysis validating the framework proposed throughout this work are
presented; different evaluation scenarios are described to test the performance of the
various modules implemented in our framework and to provide separate validation for
the operation of the system for storing and retrieving robot skills from the knowledge
base; the system for generating and adapting the robot skills to the constraints of the
task, and the evaluation of the complete developed framework. The organization of
this chapter is as follows:

e Section describes the development of the proposed framework for learning
and adaptation of the robot skills and the experimental set up for the validation
of the framework. Here, the robotic platform used in this work is presented with
a description of its structure, joints and sensor distribution. Also, a descrip-
tion of the evaluation scenarios to test the performance of the framework and
the implemented modules is given. To validate the proposed framework and
modules, the experiments would be performed over different scenarios.

e Section [6.3] presents the implementation of the learning system. The robot skill
learning module collects the learning processes and algorithms used for learning
and encoding the models of the skills. The development and operation of the
module for learning the robot skills is described in this section.

e Section [6.4] presents the implementation of the knowledge base system. The
robot skill knowledge module controls the developed knowledge base for the
storing and retrieval of the learned models of the skills. A description of the
development and the process for building and navigating the knowledge base is
given in this section.
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Fig. 6.1: Deployment diagram for the proposed cognitive framework for learning and

6.2

adaptation of robot skills. The framework is formed by a robot skill learn-
ing module, a perception and interaction module, a robot skill knowledge
module, a robot skill generation and adaptation module, and a robot skill
reproduction module.

Section[6.5], presents the implementation of the task model generation and adap-
tation system. The robot skill generation and adaptation module governs the
process by which the learned model of a skill can be operated to reproduce a
new task, including the adaptation, update, merger, combination, or transition
of the skill models. The development and operation of the module for adapting
robot skills is described in this section.

Section [6.6], presents the implementation of the reproduction system. The robot
skill reproduction module is in charge of producing the adequate control signals
to the robot for the reproduction of robot skills. A description of the develop-
ment and operation of the module for the robot reproduction of skills is given
in this section.

Section [6.7], presents the experimental results and analysis for validation of the
proposed framework over the evaluation scenarios described in the previous
section of this chapter. Different evaluation scenarios are employed to test the
performance of the various modules implemented in our framework. Demonstra-
tions are organized over three major scenarios to provide separate validation for
the knowledge base system, the task model generation and adaptation system,
and the complete developed framework.

Development of the Robot Skills Framework

The framework proposed in this thesis is meant to allow the following: for an
operator to teach and demonstrate to the robot the motion of a task skill it must
reproduce; to build a knowledge base of the learned skills knowledge allowing for its

Robot
Agent
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storage, classification and retrieval; to adapt and generate learned models of a skill
to new contexts for compliance with the current task constraints.

The framework proposed here was developed as a cognitive model intended to
provide the robot with an essential cognitive ability for learning and adaptation of
skills. Though it is not a primary consideration in this work, our framework can
be thought of as part of a level in the hierarchy of a more complex architecture, or
as a first stepping stone upon which to incrementally build more complex cognitive
processes. The goal of the developed framework is to provide a minimum degree of
intelligence for the humanoid robot, that is, the ability to sense the environment,
learn, and adapt its actions to perform successfully under a set of circumstances.

The framework provides humanoid robots with systems that allow them to con-
tinuously learn new skills, represent their skills’ knowledge and adapt their existing
skills to new contexts, as well as to robustly reproduce new behaviours in a dynamical
environment. The cognitive framework for learning and adaptation of robot skills is
made up of several modules, as is represented by the diagram on Figure 61l The
framework is formed by modules for the learning of robot skills, the perception and
interaction with the environment, the management and representation of skill knowl-
edge, the generation and adaptation of skill models, and the reproduction of robot
skills.

The robot skill learning module collects the learning processes and algorithms used
for learning and encoding the models of the skills. The perception and interaction
module is in charge of processing the outside information of the robot’s working
environment to use in the other modules. The robot skill knowledge module controls
the developed knowledge base for the storing and retrieval of the learned models of
the skills. The robot skill generation and adaptation module govern the process by
which the learned model of a skill can be operated to reproduce a new task, whether
the adaptation, update, merger, combination, or transition of the skill models. The
robot skill reproduction module is in charge of producing the adequate control signals
to the robot for the reproduction of robot skills.

Robotic Platform

In order to test the proposed systems the HOAP-3 Humanoid Robot was used as a
test platform, Figure[6.2l The HOA P-3 was designed to resemble the human shape, on
a small scale, with a complete humanoid configuration with two legs and arms, a head
with vision and sound capacities, and grip-able hands. The small humanoid robot
HOAP-3 is about 60 cm in height, and weighs about 8 kg, so that it becomes quite
easy to control and move while maintaining the whole stability [Pierro et al., 2009].
The HOAP robots were designed for a broad range of applications for Research and
Development of robot technologies.

In 2001 Fujitsu produced its first commercial humanoid robot named HOAP-1,
the first in its series of humanoid robots, HOAP stands for “Humanoid for Open
Architecture Platform” |Riezenman, 2002, its successor, HOAP-2 was announced in
2003. It has a height of 48 cm and weight of 6.8 kg. The model used in this work is an
evolution from the previous HOAP and HOAP-2 robot family. The HOAP-3 robot
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Fig. 6.2: The HOAP-3 robot platform. HOAP robots were designed for a broad
range of applications for Research and Development of robot technologies.
HOAP-3 is about 60 cm in height, and weight about 8 kg. It can perform
walks on flat terrain, sumo movements and dancing and grasp thin objects.

was announced in 2005, adding movable axes for the head and hands, CCD cameras, a
microphone, a speaker and LEDs to show expression. HOAP can successfully perform
walks on flat terrain, sumo movements and dancing and grasp thin objects, such as
pens, brushes, etc.

The control architecture operates on RT-Linux mounted on a embedded PC-104
computer, Pentium 1.1 GHz processor with 512 Mb of RAM memory and a Compact
Flash drive of 1 Gb capacity. The communications with the robot platform could
be done via a USB interface or by means of an on board Wi-Fi IEEE802.11g com-
munication. The robot electronics are mounted on the robot’s back and protected
with a backpack casing. Additionally, a container on the robot’s chest allows for a
rechargeable 24V NiMH battery to be loaded on to it, the battery pack allows for
approximately a 30 min autonomy operation.

The HOAP-3 structure is made out of a total of 28 degrees of freedom (DOF),
powered by DC motors for the legs, waist and arms DOF, and servo motors for the
operation of the hands and legs. The distribution of the DOF is as follows:

e 6 DOF for each robot arm, 4 DOF for the arm, 2 DOF for the hand.
e 6 DOF for each leg.

e 3 DOF in the head, for the pitch, yaw, and roll.

e 1 DOF for the waist.

In addition the robot platform sensory system is equipped different sensors en-
dowing the robot with:
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Fig. 6.3: The HOAP-3 robot dimensions and distribution of joints and sensors ca-
pabilities. The HOAP robot is equipped with 28 DOF, additionally it have
a gyroscope, an accelerometer, and various force sensors, and two cameras.

Posture sensors (a gyroscope sensor and acceleration sensor).

Contact sensors (force sensor in every corner of each foot).
e Grip sensors (force sensors in the thumbs).
e Vision sensors (Two USB cameras in the head).

Figure shows HOAP-3 robot structure and sensor distribution. Its structure
and sensor system allows to try different control architecture, thought to be used in
a collaborative system.

Perception System

A perception system was developed for the operation of the HOAP-3 robot. The
perception system consists of a stereo vision system, making use of both robot cam-
eras, and an interaction system, making use of a human-robot interface for high-level
communication with the robot.

Since the HOAP-3 robot platform is equipped with two cameras, stereo vision is
used when it is possible, given the disposition and angle of view of cameras. When
objects cannot be perceived by both cameras, i.e. inside the workspace area of arms
(close to robot), the estimations are made by monocular vision.

Recognition of the objects is based on blob detection by color filtering and area
comparison. Objects are recognized based on their color properties and blob size.
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Fig. 6.4: Stereo vision with cameras disposed in rectified configuration.

First of all the images are filtered by colors. The color segmentation method consists
of selecting a prism for each channel in the HSV color domain. The pixels are color
labelled and similar regions are grouped into blobs. Sanity checks are applied to every
blob to avoid wrong detections and correspondences. For example, the dimension of
every blob is checked and when they are too small, such blobs are rejected. Another
important sanity check is the horizon view, which consists of calibrating maximum
height of objects in the camera plane. When blobs are not in the feasible zone for
grasping, they are filtered out. When the blobs satisfy sanity checks and match with
the color properties of some object, they are considered as the detection of an object.

Because the humanoid platform is equipped with two cameras emulating human
eyes, these inputs can be used for estimating depth information. The typical steps for
determining depth using a two-camera vision system, stereopsis, are i) calibration of
cameras, ii) establishment of correspondences between features of both cameras and
iii) reconstruction of 3D coordinates of detections in the scene. The basis of stereopsis
is epipolar geometry, which states that the line connecting optical centres of both
cameras, baseline, intersects the image planes in the epipoles. A simplified case of
stereopsis is the rectified configuration of cameras, which reduces the dimensionality
of search space for a correspondence from 2D to 1D. This configuration consists of
both image planes being parallel, and hence, the baseline also being parallel to image
planes, sending the epipoles to infinity. In addition, epipolar lines of all possible
detections coincide with the images’ rows, and correspondences between detection
of both images can be found by matching pixels linewise. Considering the rectified
configuration, depth can be recovered by using the notion of disparity, Figure 6.4l
The stereo vision system implemented in the robot uses the weighted center of the
color labelled blobs. The epipolar line is stated as the weight average of blobs using
the number of pixels of the blobs as the weight factor.

The human-robot interface is user friendly and it gives an intuitive way for a
non-expert user to interact with the humanoid robot HOAP-3. Main functionalities
in the HRI user interface are the graphical control component, allowing the operator
to move the robot in several directions at different speeds, rotate it and stop it.
And the high-level button controls which allow the operator to request the robot to
perform several high-level actions. The overall performance of the algorithms in the
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Fig. 6.5: Description of experiment A.1 in the knowledge base scenario. (upper-
left) World and object frames are instantiate from the robot view. (upper-
right) As it explores the scene new objects are added, and information for
existing ones are updated. Out of view objects (grayed out) remain in the
knowledge base and their position are changed to a relative value reflecting
their expected location. (bottom-left) Robot is tasked with finding the
red ball, and defaults to looking for it starting in its last known location.
(bottom-right) Robot continues its search looking for the red ball until it
is found in a new position or it is not found and the object instance is
removed from the knowledge base.

perception system is not an element of this thesis, and the selection of the perception
system components was made on the criteria of availability and easy integration with
the rest of the framework. For further explanations of the perception system see
|Pierro et al., 2012a].

Description of Knowledge Base Scenario

Here we provide a general description of a demonstrator for the evaluation of the
knowledge base scenario performance. Quantitative evaluation of knowledge process-
ing systems is hardly possible since many of its features are difficult to reflect in
numbers. However the system can be evaluated in a qualitative form. Several exper-
iments were conducted to prove the validity of the system and to test the operation
of the developed knowledge representation and the knowledge base module.

A first experiment involves the HOA P-3 robot operating in a kitchen setting. The
HOAP-3 robot would stand in front with a top view, from the cameras in its head, of
an assortment of objects commonly expected in a kitchen or dinner scene, i.e., cups,
plates, forks, knifes, etc., see Figure[6.5l The available objects come from a toy set and
were chosen so their size and shape can fit properly with HOAP-3 robot structure;
also, the available object present bright, solid colors facilitating the recognition of
objects by their color properties in the perception system.

This experiment would go as follows, the HOAP-3 robot would look around the
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Fig. 6.6: Schematic view of the Knowledge Base Scenario experiment A.1.

scene as the perception system instantiates object frames from the recognized objects
in its way, and modify and upkeep its world event frame in the knowledge base.
The objects in the environment would be taken in and out the robot field of view
or moved around the scene by an agent; also the robot would be asked to focus on
different objects throughout the demonstration as its task directive is changed by the
agent. The purpose of this scenario is to prove the performance of the knowledge
representation and developed knowledge base to maintain relevant information in the
knowledge base in a dynamic environment with changing world and task events during
its operation.

This demonstrator highlights the operation and interaction of the perception and
knowledge systems to instantiate the different frames in the knowledge base and build
the active view event frame out of the extracted knowledge and constraints from the
current task and world events. There are 2 modules involved for this scenario:

e The perception system: for detection and tracking of objects in the table.

e The knowledge base system: for instantiating the different frames in the knowl-
edge base accordingly.

Figure shows a schematic view of the overall knowledge base scenario experiment
described above. The perception system, through the vision system, is in charge of
analysing the environment of the robot as captured with the robot cameras, recog-
nizing objects that are present and computing their location. The knowledge base
system would receive this information from the perception system and would instan-
tiate object frames from the recognized objects present, and build the knowledge
representation of the scene in the knowledge base. As the robot moves around, the
environment or the scene is changed by adding, moving, or removing objects the
contents on the knowledge base are updated.

This scenario is meant to provide proof of concept of how frames in the knowledge
base are instantiated from the perception of the environment and how the knowledge
base maintains and upkeeps its knowledge representation over time in a changing
environment. Further development of this scenario would add more functionality in

Color  cyan or  cyan
Object Frame Position 10,245,-70] |Position le
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Fig. 6.7: Description of experiment A.2 in the knowledge base scenario. At the
beginning the task can be started by either picking the cup or the spoon.
(left) The HOAP-3 robot starts the task by grasping the blue cup. (center-
left) With the cup and the spoon in its hands the robot performs the action
skill to put the spoon inside the cup. (center-right) Finally, the HOAP-3
robot places the blue cup on the saucer plate. (right) State of the knowledge
base at some step during execution. From the Task and World Events the
Active View Event is built to drive the action execution.

the following subsections to highlight the operation of other systems in the developed
framework.

A second experiment would have an agent and the HOAP-3 robot interacting to
complete a simple task. The task in this case requires the robot to pick up a cup
and a spoon in each hand and then to put the spoon inside the cup; then finally it
would put down the cup in front of it. The agent would provide the robot with the
cup and spoon objects so it can pick them up; also the agent would indicate to the
robot where to put down the cup, see Figure 6.7

Execution of the demonstration could vary depending on the actions of both the
human agent and the HOAP-3 robot. At the start of the demonstration the robot
is given the task event frame knowledge for the desired behaviour containing the
knowledge of the 4 action skills needed to complete the action, pick spoon, pick cup,
place spoon in cup, place cup down. Extracting the adequate action would depend on
the agent interaction and the content of the rest of the knowledge base. The purpose
of this demonstration is to validate the performance of the developed knowledge base
in a dynamic interaction with an agent where the invocation of an action skill is
controlled by the representations in the knowledge base as described in Chapter [

This demonstration highlights the operation of the knowledge base and how the
representations of object, action, task event, world event and active view event frames
are used to command the robot execution of the desired task. There are 4 modules
involved in the operation of this scenario:

e The perception system: for detection and tracking of the objects.
e The learning system: for teaching the robot a set of robot skills.

e The knowledge base system: for representing the object, action, task event,
world event and active view event frames, used to command the robot execution
of the desired task.
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Fig. 6.8: Schematic view of the Knowledge Base Scenario experiment A.2.

e The robot reproduction system: for controlling the robot execution.

Figure shows a schematic view of the overall knowledge base scenario experiment
described above. The perception system handles the interaction with the user and the
detection of objects in the environment. The knowledge base system would receive this
information from the perception system and would instantiate the frames and built
the knowledge representation of the scene in the knowledge base. The knowledge base
system would select and activate an action skill when the conditions in the knowledge
representation afford such action. Once an action is selected, the HOAP-3 robot
controller would execute the robot commands required for the skill reproduction.
This demonstrator scenario is meant to provide proof of how action execution
is invoked by the state of the representation frames present in the knowledge base.
Further development of this scenario would add more functionality in the following
subsections to highlight the operation of other systems in the developed framework.

Description of Skill Generation and Adaptation Scenario

In this subsection, a general description of a demonstrator for the evaluation of
the performance of the robot skill generation and adaptation scenario is provided.
To this end, several experiments were conducted to prove the validity of the system
and to test the operation of the developed robot skill generation and adaptation
module. Experiments were designed to test the performance of the different robot
skills’ operations described in Chapter Bl The demonstrators in this subsection were
chosen as very simple scenarios in which to have proving ground in which to test
different robot skills and skill generation and adaptation mechanisms.

As a first scenario, we’ll considerer a table tennis robot task. In this setting the
HOAP-3 humanoid robot would stand equipped with a table tennis paddle, from a
table tennis toy set, of an appropriate size and handle shape to fit the HOAP frame
and the grasp capabilities of its hands, see Figure
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Fig. 6.9: Description of experiment B.1 in skill generation and adaptation scenario.
HOAP-3 robot performs different tennis shots: (left) HOAP-3 robot per-
forms a forehand shot. (center) HOAP-3 robot performs a smash shot.
(right) HOAP-3 robot performs a forehand-smash shot generated from the
merger of the forehand and smash shots.

The limitations of the robot systems and vision tracking do not allow for real
time reproduction of a robot table tennis game, however that is not the intended goal
of the demonstrator. The focus in this experiment would be on the learned Robot
Skill Models and on the operation of the algorithm in Chapter Bl for the merger of
robot skills in order to generate new, more complex, skills given the robot’s additional
action for performing tennis shots from the ones that are previously learned by the
robot.

The HOAP robot is required to execute different tennis shot actions to hit a table
tennis ball moved towards the robot. Originally 3 robot skills’ models are taught to
the HOAP-3 robot to hit an approaching ball coming from its left, right, or above,
to provide the robot with the skills to perform a forehand, a backhand, or a straight
smash shot. To expand the robot skill set, two learned skill models are merged to
obtain a new Robot Skill Model. In this case a forehand and a backhand will be
merged with the smash shot skill to generate two more skills for forehand-smash and
backhand-smash shots.

This demonstrator highlights the operation of the proposed algorithms in Chapter
Bl for the merging of Robot Skills Models. There are 4 modules involved in the operation
of this scenario:

e The perception system: for the detection and tracking of the table tennis ball’s
position.

e The learning system: for teaching the robot a set of skills for reproducing
different tennis shots.

e The generation and adaptation system: for generating new robot skills from the
merger of two learned models of a skill.

e The robot reproduction system: for controlling the robot skill execution of a
tennis shot.
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Fig. 6.10: Schematic view for experiment B.1 in the robot skill generation and adap-
tation scenario.

Figure shows a schematic view of the overall generation and adaptation scenario
experiment described above. This scenario is a demonstrator for the merger of robot
skills presented in Chapter First, demonstrations are given, recorded with a Mi-
crosoft Kinect sensor, to the learning module to encode the models of the robot skills
for the forehand and smash tennis shots. Then the learned robot skills are fed to the
skill merger algorithm to generate a new robot skill model for a forehand-smash shot
from the merger of the two previous skills. Finally, the model of the skill is given to
the HOAP-3 robot controller for the execution of the skill.

This demonstrator scenario is meant to provide proof of concept of how the gen-
eration and adaptation system can operate over previously learned robot skills for
generating new, more complex, skill actions and for increasing the scope of operation
in the given available skills to expand the range of task which can be performed by
the HOAP-3 humanoid robot. Further development of this scenario would strive to
bring more functionality in the following subsections to highlight the operation of
other systems in the developed framework.

A second demonstrator was designed to test the performance and evaluate the de-
veloped methods for the update and combination of Robot Skill Models as described
in Chapter Bl To validate the proposed methods for generating new skills from previ-
ously learned models, by updating or combining the Robot Skills Models a very simple
scenario was chosen in which the robot would be required to grasp a plastic cup, from
the kitchen toy set used in the previous scenario, see Figure

The contemplated task requires that the robot be able to grasp the plastic cup
located in any possible place in a “cupboard”, which consists of two shelves, a bottom
and a top shelf. The HOAP-3 robot must be able to grasp the cup, as long as it is
inside the robot arm’s workspace, in any of six possible general locations in relation
to the robot arm; three on the bottom shelf and three on the top shelf, for example,
a cup could be placed at the left-bottom, right-bottom, center-bottom, or left-top,
right-top, center-top, of the robot. Initially, only the skills for learning to grasp the
cup placed on the bottom shelf are taught to the robot by the methods described in
Chapter Bl The complete task would be unachievable with the robot skills learned so
far, since the skill reproduction would not generalize well to the target’s new position
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Fig. 6.11: Description of experiment B.2 in skill generation and adaptation scenario.
The HOAP-3 robot must grasp a cup placed at any position in either
of the two shelves of the "cupboard" scenario. Initially only skills for
grasping the cup in the bottom shelf are taught to the robot. To generalize
the skill to the target’s new position at the top shelf the skills learned
to grasp the cup at the bottom shelf must be updated. To generalize
across the whole working space the three models of the robot skill, for
right-, left- and center-, are combined into a single model of the attractor
dynamics. (top-row) Robot is taught a grasp skill motion for the cup
place in the bottom shelf. By the update of the robot skill a new model
is generate to allow the HOAP-3 robot to grasp the cup place at the
top shelf. (bottom-row) By the combination of various robot skills the
HOAP-3 robot can grasp the cup place at its right, center or left, using
a single model of the skill.

on the top shelf. To grasp the cup, placed on the top shelf, at either side of the robot
the skills learned to grasp the cup on the bottom shelf must be updated to generate
the required new robot skill models. Finally, to generalize across the whole working
space the three models of the robot skill, for right-, left- and center-, are combined
into a single model of the attractor dynamics. Figure illustrates the scenario.

This demonstrator highlights the operation of the proposed algorithms in Chapter
Blfor the update and combination of Robot Skills Models. There are 3 modules involved
in the operation of this scenario:

e The learning system: for teaching the robot a set of skills for reproducing
different grasp actions.

e The generation and adaptation system: for generating new robot skills from the
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Fig. 6.12: Schematic view for experiment B.2 in the robot skill generation and adap-
tation scenario.

update of the learned models of a skill and the combination of different learned
skill models into a single model of the attractor dynamics.

e The robot reproduction system: for controlling the HOAP-3 execution of the
robot skills.

Figure shows a schematic view of the overall generation and adaptation scenario
experiment described above. This scenario is a demonstrator for the combination
of the robot skills method presented in Chapter Bl First demonstrations are given,
recorded by kinaesthetic teaching, to the learning module to encode the models of the
robot skills for grasping trajectories at the possible locations, left, right and in front of
the robot. Then the learned robot skills are fed to the skill combination algorithm to
generate a new robot skill model from the combination of the previous skills. Finally,
the model of the skill is given to the HOAP-3 robot controller for execution of the
skill.

This demonstrator scenario is meant to provide proof of how the generation and
adaptation system can operate over learned robot skills for increasing the scope of
available skills for the performance of the HOAP humanoid robot. Further develop-
ment of this scenario would add more functionality in the following subsections to
highlight the operation of other systems in the developed framework.

Description of Robot Skill Reproduction Scenario

As a final evaluation a couple of general demonstrators’ scenarios were imple-
mented for the validation of the robot skill reproduction and to test the complete
developed framework for the learning and adaptation of robot skills. Several experi-
ments were conducted to prove the validity of the system and to test the operation of
the developed framework. Experiments were designed, requiring the humanoid robot
to reproduce different Robot Skill Models throughout the unfolding of the task in
order to test the performance of the overall system and the operation and interaction
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Fig. 6.13: Description of experiment C.1 in the robot skill reproduction scenario.
HOAP-3 robot performs different tennis shots, as learned and generated
from the previous experiment. (left) HOAP-3 robot performs the fore-
hand smash shot. (right) HOAP-3 robot performs a backhand-smash
shot. The knowledge base selects the appropriate action to execute the
proper tennis shot out of the instantiated frames knowledge.

of the different modules in the framework for learning skills, representing knowledge,
generation and adaptation of models and robot skill reproduction.

As a first scenario we’ll review the table tennis robot task described in the skill
generation and adaptation scenario. The setting is the same as before with the HOA P-
3 humanoid robot equipped with a table tennis paddle, and a set of learned robot
skills to perform different tennis shots, namely a backhand, a forehand, and a smash
shot, plus the generated merged forehand-smash and backhand-smash shots. The
purpose of this scenario is to prove the viability of the developed representations and
knowledge base system in Chapter [ for selecting the appropriate robot skills for a
tennis shot to hit the table tennis ball from its available action frames and perceived
world state knowledge.

With the HOAP robot, paddle in hand, in a resting position, the perception system
detects a table tennis ball that is moved towards the robot. The system computes the
relevant information from recognition of the ball, and extracts from the knowledge
base, the appropriate learned robot skill models to reproduce the action to hit the
ball under the current circumstances, see Figure

This demonstrator highlights the operation of the perception system and the
knowledge base system to instantiate the proper frames in the knowledge base and ex-
tract from this information the needed Robot Skills Models. Additionally, it is meant
to highlight as well, the operation of the systems for generation and adaptation and
for robot reproduction of the Robot Skills Models. There are 5 modules involved in
the operation of this scenario:

e The perception system: for detection and tracking of the table tennis ball.

e The learning system: for teaching the robot a set of skills for reproducing
different tennis shots.

e The knowledge base system: for selecting the appropriate robot skills for a
tennis shot out of the instantiated frames knowledge.
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Fig. 6.14: Schematic view for experiment C.1 in the robot skill reproduction sce-
nario.

e The generation and adaptation system: for generating new robot skills from the
learned models of a skill.

e The robot reproduction system: for executing the robot skill for an appropriate
tennis shot.

Figure shows a schematic view of the overall skill reproduction scenario experi-
ment described above. This scenario is a demonstrator for the evaluation of the robot
skill reproduction, and the operation of the complete developed framework, with the
main focus on the performance of the knowledge base system to extract from its
information, the needed skill models for the robot’s successful execution. For this
scenario, demonstrations are first given to the learning module, recorded with a Mi-
crosoft Kinect sensor, to encode the models of the robot skills for three tennis shots,
forehand, backhand, and a smash. Subsequently, the learned robot skills are stored by
the knowledge base system. During operation, a table tennis ball will move towards
the HOAP-3 robot, with the perception system and the knowledge base system, the
information of the position and trajectory of the ball is used to recover and select the
needed robot skills for action reproduction and perform the proper tennis shot skill
in the current situation.

This demonstrator scenario is meant to provide proof of concept of how the knowl-
edge base system recovers and selects robot skills for action reproduction based on the
instantiated knowledge frames, stored and represented by the developed knowledge
base. Together with the previous experiment, evaluating the generation and adapta-
tion system, the proposed demonstrator validates the performance of the developed
framework to learn, store and adapt the robot skill for executing different actions,
complying with the task constraints, with the HOAP-3% humanoid robot.

As a final experiment we’ll revisit the kitchen or dinner table scenario and expand
the demonstrators presented in the previous sections. In this scenario the HOAP-3
robot is required to complete a setting up a dinner service task behaviour in con-
junction with a human agent. The purpose of the demonstrator is to test the overall
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Fig. 6.15: Description of experiment C.2 in the robot skill reproduction scenario.
HOAP-3 robot sets a “dinner service” consisting of a fork, a knife, a saucer
plate, a cup and a spoon. (top-row) Still captures from the HOAP-3 robot
performing in the robot skill reproduction scenario. (bottom-row) State
of the knowledge base at the execution step from the top-row. Objects
and actions not in the Active View Event are grayed out. Objects and
Actions key to the current robot reproduction are highlighted in red.

operation of the developed framework, as well as to validate the performance of every
individual module and interaction between themselves.

The sequence of execution of the task could vary depending on the actions of both
the human agent and the HOAP-3 robot. The plan for the demonstrator requires
the robot to set up a “dinner service” consisting of a fork, a knife, a saucer plate,
a cup and a spoon, see Figure .15l Robot skills to grasp the different object are
taught to the robot by the methods described in Chapter Bl Execution of the task
is instigated by the agent when putting on the table a yellow pitcher object. The
robot would set the rest of the objects on the table, their positions in relation to the
pivot pitcher object. The objects to place are provided to the robot by the agent,
and could be in any possible place, therefore the learned Robot Skill Models must also
be updated, merged, and combined by the methods described in Chapter [l as in the
scenario in the previous section. The invocation of robot action skills is controlled by
the representations in the knowledge base described in Chapter [4] as in the scenario
in previous sections.

This demonstrator highlights the operation of the individual modules as well as
the overall performance of the overall framework for learning and adaptation of skills
to task constraints; involving the perception of objects and interaction with the agent,
the learning of various robot skills, the representation of knowledge in the knowledge
base, the generation and adaptation of the skill models and the adequate reproduction
of the robot skills. There are 5 modules involved in the operation of this scenario:

e The perception system: for detection the objects involved in the task.

e The learning system: for teaching the robot a set of robot skills.
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Fig. 6.16: Schematic view for experiment C.2 in the robot skill reproduction sce-
nario.
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e The knowledge base system: for representing the object, action, task event,
world event and active view event frames used to control the robot execution.

e The generation and adaptation system: for the update and merger of learned
models of a skill and the combination of different learned skill models into single
models of the attractor dynamics.

e The robot reproduction system: for executing the robot skill for an appropriate
completion of the task.

Figure shows a schematic view of the overall skill reproduction scenario ex-
periment described above. This scenario is a demonstrator for the evaluation of the
robot skill reproduction and the overall operation of the complete developed frame-
work; involving the usage of the perception, the learning, the knowledge base, the
adaptation, and the reproduction systems. For this scenario, various demonstrations
of skills, recorded with the HOAP-3 robot, are first given to the learning module,
to encode the models of the robot skills for the different actions required for the
“dinner service” task. Subsequently the learned robot skills are stored by the knowl-
edge base system. During operation, the user would provide objects to the robot,
by placing them in its action field, both of vision and manipulation. The perception
system would handle the interaction with the user and the detection of objects in
the environment. The knowledge base system would receive this information from
the perception system and would instantiate the frames and build the knowledge rep-
resentation of the scene in the knowledge base. Through this interaction with the
user and the environment, the knowledge base system would select the corresponding
skills to activate them as the conditions in the knowledge representation afforded such
actions. Once the necessary robot skills are selected, the generation and adaptation
system would be in charge of building the appropriate task model satisfying, the de-
sired command and constraints of the environment for reproducing the appropriate
skill action. Finally the HOAP-3 robot controller would execute the robot commands
required for skill reproduction.
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This demonstrator scenario is meant to provide proof of concept of how the knowl-
edge base operates to instantiated frames from the perception of the environment,
and how the knowledge base maintains and upkeeps its knowledge representation over
time in a changing environment, as well as how action execution is invoked by the
state of the representation frames present in the knowledge base. Additionally, the
demonstrator scenario provides validation for the generation and adaptation system
and how it operates over learned robot skills for increasing the scope of available skills
for the performance of the HOAP humanoid robot.

6.3 Learning the Robot Skills

The capability to learn and teach a robot the necessary robot skills is clearly a
crucial part of the developed framework. Therefore the robot skill learning module
has a central importance in our framework. In Chapter [ the methods employed
for learning the models of a robot skill have been described. In this section the
development and operation of the robot skill learning module will be presented.

Humanoid robots working alongside humans must deal with continuously chang-
ing environments and a huge variability of tasks; therefore, algorithms for learning
and extracting important features of task actions are fundamental. The robot skill
learning module is naturally responsible for allowing the humanoid robot to learn the
models of robot skills. This requires the module to provide the mechanism needed for
gathering the demonstration data from a teacher agent and for encoding the motions
into a model of the robot skill. The robot skill learning module collects motion data
from demonstrations, processes it and builds the demonstration data set that feeds
the learning algorithms. The SEDS algorithm is employed to learn an estimate of
the motion through a set of first order non-linear multivariate dynamical systems
in a statistical approach. Figure illustrates the control flow for the operation of
the robot skill learning module. The learning systems are required to acquire skills
and developed task knowledge of how to act in order to provide a robot with a suf-
ficient number of skills that permit it to perform autonomously in an unstructured
environment.

The robot skill learning module collects the learning processes and algorithms used
for learning and encoding the models of the skills. There are three subsystems in this
module; a subsystem for gathering demonstration data; a subsystem for building
an estimate of the demonstration with the learning algorithm; and a subsystem for
encoding the robot skill model. Figure shows the deployment diagram for the
robot skill learning module.

The subsystem for gathering demonstration data is made up of three processes. At
first a teacher agent input data is collected, Chapter B presented different modalities
from which the teacher demonstration could be collected. Secondly, a preprocessing
step is performed to transform the collected data to ensure correspondence with the
robot system. A final third step process the raw data from the previous step to build
the demonstration data set as required to feed the learning algorithm. The operation
of the subsystem for gathering demonstration data is handled by an external proces-



206 6. Reproduction of Robot Skills

Robot Skill Learning Module

Gathering Demonstration Data
Data pre-
processing |
Teacher Collect Build
Agent raw
data dataset Robot Skil |
! |' Model
1 |
SEDS
Learning
Algorithm

Fig. 6.17: Deployment diagram for the robot skill learning module. There exist
three subsystems in this module, a subsystem for gathering demonstration
data, a subsystem for building an estimate of the demonstration with the
learning algorithm, and a subsystem for encoding the robot skill model.

sor with different implementations for the recording of the teacher demonstrations.
Three modalities were presented in Chapter Bl For the teleoperation of the robot by
means of kinaesthetic teaching, the robot encoders are used and each joint motion
is recorded at a rate of 1000H z, and saved in an appropriate file, storing the data
for a given demonstration; these are then re-sampled to a fixed number of points to
process the raw data into the required demonstrations dataset. For the OpenRave
simulated environment, the process goes as before, but a simulated model of the robot
is implemented and it is used instead of the real robot sensor. For the recording of
visual demonstrations, a Microsoft Kinect sensor is used, a software system was im-
plemented to make use of the skeleton tracking capabilities provided by the OpenNI
api, the motions of a teacher in front of the sensors are recorded, later the teacher
recorded joints are transformed to match the corresponding robot joints.

The learning algorithm subsystem handles the learning of the robot skill as de-
scribed in Chapter B} the algorithm for the building of the demonstration with SEDS
can be found in Table B3l The subsystem for encoding the robot skill model is in
charge of preparing and expressing the learned estimates of the motions as Robot
Skill Models for the rest of the framework. The learning algorithm process is carried
out off-line. The implemented system is derived from the SEDS library provided by
|[Khansari-Zadeh and Billard, 2011|. The file with the recorded demonstration data is
previously provided by the subsystem for gathering demonstration data. A first pre-
processing step is carried out to build the adequate dataset needed by the algorithm.
The MATLAB numerical computing environment is used for the implementation of
the learning algorithm subsystem in our framework, implementing the GMM, GMR,
and SEDS algorithms. A model is obtained with the § parameters encoding the robot
motion dynamics. In the final step a file is outputted, storing the learned Robot Skill
Models.
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Fig. 6.18: Deployment diagram for the robot skill knowledge module. There exist
three subsystems in this module, a subsystem for the data entry to the
knowledge base, a subsystem for the knowledge base data storage, and a
subsystem for the knowledge base data management.

6.4 Navigating the Robot Skill Knowledge Base

In Chapter [ the knowledge base for the storing and retrieval of the learned mod-
els of the skills was described. In this section the development and the process for
building and navigating the knowledge base is given. For a robotic system to perform
different skills and tasks in a changing and unstructured scenario, it is important to
have mechanisms to organize the acquired knowledge in a manner that allows it to
be retrieved in order to use it to drive its actions. The robot skill knowledge module
is in charge of managing the knowledge base and the processing of the knowledge
represented within it. This requires the module to provide the mechanism by which
acquired knowledge about objects, actions and events of the task and the state of the
world is represented in the knowledge base, and also how this knowledge is operated
to extract from it necessary information for the robot’s successful completion of its
tasks. Figure[d§illustrates the control flow for the operation of the robot skill knowl-
edge module. Developing appropriate structures in which to organize the acquired
knowledge, to allow the retrieval of it to use it in fulfilling the system goals is key if
humanoid robots are to be capable and flexible enough to handle the challenges of
working alongside humans in complex natural environments.

The robot skill knowledge module governs the operation of the knowledge base and
the instantiation and maintenance of the different frames in the developed knowledge
representational structure. Task and World Event Frames are instantiated, from the
information provided by the perception module, and the Active View Event Frame
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is built from them with the constraints of the task. There are three subsystems in
this module, a subsystem for the data entry to the knowledge base, a subsystem
for the knowledge base data storage, and a subsystem for the knowledge base data
management. FigureG.I8shows the deployment diagram for the robot skill knowledge
module.

The knowledge base data entry subsystem works as a middleware between the
knowledge base data storage subsystem and the robot skill learning module for up-
loading robot skills models and action, object and task classes for storage into the
knowledge base. The knowledge base holds all necessary information for reproduction
of the skills in the environment; knowledge of the task would be distributed among
the representation of objects, actions and events of the task. Operations of the knowl-
edge base data entry subsystem are made off-line. Entries into the knowledge base
are made to stored the needed frames for the task. Robot Skill Models are generated
as explained in the Robot Skill Learning Module and stored in the knowledge base.
The objects and task frames entries are made beforehand by a human operator to
ensure the appropriate knowledge for the task execution is stored in the knowledge
base. Some approaches exist for on-line autonomous generations of this knowledge’s
data structures, such as in the RoboEarth project |Waibel et al., 2011|, which could
be studied for future implementation.

The knowledge base data storage subsystem works as a database collecting and
organizing the robot skill knowledge as per the representational structure discussed
in Chapter @l Entries in the knowledge base are implemented using the XML markup
language, following the structure and tag labels as necessary for the different knowl-
edge frames as presented in Chapter[d The physical implementation of the knowledge
base is on an accompanying PC outside of the robot main system. Communications
with the robot on-board computer are carried out using a WLAN network.

The knowledge base data management subsystem is at the heart of the robot
skill knowledge module. The knowledge base data management subsystem handles
the operation and performance of the knowledge base, presented in Chapter [ the
knowledge of the environment and goals taken form the perception module is rep-
resented in terms of the World Event Frame and Task Event Frame, with Object
and Action Frames representing knowledge about available objects and actions re-
spectively. From the knowledge of these frames an Active View Event Frame of the
focused knowledge promoting the agent’s execution is built. Looking up the knowl-
edge base storage for the given object and action affordance frames yields the needed
models of the skill, M rg, required by the module for its operation. In the knowledge
base data management subsystem, search and reasoning operations over the stored
knowledge are carried out. The implementation of the knowledge base data manage-
ment subsystem was made using SWI-Prolog and the Python high-level programming
language. A YARP layer was implemented for the communications between the robot
skill knowledge module and the rest of the systems.
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Fig. 6.19: Deployment diagram for the robot skill generation and adaptation mod-
ule. There exist three subsystems in this module, a subsystem for extract-
ing data from the knowledge base, a subsystem for operating upon the
robot skill with the adaptation algorithm, and a subsystem for generating
the task models.

6.5 Generating the Robot Skills Task Models

The robot skill generation and adaptation module is a vital part of the developed
framework. In Chapter[d] the algorithms developed for the generation and adaptation
of the robot skills were described. In this section the development and operation of
the robot skill generation and adaptation module will be presented. For humanoids
to cope with working in continuously changing environments and performing a wide
variability of tasks, it is imperative to endow them with mechanisms that support the
adaptation of their skills and behaviours to generate new ones fitting their context.

The robot skill generation and adaptation module is in control of handling the pro-
cess by which learned models of a skill are adapted for an unseen context. The robot
skill generation and adaptation module is provided with knowledge of the state of the
environment and the constraints of the task extracted from the robot skill knowledge
module; using both, the already learned model of a skill, and the extracted constraints
information of the current task, the model of the skill is adapted to reproduce the
task. Figure illustrates the control flow for the operation of the robot skill gen-
eration and adaptation module. Mechanisms are needed to endow systems with the
capacities to adapt their acquired skills expanding the system’s knowledge and ability
to act in the environment.

The robot skill generation and adaptation module supervises the process by which
the learned model of a skill can be operated to reproduce a new task, including the
adaptation, update, merger, combination, or transition of the skill models. There are
three subsystems in this module, a subsystem for extracting data from the knowledge
base, a subsystem for operating upon the robot skill with the adaptation algorithm,
and a subsystem for generating the task models. Figure shows the deployment
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diagram for the robot skill generation and adaptation module.

The subsystem for extracting data from the knowledge base is made up of two
processes; first it recovers data from the robot skill knowledge module and secondly it
distributes appropriately this data to the rest of the subsystems for their operations.
This subsystem implements a middleware between the knowledge base and the rest
of the systems.

The adaptation algorithm subsystem handles the process of operating upon the
learned robot skills, a first step from the information received from the previous
subsystem would help it decide which type of method is required for adaptation;
afterwards the chosen algorithm would work on the given robot skill models as de-
scribed throughout Chapter Bl The adaptation algorithms were implemented using
the MATLAB numerical computing environment.

The subsystem for generating the task models is in charge of preparing and ex-
pressing the adapted Robot Skill Models in a form suitable for robot reproduction.
As a final step, a file is outputted storing the computed task model.

6.6 Reproducing the Robot Skills Task Models

Obviously all efforts in our framework would be useless if the robot were not
equipped with proper mechanisms for the motor control of the robot skill reproduc-
tion. The robot skill reproduction module is in charge of producing the adequate
control signals to the robot for the reproduction of robot skills. In this section, the
development and operation of the robot skill reproduction module will be presented.
The robot reproduction module is assigned with the task of providing suitable con-
trollers that convert kinematic variables into appropriate motor commands. The
robot skill reproduction module is given as input from the previous modules in the
framework; the model of a robot skill as a GMM, as explained in Chapter 3l The first
step is to compute the desired target value § through the GMR process, as given in
Chapter Bl This would compute the desired target values for reference of the HOAP
robot control system. Figure presents the control strategy of the robot skill
reproduction module, for details see |Pierro et al., 2009|.

This scheme considers several blocks. Once a command has been received, the
robot distinguishes if it is a command for the walking generation or for the arms
movement. The walking patterns of the robot have been designed based on the the-
ory of the 3D Linear Inverted Pendulum Mode presented in |[Kajita et al., 2001b].
[Monje et al., 2008| presents studies for the posture stability control. If the received
command requires a movement of the arms, as in the case of a grasping task, the
selection of the suitable arm is first considered. Finally, the trajectory of the arm is
evaluated online through the algorithm of kinematic inversion [Siciliano et al., 2009,
once the command provides the distance and the orientation from the object. The ori-
entation reference for the object is calculated with the support of the unit quaternion
presented in |[Chiaverini and Siciliano, 1999|.

In order to decide the best arm to perform the grasping, the reachable workspace is
divided into three areas: in particular, the two areas that can only be reached by one




6.6. Reproducing the Robot Skills Task Models 211

Walkin Posture
Em— g E— stability
patterns
control
Received
command —
Robot
; Hoap-3
Selection of Arm
—»| grasping jp——»|] trajectory
arm generation
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Fig. 6.21: Workspace of Hoap-3 arms. Zone of service of right arm is depicted in
blue while red are represent the zone reachable by left arm.
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Fig. 6.22: Deployment diagram for the robot skill reproduction module. The module
has three subsystems, a subsystem for computing the regression of the
model with GMR to obtain the desired target commands, a subsystem
for producing the adequate control signals from the target commands,
and a subsystem to communicate the control signals to the robot and
monitor the HOAP-3 robot execution.

of the arms and the workspace that can be reached by both arms. Figure shows
the three areas. Since there is only one arm that can reach the first two areas, we
don’t have to decide anything. In the case of work areas that can be reached by both
arms, the system should decide the one whose manipulability is higher, considering
the definition of manipulability stated in |Siciliano et al., 2009

(@) = \/det (3 (@) 37 (a)) (6.1)

where J is the Jacobian matrix of the corresponding arm and q the joint positions of
that arm.

The robot skill reproduction module controls the execution of robot skills. The
module has three subsystems, a subsystem for computing regression of the model
with GMR to obtain the desired target commands, a subsystem for producing the
adequate control signals form the target commands, and a subsystem to communicate
the control signals to the robot and monitor the HOAP-3 robot execution. Figure
6.22] shows the deployment diagram for the robot skill reproduction module.

The HOAP-3 control systems is in charge of computing the appropriate command
to control the execution in real-time of the humanoid robot, the control system has
been presented above in Figure The robot command subsystem handles the
communications from the developed framework and its subsystems and the real robot
agent for the actual reproduction and execution by the HOAP-3 robot. The physical
implementation of the robot control system is made on three PCs; an on-board PC
implements the robot control systems; an auxiliary PC implements the knowledge and
learning systems; and a laptop computer implements the 7?7 and perception systems.
A YARP layer was implemented for the communications between processes.
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6.7 Experimental Evaluation

Previously, in Section [6.2] a series of experimental evaluation scenarios were
described. The evaluation scenarios were designed with the intent to present a
demonstration of the overall performance of the framework developed through this
work and the operation of its different modules. The evaluation of robotic systems,
and knowledge base robotics systems in particular, is a complicated issue in which
there are not readily available standardized evaluations or established benchmarks
|Tenorth and Beetz, 2013|. The experimental evaluations presented in this section
are aimed at providing proof of concept for the developed framework. Here the major
focus of interest lies not in the measurement of performance and efficiency metrics
but in the validation of the viability of the proposed system and the capabilities of the
framework in dealing with a range of different and increasingly complex situations.
The demonstration will test the operation of the humanoid robot and the devel-
oped framework as it is required to complete distinct tasks. Different scenarios are
presented in order to highlight how the components of our framework contribute to
achieving realistic tasks, and that the implementation of the capabilities for learning,
knowledge manipulation and adaptation of skills are fundamental for the development
of viable humanoid robots.

Several experiments were conducted to validate the proposed systems. A first
scenario evaluates the performance of the perception and knowledge base modules. A
later scenario deals with the performance of the robot skill generation and adaptation
module. The final scenario is made to evaluate the performance of the robot skill
reproduction and the complete developed framework for learning and adaptation of
robot skills.

Evaluation of Knowledge Base Scenario

The first demonstrators were devised for testing the operation of the knowledge
base scenario. The aim of the knowledge base scenario is to demonstrate how the
humanoid robot employs the knowledge base module for the instantiation and upkeep
of information from its environment perception and the objects that are present in
it, as they are relevant for its task. It also presents the performance of knowledge
base modules for storing Robot Skill Models and for retrieving and invoking the skills
knowledge from the knowledge base when the information is needed to perform the
robot skill in the completion of a task.

Two main experiments were carried out with the HOA P-3 humanoid robot in this
scenario, as described in Section In the first demonstrator a humanoid robot
would look around its environment as a human agent moves and manipulates various
objects under the robot’s field of view. The robot would instantiate and upkeep
the object’s knowledge as they become present and modified through the human
agent interaction with the environment, keeping up to date information of the known
objects to answer queries from the human agent about the state of certain objects.
The second demonstrator presents a humanoid robot with the directive to complete
a given task. The knowledge of the task and world state in the knowledge base would
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Fig. 6.23: Knowledge Base Scenario Experiment A.1: different snapshots from the
execution of the task in the demonstrator. The robot looks around the
environment keeping in the knowledge base information of the objects
state. The human agent moves and takes in and out of view the different
objects at will. At different stages of the demonstrator the robot is ask
to locate an object.

afford the robot the possibility of completing its task by extracting the necessary robot
skill models to perform the required skill motions needed to successfully complete the
desired task.

For the first demonstrator, the HOAP-3 robot looks around the scene as the
perception system recognizes objects and instantiates or upkeeps their object frames
in the knowledge base. Objects in the environment are taken in and out of the robot
field of view or moved around the scene; also the robot would be asked to focus on
different objects throughout the demonstration as its task directive is changed by the
agent. Figure shows a schematic view of the first demonstrator experiment in
the knowledge base scenario. The focus of this demonstrator is on instantiation and
upkeeping of object frames in the knowledge base.

Figure shows different snapshots from the execution of the task in the first
demonstrator. The experiment execution in this demonstration scenario would de-
velop as follows, the experiment starts with the HOAP-3 robot standing looking down
at a table in front of it. The human agent arranges different objects on the table for
the robot to recognize. In the first step the HOAP-3 robot scans the scene from
left to right, instantiating objects it can recognize. After the scan step is completed
in the subsequent steps, the human agent rearranges any number of objects, while
additionally, the robot is asked to locate one of the objects. In this stage the robot
would look up the object’s last known location information from the knowledge base
and begin to look for the object from there; assuming the requested object is one
that the human agent moved around. In this state the robot’s main focus is to locate
the requested object while a background process is still in charge of instantiating and
upkeeping the rest of the objects in the robot field of view. The robot would either
locate the object or complete one scan of the scene and assume the object has been
removed and delete its instance from the knowledge base. The human agent would
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Fig. 6.24: Knowledge Base Scenario Experiment A.1: different snapshots from the
perception system during execution of the task in the demonstrator.

repeat this for various objects during the experiment. In Figure 623 the robot is first
seen looking for the red ball which it locates and later the yellow ‘egg’ which it can’t
find.

Figure[6.24] presents the operation of the perception system during the execution of
the demonstrator experiments. Recognition of the objects is based on blob detection
by color filtering and area comparison. The performance of the computer vision
algorithms is not an element of this thesis, and the selection of the perception system
components was made on the criteria of availability and easy integration with the
rest of the framework. In general, the perception system works adequately for what
it is needed, and there were only problems recognizing the knife and spoon objects;
see center images in Figure [6.24], that were too bright and didn’t accurately reflect
their colours making them invisible for the recognition algorithm.

Figure[6.25] presents the operation of the knowledge base system during the execu-
tion of the demonstrator experiments. As new objects are being recognized, instances
of the objects are created in the knowledge base storing information of their proper-
ties, in this case their colour and location. When objects are moved by the human
agent interacting with the environment, objects’ instances of the knowledge base up-
date their information. The system focuses on objects that are in its current field
view and that are important to its goals. The Figure shows the contents of the
knowledge base; in the lower row images they correspond to the state of the system
at the moment of the images from the perception system in the above row. Objects’
instances for objects that are out view are grayed out and their location property is
changed to a relative value to reflect loss of certainty of their position; this value is
then used as an indication of where to expect the object to be and the starting point
to begin an exploration to look for it. Object instances for objects that are key to
the robot goal are shown in blue; here the robot was asked to find the red ball, the
second image, and the cyan cup, the fourth image. When an object can’t be found
again in the environment, in this case the yellow ‘egg’ in the third image, its object
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Fig. 6.25: Knowledge Base Scenario Experiment A.1: different snapshots from the
knowledge base system execution of the task in the demonstrator.

instance is removed from the knowledge base.

The goal of this demonstrator scenario is to show how frames in the knowledge
base are instantiated from the perception of the environment and how the knowledge
base maintains and upkeeps its knowledge representation over time, in a changing
environment. The capacity to manage the knowledge of the environment is an im-
portant affair for humanoid robots. While for industrial robotics or robots working
in controlled environments where knowledge of objects and events around them are
known and can be planned for in advance, for a humanoid robot working in a dy-
namic setting the state of the environment can have almost an unlimited number of
configurations and can change unexpectedly at any moment. The knowledge base
system allows the robot to build representations of objects in its environment and to
keep track of changes that may occur. Also the knowledge base system is needed to
help overcome some faults from the perception system and the problem of not always
having available complete and reliable information from the environment.

For the second demonstrator the HOAP-3 robot and a human agent interact to
complete a simple task requiring the robot to pick up a cup and a spoon in each hand
and then to put the spoon inside the cup; then finally it puts down the cup in front
of itself. Execution of the demonstration could vary depending on the actions of both
the human agent and the HOAP-3 robot. Figure shows a schematic view of the
second demonstrator experiment in the knowledge base scenario.

Figure shows different snapshots from the execution of the task in the second
demonstrator. The experiment requires for the HOAP-3 robot to complete the task
of putting a spoon inside a cup and putting the cup down on a plate. Completion of
this task has different steps, picking up the cup, picking up the spoon, placing the
spoon inside the cup and placing the cup on top of the plate; selection of which skills
is executed and when depends on the environment state and the interaction with the
human agent. Execution of the experiment would develop as follows: first the robot
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Fig. 6.26: Knowledge Base Scenario Experiment A.2: different snapshots from the
execution of the task in the demonstrator. Depending on the state of the
environment and the human agent interaction the robot perform different
robot skills.

picks up the spoon in its left hand, then the human agent brings the cup near to
the robot’s workspace, depending on the position of the cup, the robot would either
invoke from the knowledge base the “pick up cup” or “place spoon” skills. Eventually
the robot’s right hand is in possession of the cup with the spoon inside it, and the
knowledge base invokes the execution of the skill motion for putting the cup down on
the plate. In Figure the robot can be seen executing different skills.

Figure presents the operation of the perception system during the execution
of the demonstrator experiments. Objects are recognized based on their colour prop-
erties and blob size. From the images it can be seen that some problems can take
place when the human agent or the robot platform arm enter the camera’s field of
view, as occlusions and false recognitions can happen. Typically, these issues can be
taken care of by the blobs’ size and area inconsistency with expected objects’ prop-
erties, or by their failed instances being removed from the knowledge base since their
constant movement made them disappear too quickly for them to affect the operation
of the system.

The operation of the knowledge base system during the execution of the demon-
strator experiments can be seen in Figure The knowledge base presents infor-
mation for the environment and the task execution. The task frame holds knowledge
of the actions to carry out by the robot for the execution of the task. Actions high-
lighted in blue reflect the current invocation of that action’s knowledge for the robot
reproduction of the skill. Actions that have been completed are deactivated and high-
lighted in grey. The selection and activation of which skill motion to carry out next,
is completely determined by the skill initial conditions being matched to the state of
the environment. Therefore, the sequence of execution of the task is controlled by the
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Fig. 6.27: Knowledge Base Scenario Experiment A.2: different snapshots of the ex-
ecution of the demonstration illustrating the operation of the perception
system and the knowledge base system.

human agent as it interacts with the robot and the environment and facilitates the
objects and conditions needed for the robot to fulfil the task. A potential problem is
determining which action has precedence when many of them can satisfy their condi-
tions at the same time. The tasks considered in the demonstrator didn’t present this
issue, since the robot’s limited workspace prevented the conditions for picking up the
cup and placing the spoon to be satisfied at the same time. This issue has not been
fully explored so far, and as a first simplification precedence is determined by the
order of the actions in the task frame as determined by the programmer of the task;
although not satisfactory for every scenario, this solution is probable enough for many
common tasks. The use of some form of long time planner could be effective to solve
this issue by assigning precedence by determining how the decision of performing one
action over another could affect the execution of the task several steps ahead.

The goal of this demonstrator scenario is to show how action execution is invoked
by the state of the representation frames present in the knowledge base. Figure [6.28]
presents a storyboard of the performance of the system during the execution of the
demonstrator experiments with snapshots taken at various stages. A knowledge base
approach for robots working in unstructured environments, where the execution of
the task cannot be scripted beforehand is fundamental if they are to be able to work
successfully. Without such a system the robot would be unfit to respond to any
unforeseen deviation from the plan, and be largely ineffective to perform in all but
the most ideal of situations. The knowledge base system allows the robot to keep
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Fig. 6.28: Knowledge Base Scenario Experiment A.2: different snapshots during
the execution of the demonstration. The top row and the bottom row
represent two different reproduction of the experiment.

track of the environment and the state execution of the task, this provides the system
with flexibility to deal with different states at a particular point with out losing focus
of the global task objective.

Evaluation of Skill Generation and Adaptation Scenario

Here the demonstrators are oriented to the evaluation of the performance of the
robot skill generation and adaptation scenario. The aim of the skill generation and
adaptation scenario is to demonstrate how the operations of the humanoid robot
can be expanded from an original set of learned robot skills by operating over the
Robot Skill Models as presented in Chapter B, in order to generate new models of
robot skills. In this scenario the performance of the learning module for learning
and encoding Robot Skill Models is presented first. The human agent would provide
different teaching demonstrators to the robot, gathered from the methods described in
Chapter[Blto build a first set of skill models. Secondly, the methods for merger, update
and combination of Robot Skill Models are validated by applying them in different
situations allowing the humanoid robot to achieve its task objectives, unreachable
with its original skill set, by employing newly generated robot skills.

Two main experiments were carried out with the HOAP-3 humanoid robots in
this scenario, as described in Section 6.2l In the first demonstrator, a humanoid
robot is equipped with a table tennis paddle and taught to perform different tennis
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Fig. 6.29: Generation and Adaptation Scenario Experiment B.1: different snapshots
from the execution of the task in the demonstrator. Recording of the
teacher demonstrations for the forehand and smash shot skill with a kinect
camera (the kinect images are mirrored). HOAP-3 robot reproduction of
the learned forehand and smash shot skill.

shots, then additional tennis shots skills are generated by the merger of different
learned skill shots. For the second demonstrator, the humanoid robot is required to
grasp an object from various possible initial locations, while being taught to perform
the skill motions to grasp it for only a limited number of locations. The complete
task would be unachievable with the limited robot skills set learned at first since the
skill reproduction would not generalize well to every target’s location. To generalize,
across the whole working space models of the robot skill are combined into a single
model of the attractor dynamics.

For the first demonstrator in this scenario the HOAP robot is required to execute
different tennis shot actions to hit a table tennis ball. Originally, robot skills’ models
are taught to the HOAP-3 robot to hit an approaching ball, providing the robot with
the skills to perform a forehand shot and a straight smash shot. To expand the robot
skill set, the two learned skill models are merged to obtain a new Robot Skill Model for
a forehand-smash shot. Figure shows a schematic view of the first demonstrator
experiment in the generation and adaptation scenario.

Figure shows different snapshots from the execution of the task in the first
demonstrator. The experiment execution in this demonstration scenario would de-
velop as follows: first, a human teacher is recorded executing demonstrations for
the forehand and smash tennis shot skill motions. The teacher demonstrations are
recorded with the use of a kinect camera tracking the skeleton of the user during the
demonstration. Robot Skill Models are encoded from the demonstrations following
the SEDS learning mechanism reviewed in Chapter Bl With the learned robot skills,
the robot is given the capacity to successfully perform a forehand tennis shot and
straight up smash shot skill motion.

Figures and summarizes the process of encoding the tennis shot skill
motions presented above. The figures show a 3D reproduction of the learned skills
trajectories, the training data from the recorded demonstrations of the skill and the
encoded SEDS models of the robot skill.

In order to expand the robot skill set and increase its range of action for the table
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Fig. 6.30: Generation and Adaptation Scenario Experiment B.1: learning the fore-
hand shot skill. 3D reproductions of the learned skill. Demonstrations
trajectories, positions and velocities plotted over time. Streamlines of the
learned dynamics with various reproductions of the motion. The learned

GMM of the robot skill.
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Fig. 6.31: Generation and Adaptation Scenario Experiment B.1: learning the smash
skill. 3D reproductions of the learned skill. Demonstrations trajectories,
positions and velocities plotted over time. Streamlines of the learned
dynamics with various reproductions of the motion. The learned GMM
of the robot skill.



6.7. Experimental Evaluation 223

&

m

B &

Fig. 6.32: Generation and Adaptation Scenario Experiment B.1: Generating the
forehand-smash shot skill from the merger of the learned forehand and
smash shot skill models. HOAP-3 robot reproduction of the forehand-
smash shot skill.

tennis task, the two learned skill motions are merged through the methods presented
in Chapter Figure illustrates the process of generating the forehand-smash
skill model from the merger of the forehand and smash robot skills learned in Figures
and 63T Being capable of expanding a robot set of learned skills is clearly an
important issue as robots will be asked to perform an increasing number of activities
and learning and programming every possible skill into the robot is infeasible. As
stated in the previous chapters, the properties of the learned Robot Skill Models
encoded with the SEDS method form Khansari will hold for the merged Robot Skill
Models generated here. Learning the robot skills with SEDS as a model of the motions
dynamics has several desirable properties that have been stated before in previous
chapters. This allows the robot to have an encoded model, generalizing the dynamics
of the motion, that can respond to perturbations on the execution of the task and
changes to the initial conditions.

The second demonstrator requires that the HOAP-3 robot grasps a cup object
located in any possible place in a “cupboard”, which is made up of two shelves, a
bottom and a top shelf. The HOAP-3 robot must be able to grasp the cup, as long
as it is inside the robot arm’s workspace, in any of six possible general locations in
relation to the robot arm: three on the bottom shelf and three on the top shelf.
At first, the only skills learned by the robot are for grasping the cup placed on the
bottom shelf. To grasp the cup, placed on the top shelf, at either side of the robot,
the skills learned to grasp the cup on the bottom shelf must be updated to generate
the required new robot skill models. Figure[6.12]shows a schematic view of the second
demonstrator experiment in the generation and adaptation scenario.

The experiment execution in this demonstration scenario would develop as follows:
first a human teacher is recorded executing demonstrations for grasping a plastic cup
object located on the bottom shelf of a “cupboard”. The teacher demonstrations are
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Fig. 6.33: Generation and Adaptation Scenario Experiment B.2: teaching and learn-
ing the skill motion for grasping a cup in the bottom shelf of the “cup-
board”.

Fig. 6.34: Generation and Adaptation Scenario Experiment B.2: updating the skill
motion for grasping a cup in the top shelf of the “cupboard”.

recorded by means of kinaesthetic teaching, with a human agent moving the HOAP-3
robot arm through the demonstration of the skill. Figure shows the process of
teaching and learning the skill motion in the first demonstrator. Robot Skill Models are
encoded from the demonstrations following the SEDS learning mechanism reviewed
in Chapter Bl The desired goal is for the robot to have the capacity to successfully
grasp the cup out of the “cupboard” regardless of its possible position inside it. That
is, the cup could be placed to the left, right or in front of the robot on either the top or
bottom shelf. Trying to generalize the learned skill for grasping on the bottom shelf
to perform a grasp on the top shelf would not be successful. To grasp the cup when
placed on the top shelf, the learned Robot Skills Models must be updated, employing
the method presented in Chapter B Figure shows the process of updating the
skills of the bottom shelf grasping for performing the grasp skill for placements of the
cup on the top shelf of the “cupboard”.

Figure summarizes the process for generalizing the learned skill for grasping
the cup object out of the “cupboard” regardless of its possible location. The figure
shows the performance of the system during the execution of the demonstrator exper-
iments successfully grasping the cup when placed to the left-bottom, right-bottom,
center-bottom, left-top, right-top, center-top, of the robot.

In order to expand the robot skill set and increase its range of action to encompass
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Fig. 6.35: Generation and Adaptation Scenario Experiment B.2: different snapshots
from the execution of the task in the demonstrator. Grasping the cup
when placed to the left-bottom, right-bottom, center-bottom, left-top,
right-top, center-top, of the robot.

a larger spectrum of the attractor dynamics, the Robot Skills Models must be combin-
able into new models. This allows more complex tasks than those presented during
demonstrations to be carried out, generalizing the models of the skills to regions out-
side their original demonstrations. To generalize the skill across the whole working
space of the shelves in the “cupboard”, the three models of the robot skill, for right,
left and center, grasping motion on a shelf, are combined into a single model of the
attractor dynamics. Figure illustrates the complete behaviour of the generated
new skills models. For humanoid robots to be capable of working successfully in the
capacity in which they are envisioned, it is of vital importance that they present am-
ple and robust skill sets. The ability to learn robot skills is a key aspect to achieving
this, yet learning by itself is not sufficient; the capacity to operate over the learned
robot skill, such as the merger, update and combination of skills, is necessary. Updat-
ing previously learned skills is a very important ability for humanoid robots, allowing
them to increase and improve their available skill set. Combining different robot skills
allows the expansion of the scope of application of the learned skills and generalizes
them to new contexts. One important gain from the combination of robot skills comes
from increasing the accuracy of the generalized behaviour. The generation of a model
by combining robot skills is necessary in order to improve the task execution.

Evaluation of Robot Skill Reproduction Scenario

For the final scenario, two general demonstrators were implemented for validating
the complete developed framework for learning and adaptation of robot skills. The
goal for the robot skill reproduction scenario is to demonstrate the operation and inte-
gration of all the overall systems in the framework for the performance of a humanoid
robot in a complex unscripted environment interacting with a human agent.
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Fig. 6.36: Generation and Adaptation Scenario Experiment B.2: combine skill
model allows to encompass a larger spectrum of the attractor dynamics.
Different executions of the task grasping the cup at different locations.

Two main experiments were carried out with the HOAP-38 humanoid robot in this
scenario, as described in Section In the first demonstrator we complete the table
tennis scenario from the previous subsection. Here, the HOAP-3 robot would stand
equipped with a table tennis paddle waiting for an approaching ball to hit with an
appropriate tennis shot skill. For the second demonstrator the previous scenarios
involving the HOAP-3 robot employing kitchen objects are expanded. Here, the
robot is required to complete a setting up of a dinner service task behaviour with
assistance from a human agent.

For the first demonstrator in this scenario the HOAP robot is expected to simulate
a game of table tennis. The humanoid robot stands, paddle in hand, expecting a table
tennis ball to be moved towards it. The perception system would recognize the ball
and extract the appropriate learned robot skill models to reproduce the action from
the knowledge base. Figure shows a schematic view of the first demonstrator
experiment in the robot skill reproduction scenario.

Figure shows a set of different snapshots captured during the execution of
the task in the first demonstrator. A successful execution of the experiment in this
demonstrator would develop as follows: the HOAP-3 robot starts the experiment
standing at a rest position, with a table tennis paddle in its right hand, waiting for
an approaching ball to hit with an appropriate tennis shot skill. The limitations of
the perception and of the robot itself don’t allow for a real-time reproduction of the
task, therefore, the ball is handled by a human agent who approaches it to the robot
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at a controlled speed. The perception system recognizes the ball at a certain distance
from the HOAP-3 robot position, since providing complete accurate estimation of
the ball’s position when moving is not possible by the perception system, we simplify
things and divide the space into quadrants and make a rough estimate of what the
ball final position will be, based on which quadrant the ball was travelling in at the
recognizing step.

After the perception system recognizes the ball an instance of the ball object is
created on the knowledge base. Since the precise position of the ball is not needed,
the ball object instance holds only the estimate for which quadrant the ball is in.
The knowledge base also holds the task event frame for the demonstrator consisting
of the Robot Skill Models for performing the tennis shots. There are 4 Robot Skill
Models in the task event frame from the skill learned in the previous scenario, we
have a forehand and smash shot skill, and also from the previous scenario we have
a forehand-smash shot skill generated from the merger of the other two skill models.
One additional skill was learned for the demonstrator for the performance of a back-
hand shot employing the same methodology as it was for learning the other Robot
Skill Models. When the ball is recognized by the perception system crossing one of
the quadrants the appropriate skill action is invoked from the task event frame for the
robot reproduction. Figure shows the HOAP-3 robot performing the different
tennis shot skills as it interacts within the demonstrator; the central image is at the
onset of the motion, and the right image is at the end of the motion; the left image
depicts the state of the system leading to the reproduction of the tennis shot skill. For
the experimental run illustrated by Figure the ‘point’ begins with the HOAP-3
robot returning a backhand shot (first row), followed by two successful forehand shots
(only one is depicted, second row), then the HOAP-3 robot performs a smash shot
(third row), and finally the ‘point’ concludes with a forehand-smash shot return for
a score of “love, 15”.

The second demonstrator requires the robot to set a “dinner service” consisting of
a fork, a knife, a saucer plate, a cup and a spoon, in conjunction with a human agent.
The purpose of the demonstrator is to test the overall operation of the developed
framework, as well as validating the performance of every individual module and
interaction between themselves. The sequence of execution of the task could vary
depending on the actions of both the human agent and the HOAP-3 robot. Figure
shows a schematic view of the second demonstrator experiment in the robot skill
reproduction scenario.

Figure depicts a storyboard of the performance of the second demonstrator
taken from several snapshots, captured from the execution experiment. A standard
run-through the demonstration scenario would develop as follows: first the robot
is given the task of setting up “dinner service” at the table in front of it, and all
necessary robot skill actions and task event frames are stored in the knowledge base.
The task begins with the robot standing in front of the empty table. The final set-up
of the table requires a plate to be placed in the center, a cup is placed on top of the
plate, and a spoon is placed inside the cup, a fork and knife flank the plate at its left
and right sides respectively. Completing the task requires the performance of several
different skills, the selection of which skill is to be carried out by the robot at each
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Fig. 6.37: Robot Skill Reproduction Scenario Experiment C.1: different snapshots
from the execution of the task in the demonstrator.
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time comes from the actions being afforded to the robot by the environment, through
the interaction with a human agent, in the knowledge base. Therefore, the sequence
of execution of the task is governed by the human agent as it is him who chooses the
order in which to provide the robot with the needed objects. Certain items, however,
have precedence over others, i.e. the plate must be placed on the table before the
cup, since the cup goes on top of it.

The first object to be placed on the table is a ‘red’ container box, from which
the HOAP-3 robot picks up the objects, when available. A human agent would then
choose from the pool of objects of the task one object to be placed by the robot,
and would set it on the container box, Figure top left image shows the instance
where the human agent sets the first object for that run of the task, in that case a
plate. The HOAP-3 robot perception would recognize the object in the container box,
when this happens an object frame instance is created in the knowledge base, and
the action frames in the task event frame are checked out to find which, if any, match
is invoking conditions from the current state of the world frame, in order to begin
reproduction of a skill. Once an action is chosen, the Robot Skill Model parameters
0 = {m,u, ¥} are recovered from the knowledge base system and provided to the
robot skill reproduction model for performing the actual reproduction of the skill, as
in the GMR process described in Chapter Bl The robot will pick up the given object
and carry out the required operations with it to place the object where ever it will
be appropriate.

The rest of the task will continue in this way, with the human agent initiating
the performance of action skills to an object as determined by his interaction with
the robot agent by presenting it with the objects. Figure shows the HOAP-3
robot performing a different skill from this interaction in completing the setting up
“dinner service” task. From left to right, starting at the top row, the human agent
first presents the robot with the yellow plate, then the robot picks the plate up, the
robot transports the plate to the position where it must be placed, and finally the
robot puts the plate down on the table; a little assistance is required by the human
agent in that instance as the robot configuration of the wrist DOF makes it difficult
for the robot to orientate the plate for dropping it gently on the table. The second
row begins with the human agent presenting the robot with the fork; then the robot
picks it up, the robot then switches the fork to its left hand, and finally drops it on
the table. The third row begins with the human agent presenting the robot with the
knife, then the robot picks it up, the robot then transports it to the position where it
must be placed, and finally the robot puts the knife down on the table at the side of
the plate; a little assistance is also required from the human agent. The fourth row
depicts the operations with the spoon object which goes the same as with the fork;
the skill actions to handle them are the same, except for the final step in which the
spoon is not set down on the table as it needs to go inside the cup. The fifth row
begins with the robot picking up the cup from the human agent; it then transport
it towards its left, and transport the spoon towards the cup; finally the robot places
the spoon inside the cup and return to rest with the cup with the spoon in its right
hand. The final row depicts the HOAP-3 robot performing the skill action to place
the cup on top of the plate and complete the task experiment.
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Fig. 6.38: Robot Skill Reproduction Scenario Experiment C.2: different snapshots
from the execution of the task in the demonstrator.
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6.8 Summary of the Chapter

Throughout this chapter the development and implementation of the framework
and the different modules that compose it have been described. Also, the experimen-
tal scenarios are described and results and analysis are presented for the validation
of the framework proposed throughout this work. Different evaluation scenarios were
developed to test the performance of the various modules implemented in our frame-
work and to provide separate validation for the operation of the system. Section
described the development of the framework as well as the experimental set up for
validating it, and the robotic platform used in this work, complete with a description
of its structure, joints and sensor distribution. In Section the implementation of
the robot skill learning module was described. Section presented the implementa-
tion of the knowledge base system. In Section the development and operation of
the robot skill generation and adaptation module is described. Section presents
the implementation of the robot skill reproduction module in charge of producing the
adequate control signals to the robot for the reproduction of robot skills. Finally in
Section [6.7, a description of the experimental results and analysis for validation of
the proposed framework over the evaluation scenarios is given. Different evaluation
scenarios are employed to test the performance of the various modules implemented in
our framework. Demonstrations are organized over three major scenarios to provide
separate validation for the knowledge base system, the generation and adaptation
system, and the complete developed framework.
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7. DISCUSSION AND FUTURE WORK

Work on this thesis first started under the scope of a European project for the
development of humanoid robots for collaborative working environments. It then
continued, through various other projects, always linked to the issues and challenges
of designing and creating humanoid robots which are capable enough of working and
aiding their human partners during its everyday tasks. The prime motivation of this
work, and of the humanoid robotics field in general, is in the development of humanoid
robots, and their control mechanisms, with comparable skills and behaviours to those
of humans. The main idea being that human-like robots would be favoured to perform
in the real world and that the use of humanoid robots that can give support in
performing human daily activities would significantly help people in work sites, homes
and in dangerous or emergency situations.

Before this vision can become a reality, many important challenges need to be
addressed. These challenges encompass a whole range of issues from locomotion and
motor control, to perception, interaction and cognitive behaviour and intelligence.
In Chapter 2] a review of the developments and challenges in humanoid robotics
research, and of different proposals for intelligent agents’ architectures for robotic
systems, was presented. There is much work to be done to improve the capabilities
of humanoid robots for locomotion, perception, interaction, cognitive behaviour and
competence at performing tasks. Progress in all of these aspects is vital and separate
efforts at improving each one of these issues is of crucial importance; however, true
breakthroughs in the development of fully functional humanoid robots can only occur
when advances in all of these issues can be done concurrently.

The field of robotics has certainly seen some advances in these issues over the
years, with great usage of robotics for industry, surveillance, entertainment and man-
ufacture applications. However, the performance of humanoid robotics remains hin-
dered by these issues, in particular the requirement for intelligent cognitive behaviour.
Humanoid robots must present intelligent, natural, predictable and reasonable be-
haviours, and development of intelligent controls to resemble this is a major challenge.
Research into cognitive architectures constitutes a solid basis for building intelligent
systems, but even though some attempts in the field have been made for providing
cognitive processes for humanoid robots, there are not fully developed cognitive ar-
chitectures readily available with the capabilities of endowing robots with the needed
functional intelligence. The cognitive approaches are centred on the mechanism that
allows for the generation of thought and the interior workings of cognition; this calls
for an organization of intelligence in terms of cognitive models. Models of cognition
must be embodied processes that capture the unfolding of cognition in time, mindful
of the associated sensory and motor surfaces embedded in the environment.
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One major contribution of this work is the development of a framework, as pre-
sented in Figure2.0l for a cognitive model for the generation and adaptation of learned
robot skill models for complying with task constraints. In the developed framework
a knowledge base of the skills is built with the models of the skills learned through
demonstrations. During the execution, the constraints of a requested task are ex-
tracted from the perceptual system from the working environment and the models of
an appropriate skill are retrieved from the skills knowledge base. With all available
information, a new adapted task model is generated for reproduction.

The framework developed in this work was proposed as a cognitive model intended
to provide the robot with an essential cognitive ability for learning and adaptation of
skills. Though it is not a primary consideration of this work, our framework can be
thought of as one module level in the hierarchy of a more complex architecture, or
as a first stepping stone upon which to incrementally build more complex cognitive
processes. The goal of the developed framework is to provide a minimum degree
of intelligence for the humanoid robot. The ultimate goal of the field, as stated
before, calls for fully functional humanoid robots capable of performing any type of
task as a human agent would, and capable of working, collaborating and interacting
with humans, sharing the same space, tools, and activities. This vision requires for
robots to present full level cognitive and intelligent architectures, however, current
developments are not yet even nearly close to these capacities, and our discussion
needs to start at some point in a basic functional level of intelligence. The review
of intelligence, on Chapter @] lead to recognizing as a minimal desirable level of
intelligence for our humanoid robots the ability to sense the environment, learn, and
adapt its actions to perform successfully under a set of circumstances.

The developed framework provides humanoid robots with systems that allow them
to continuously learn new skills, represent their skill’s knowledge, and adapt their
existing skills to new contexts, as well as to robustly reproduce new behaviours in
a dynamical environment. The cognitive framework for learning and adaptation of
robot skills is made up from several modules, including modules for the learning of
robot skills, the perception and interaction with the environment, the management
and representation of skill knowledge, the generation and adaptation of skill models,
and the reproduction of robot skills.

A skill in our context has been defined as a motor trajectory motion learned by the
agent, an acquired ability for the execution of a task. Imitation Learning approaches
were used to teach a robot how to accomplish a given task. To learn the skills motion
a time independent model of the motion dynamics was estimated through a set of
first order non-linear multivariate dynamical systems. Despite Imitation Learning
clear advantages, it would be impractical to teach the robot skills for every task and
situation, therefore, it was necessary to extend the approach in a way that allows the
adaptation of previously learned motion skills to new contexts. The models of a skill
are adapted to generate a new task by operating over the given robot skill models.
The system must be able to store and latter retrieve and use their knowledge of
learned skills. The knowledge base holds all necessary information for reproduction
of the skills in the environment. Knowledge of the task is distributed among the
representation of objects, actions and events of the task and the state of the world.
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7.1 Discussion on Learning Robot Skills

The ability to learn robot skills is one of the most important for developing hu-
manoid robots. While programming robots to perform a series of required tasks is
certainly possible for industrial robotics, humanoid robots are required to perform a
wide repertoire of tasks working beside humans in complex dynamic environments,
making a learning approach a necessity. Learning systems are required to acquire
skills and develop task knowledge of how to act. Algorithms for learning and extract-
ing important features of task actions are fundamental in order to build intelligent
behaviours. Chapter Bl reviewed the field of Learning from Demonstration (LfD) and
the process and methods used for learning and encoding the models of the robot
skills. LfD formulates user-friendly methods by which a human user can teach a
robot how to accomplish a given task, simply by demonstrating this task, and gener-
alizing the demonstrated movements across a set of demonstrations. Also, different
methodologies for gathering the demonstrations were reviewed, various techniques for
teaching and building the demonstrations datasets were presented like, kinaesthetic
teaching, visual demonstrations, motion capturing systems to record demonstrations,
or generating robot trajectories with virtual reality or simulated environments.

For teaching and learning the different sets of skills LfD algorithms and modalities
were implemented and evaluated. In this thesis the robot skills were learned in a
Dynamical System approach. The approach is based on learning time independent
models of the motion dynamics estimated through a set of first order non-linear
multivariate dynamical systems.

Through the work on this thesis, a number of Imitation Learning techniques have
been studied and implemented in teaching and learning with the robot, the different
sets of skills employed in the rest of the framework. Three algorithms to learn the
dynamics of demonstrated motions were studied. A first approach was implemented
learning the skills with multivariate Gaussian functions; however, this formulation
could not guarantee the learning of a stable estimate of the dynamics. The BM
method was implemented next; this method could produce a model of DS with local
asymptotic stability at the target. Finally the SEDS method was reviewed with two
objective functions: SEDS-likelihood and SEDS-MSE. The SEDS formulation to learn
the underlying dynamics of a motion can guarantee that estimates of the dynamics
are globally asymptotically stable at the target.

Methodologies used for the reproduction of the learned motion dynamics of the
robot skills were reviewed, comparing the performance of the methods presented
through this work. Validation was performed of the performance of the methods were
compared across the demonstrated motions, the estimates of several 2-D and 3-D
motions were learned. For learning the Robot Skill Models through the experiments
presented in this work, the SEDS-likelihood was employed. Learning the robot skills
with SEDS as a model of the motions dynamics has several desirable properties that
have been outlined before in other chapters. This allows the robot to have an encoded
model generalizing the dynamics of the motion, that can respond to perturbations on
the execution of the task and changes to the initial conditions.
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Future Work

This work reviewed various topics in the area of learning robot skills and Imitation
Learning. A module was successfully implemented allowing the robot to learn skills
from demonstrations. However, there remain some issues and pertinent consequent
studies as follows:

e Different techniques were examined for gathering the teachers’ demonstrations
in this work, an interesting possible topic requires the study of how demonstra-
tions of the same skill recorded by different techniques can be used jointly for
the training of a robot skill with an LfD algorithm.

e Also, more in-depth studies and comparisons of the techniques for gathering
demonstrations with a user experienced focus on mind would be relevant and
helpful for deciding the mechanism by which a skill would better be demon-
strated to the teacher.

e The role of the teacher and how the quality of the provided demonstrations
influences and determines the robot behaviour has not been fully explored.

e This work reviewed several learning algorithms and settled on using the SEDS-
Likelihood algorithms since it had better overall results and facilitated imple-
mentation. However, many different algorithms exist in the literature, any one
of them with their strengths and weaknesses. Mechanism for determining which
algorithms could be better suited for the learning of a skill out of the demon-
strated data would be an interesting topic for future research.

e Employing different learning algorithms in the same system naturally compli-
cates the interactions that different skills, with different encodings, could have
with the rest of the system. This leads to the need to research mechanisms by
which different encodings of a skill could be transform from one to another.

e An interesting topic of research, not sufficiently explored, in this work is how
the information encoded within the model of a robot skill can be used for the
categorization and recognition of skills.

7.2 Discussion on Representation of Robot Skills

For a robotic system to perform different skills and tasks in a changing and un-
structured scenario, it is important to endow them with a framework in which to
organize their acquired knowledge in a manner that allows it to be retrieved it in
order to use it to deal with the current context constraints. In Chapter [, a knowl-
edge base of skills was developed and implemented. The knowledge base allows for
the storage, classification and retrieval of learned models of skills. A knowledge base
is populated with robot available skills, learned by demonstration, for later repro-
duction. A method for the representation of the knowledge of the skills and task
constraints needed for reproduction was developed.
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The learned motion primitives can be used as a way of having comprehensive
repertoires of robot skills. Chapter [ reviewed similar approaches aimed at building
repertoires of basic robot motor skills which can represent a basic set of elementary
movement primitives. Most of these approaches generally offered little advice on how
the library of skills could be used to select and adapt the primitives to deal with
different conditions, or their mechanisms for representing their knowledge.

An important challenge for robotics, and particularly for robots acting on un-
structured dynamic environments, is in dealing with internal representation and un-
derstanding of the world. The embodied view of cognition call for representations to
be limited, physically grounded to the environment and oriented towards a particular
use. Approaches from artificial intelligence and logic base reasoning see the world
more as discrete time experiences. Yet the state and action representations are dy-
namic. The robot actions and thinking must be processes of interacting change in the
environment. The dynamical system theory approach is an appropriate alternative to
the traditional formats of representations. Dynamical systems can store knowledge
and have this stored knowledge influence their behaviour.

The principal aim for the humanoid robot is to take actions, as situated agents,
that are appropriate to their circumstances. Fitting representations are essential for
this goal. Thinking in terms of actions, and objects, is not only intuitive but also
convenient for a representational undertaking in robotics. Object and actions are
at the basis of robot performance. However, representational attributions must also
include information about the world and situations, events and goals, for effective
situated performance. Our representations included information about objects and
actions, the world and situations, events and goals, for effective situated performance.
A structure built on frames has been adopted in this work. The knowledge of the
environment and goals is represented in terms of World Event Frames and Task
Event Frames, with Object and Action Frames representing knowledge about available
objects and actions respectively. From their knowledge, an Active View Event Frame
is built from the focused knowledge promoting the agent’s execution.

Future Work

This work has introduced many issues in the framework of knowledge and repre-
sentations for robot skills. Some possible consequent studies are as follows:

e Work on this thesis has tried to build a comprehensive set of skills knowledge,
however, the sets we are able to build are still limited compared to what a robot
working in a real world situation would be able to develop over time. Further
research is needed for topics of decision making and conflict resolution over the
selection of a proper path, when there are two or more viable choices for action.

e The topic of reasoning is a very large subject and there are several different
approaches and applications for reasoning with robotics. While studying them
was outside the scope of this thesis, future works would benefit from a compar-
ative study of reasoning approaches and the application of different methods as
they are best suited to a situation.
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e A further point of research is on investigating how to handle inaccurate or
unreliable perceptions and information in the system and mechanism by which
the knowledge base could recover from erroneous and false assumptions.

e Work on this thesis has not focused on the creation or obtaining of plans, but
assumed general plans to be already in the system and loaded into the task
event frames; instead it has focused on mechanisms for the robot execution of
the tasks’ actions. Future work must review the process by which humanoid
robots can learn, create, choose and modify their plans of actions.

e There are various different approaches to related topics focused on the manage-
ment of knowledge by robotic systems. An interesting topic of future research is
the study and comparison of these systems; in particular the ones that may be
used to complement the framework developed in this work, such as KnowRob
or RoboEarth, which could lie at a higher, more abstract level of the cognitive
hierarchy while our framework lies at a lower level of action execution.

7.3 Discussion on Generation and Adaptation of Robot Skills

Humanoid robots are required to perform a wide repertoire of task working beside
humans in complex dynamic environments. Learning mechanism are important for
building up this type of repertoire of robot skills; however, despite the clear advantages
of LfD approaches it would still be impractical for the human operator to teach the
robot the skills for every necessary task and for every foreseen situation. Efforts
to generate robotic skills can only have a real implementation value for developing
humanoid robotic systems, if the models of the skill can be operated upon to generate
new behaviours of increasing levels of complexity. Therefore, extending the LfD
approach of learning a skill model in a way that allows the adaptation of a robot
previously learned motion skills to new unseen contexts is necessary.

The algorithms developed for the generation and adaptation of the robot skills
were reviewed in Chapter In that chapter, the process by which the model of a
skill can be adapted to reproduce a new task using the already learned model of a
robot skill and the extracted constraints knowledge of the current task was described.
Different modalities were developed and implemented that allow for the adaptation
and generation of new skill models based on the already learned models of skills,
stored in the knowledge base. Different modes are presented for the adaptation,
update, merger, and combination of the Robot Skills Models.

Models of a skill must be updatable; when given new information for the repre-
sentation of a skill, the system must allow for the models to be improved. Updating
previously learned skills is a very important ability for humanoid robots, allowing
them to increase and improve their available skill set.

Skills can be generated by merging two or more models into a new skill; multiple
desired robot skills may be composed from superposition of various models. New
models of a skill can be generated by merging two or more models into a new skill in
order to expand the robot skill set and increase its range of action.
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In order to expand the robot skill set and increase its range of action to encom-
pass a larger spectrum of the attractor dynamics, the Robot Skills Models must be
combinable into new models. This makes it possible to carry out more complex tasks
than those presented during demonstrations, generalizing the models of the skills to
regions outside their original demonstrations. One important gain from the combina-
tion of robot skills comes from increasing the accuracy of the generalized behaviour.
The generation of a model by combining robot skills is necessary in order to improve
the task execution.

For humanoid robots to be able of working successfully in the capacity they are
envisioned, it is of vital importance that they present ample and robust skill sets.
Being capable of expanding a robot set of learned skills is clearly an important issue
as robots will be asked to perform an increasing number of activities and learning
and programming every possible skill into the robot is infeasible. The ability to learn
robot skills is a key aspect in achieving this; yet learning by itself is not sufficient,
the capacity to operate over the learned robot skill, such as the merger, update and
combination of skills is necessary.

Future Work

Throughout this work we have explored many different issues for the generation
and adaptation of robot skills. Some promising, derivable topics for future research
are as follows:

e Recovering and handling safely interruptions, abrupt distortions, or miss exe-
cutions during skill reproduction is an important issue which has not been fully
explored during this work.

e For the evaluations performed during this work, a relative limited set of skills
was used in which discriminating among robot skills was not an issue. An
important topic for future research is evaluating how can the system select the
proper skill primitives out of different competing robot skills.

e The methods developed in this work for the update, merger and combination
were evaluated off-line. Future work must focus on evaluating the viability of
performing the developed methods in real time execution.

e The methods developed in this work for operating on the robot skills rely on
heuristic methods with a human input in selecting certain appropriate param-
eters. Future research must evaluate methods by which the system could au-
tonomously determine the proper parameters for the desired performance.

e Sequencing and transition operations between robot skill models in order to
generate complex behaviours with smooth transitions is an important issue for
further exploration.
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7.4 Discussion on Reproduction of Robot Skills

In this work a framework has been developed for the generation and adaptation of
learned models of a skill for complying with task constraints. The framework is meant
to provide humanoid robots with systems that allow them to continuously learn new
skills, represent their skills’ knowledge, and adapt their existing skills to new contexts,
as well as to robustly reproduce new behaviours in a dynamical environment. The
framework for learning and adaptation of robot skills is made up from several modules,
as represented by the diagram on Figure[@.Il The framework is formed by modules for
the learning of robot skills, the perception and interaction with the environment, the
management and representation of skill knowledge, the generation and adaptation of
skill models, and the reproduction of robot skills.

The development and implementation of the framework and the different modules
that compose the framework have been described throughout this work. A module
for the robot skill learning based on the LfD paradigm was implemented. There are
three subsystems in this module; a subsystem for gathering demonstration data; a
subsystem for building an estimate of the demonstration with the learning algorithm
SEDS; and a subsystem for encoding the robot skill model. A module for the knowl-
edge base system was also implemented. There are four subsystems in this module; a
subsystem for the data entry to the knowledge base; a subsystem for the data extrac-
tion from the knowledge base; a subsystem for the knowledge base data storage; and
a subsystem for the knowledge base data management. Operation and development
of the robot skill generation and adaptation module was also described. There are
three subsystems in this module; a subsystem for extracting data from the knowledge
base; a subsystem for operating upon the robot skill with the adaptation algorithm;
and a subsystem for generating the task models. A robot skill reproduction module,
in charge of producing the adequate control signals to the robot for the reproduction
of robot skills, was implemented. This module has three subsystems; a subsystem
for computing the regression of the model with GMR to obtain the desired target
commands; a subsystem for producing the adequate control signals form the target
commands; and a subsystem to communicate the control signals to the robot.

Chapter [ presented the practical experimentation and evaluation of the repro-
duction of skills in the proposed framework. The experimental scenarios are described
and results and analysis are presented for the validation of the framework proposed
throughout this work. Different evaluation scenarios were developed to test the per-
formance of the various modules implemented in our framework and to provide sep-
arate validation for the operation of the system. Demonstrations are organized over
three major scenarios to provide separate validation for the knowledge base system,
the generation and adaptation system, and the complete developed framework. The
proposed framework was demonstrated with a commercial humanoid robot HOA P-3,
endowing it with the capacity to learn skill models from a teacher demonstration
and to store them in a knowledge base, and adapt the learned models of a skill to
reproduce the required skills in different contexts.



7.4. Discussion on Reproduction of Robot Skills 241

Future Work

The work carried out in this thesis has led to the development and implementation
of a framework for the learning and adaptation of robot skills evaluated in the HOA P-
3 humanoid robot. But some minor issues remain and other questions have arisen
during the development process:

e To validate the developed framework we use the HOAP-3 robot. The HOAP-3
provides a readily available humanoid testing platform, however, the HOAP-3
robot still has many limitations. First, while its small size facilitates the robots
stability and control it severely limits the manipulation capabilities and range of
operation of the HOAP-3 robot. It is also unequipped to handle most objects,
either because of its size, shape or weight, limiting the actual number of tasks
the robot is able to perform.

e Developments in humanoid robotics have been marred by many of the same
problems; different issues severely limit their operation. Current performance
levels of humanoid robotic platforms are far from the expected goal of a robotic
partner working alongside its human co-workers. Though many advances have
been made, there is still much work to be done.

e Through this work many challenges in relation to humanoid robotics have been
outlined. Perhaps the most important standing challenge is in relation to work-
ing on the integration of solutions for all the different challenges at the same
time. A final answer for these challenges must come by working from the ground
up on solutions that foster each other in generating the desired behaviours.

e One major problem for the development of humanoid robots is the need for the
robots to replicate behaviours and performances like those of humans. These
difficulties are not only in relation to the mechanical challenges, but also in the
problem of comprehending human behaviour. There is no clear cut understand-
ing about the mechanism by which humans’ cognitive processes develop. This
lack of knowledge and understanding of the internal workings of human intelli-
gence makes reproducing these behaviours an extremely complicated challenge.
Work on robotics, artificial intelligence and cognitive science must work out
from theories and reasonable assumptions and continuously review and update
them as continuous developments shed new light on the problem.

e The framework developed in this work aims at providing the robot with essential
cognitive abilities for the learning and adaptation of skills. The framework has
been devised as a bottom level module that could be part of the hierarchy in a
more complex system, with the goal of providing a minimum functional degree
of intelligence for a humanoid robot which would be continuously increased
as the system develops further in a bottom-up approach. Future work will
constantly focus on augmenting the framework cognitive capacities to generate
better, more intelligent behaviours.
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By choosing to start from a bottom level definition of intelligence many assump-
tions and simplifications are made; this limits the possible scope of performance
for the robots while reducing the complexity of the systems. These issues must
be handled and solved in future work as we continue to improve the system and
make it capable of performing ever more complex behaviours.

The skill learning module provides effective means for teaching the robot the
desired skills. However, the teaching process is not as smooth and streamlined
as it could aspire to be, and a certain level of practice and familiarity with the
robot platform is required from the teacher in order to be efficient at provid-
ing demonstrations. Future work must concentrate on topics of human-robot
interaction to improve the demonstration approach.

The perception module implemented in this work was very simple; it focused
only on recognizing objects by their color and size. This of course is very
limited; performance was also less reliable with changing lightning conditions.
Future work must develop the perception system further, or better yet work to
integrate existing more advance solutions with the rest of our framework.

The skill knowledge module affords the robot mechanisms by which to select
skills to reproduce in different contexts. The implemented system is capable
of performing under the demonstrated scenarios. However, these demonstra-
tions are still limited in terms of the number of possible choices and situations
they have to handle. Future work must provide comprehensive evaluations of
capabilities and limitations of the skill knowledge module in a larger range of
scenarios.

The skill adaptation module proves functional for the requirements under the
designed demonstrated scenarios. However, the module in its current implemen-
tation requires supervision from the operating user, future work must always
increase the degree of autonomy for the overall system. Also, future work would
benefit from testing and user evaluations employing different users with varying
levels of expertise.

The implemented skill reproduction module allows satisfactory control of the
robot performance in reproducing various task. Future work is required to en-
hance the performance of the robot reproductions, particularly for improving
execution speed and providing more natural, human-like, movements. Addi-
tionally, future work must test and implement the developed framework on the
full scale humanoid robot platform TEO being developed at Universidad Carlos
[T de Madrid.

A final important point for future research is in the integration of our framework
with other existing approaches. Working on developing our system under the
ROS (Robot Operating System) software framework would be an advantage since
ROS is quickly becoming a go to standard for robotics development and many
existing ROS enabled solutions are available.
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