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ABSTRACT
A major goal in roboti
s resear
h is to develop human-like roboti
 systems 
apa-ble of intera
ting and 
ollaborating with humans. The ultimate goal is for a roboti
platform 
apable of performing, autonomously, in the unstru
tured s
enario of hu-man's natural environment. Humanoid robots must 
arry out any number of taskswhi
h their human operators 
ould reasonably expe
t from them during the normaldevelopment of a typi
al working day. Working alongside humans means dealingwith 
ontinuously 
hanging environments and a huge variety of tasks, thus the robotsshould have the ability to 
ontinuously learn new skills and adapt their existing skillsto new 
ontexts. Therefore, humanoid robots need to display intelligent behaviour.Key attributes required to 
onsider the behaviour of an agent as intelligent are theabilities to learn and a
quire knowledge based on its experien
e, the 
apa
ity to un-derstand or 
omprehend 
urrent relevant features in the environment, the 
apa
ityfor reasoning and, also the ability to adapt.A framework for humanoid robots needs to provide a minimum degree of intelli-gen
e, that is, the ability to sense the environment, learn and, adapt its a
tions toperform su

essfully under a given set of 
ir
umstan
es. Humanoids must be pro-vided with systems that allow them to 
ontinuously learn new skills, represent theirskill's knowledge, and adapt their existing skills to new 
ontexts, as well as robustlyreprodu
ing new behaviours in a dynami
 environment in order to 
ope with workingin 
ontinuously 
hanging environments and performing a huge variety of tasks.In our 
ontext a skill is de�ned as a motor traje
tory motion learned by theagent, an a
quired ability for the exe
ution of a task. A robot skill is a 
omplexa
tion movement, reprodu
ible when appropriate, and generalize to di�erent 
ontexts.Learning systems are required to a
quire skills and develop task knowledge of howto a
t. Algorithms for learning and extra
ting important features of task a
tionsare fundamental in order to build intelligent behaviours. The Imitation Learningapproa
h formulates user-friendly methods by whi
h a human user 
an tea
h a robothow to a

omplish a given task, and generalize the demonstrated movements a
rossa set of demonstrations. To learn the skills motion, a time independent model ofthe motion dynami
s is estimated through a set of �rst order non-linear multivariatedynami
al systems. We employ SEDS algorithm to learn a global dynami
al estimateof the motion, through a set of �rst order non-linear multivariate dynami
al systemsin a statisti
al approa
h, as movement primitives.Despite the Imitation Learning approa
he's 
lear advantages, it would still beimpra
ti
al for the human operator to tea
h the robot the skills for every needed task



xand for every foreseen situation, sin
e the number of demonstrations the human mustprovide to the robot to generate a new model of a skill 
ould turn it into a tiresome andtime-
onsuming pro
ess; furthermore, it wouldn't be possible to 
over every requiredtask and every situation. Therefore, it is ne
essary to extend the 
lassi
al ImitationLearning approa
h to learning a skill model in a way that allows the adaptation of arobot previously learned motion skills to new unseen 
ontexts. The models of a skillare adapted to generate a new task by a merger, transition, 
ombination or updateoperation over the given robot skill models.To reprodu
e a task adapted for an unseen 
ontext the robot must be given knowl-edge of the state of the environment and the 
onstraints of the task. Using both, thealready learned model of a skill, and the extra
ted 
onstraints information of the 
ur-rent task, the model of the skill 
an be adapted to reprodu
e the task. The roboti
systems must be able to store and later retrieve and use their knowledge of learnedskills. The aim would be to have a knowledge base of the robot available skills forreprodu
tion. The knowledge base needs to hold all ne
essary information for repro-du
tion of the skills in the environment. Knowledge of the task would be distributedamong the representation of obje
ts, a
tions and events of the task and the state ofthe world.This work is 
entred on the major idea of future roboti
 systems, more spe
i�-
ally humanoid robots, that are 
apable of intera
ting with humans in their homes,workpla
es, and 
ommunities, providing support in several areas, and 
ollaboratingwith humans in the same unstru
tured working environments. The aspiration is tohave humanoid robots a
ting as robot 
ompanions and 
o-workers sharing the samespa
e, tools, and a
tivities.Our fo
us is on topi
s 
on
erning the learning, representation, generation andadaptation, and reprodu
tion of robot skills. In this work a framework is proposedfor the learning, generation and adaptation of robot skill models for 
omplying withtask 
onstraints. The proposed framework is meant to allow: an operator to tea
hand demonstrate to the robot the motion of a task skill it must reprodu
e; to builda knowledge base of the learned skills, allowing for their storage, 
lassi�
ation andretrieval; to adapt and generate learned models of a skill, to new 
ontexts, for 
om-plian
e with the 
urrent task 
onstraints.



RESUMEN
Uno de los objetivos prin
ipales en la investiga
ión en robóti
a es el desarrollode sistemas robóti
os humanoides 
apa
es de intera
tuar y 
olaborar 
on humanos.La meta �nal es desarrollar una plataforma robóti
a 
apaz de trabajar, de formaautónoma, en el entorno no estru
turado del día a día de los humanos. Los robotshumanoides deben realizar un sinfín de tareas, que su operador humano pueda re-querir, durante el desarrollo normal de un día de trabajo. Trabajar junto a loshumanos signi�
a ha
er frente a 
ambios 
ontinuos en el entorno y una gran variedadde trabajos, por lo tanto los robots deben tener la 
apa
idad para aprender nuevashabilidades 
onstantemente y para adaptar las habilidades ya aprendidas a nuevos
ontextos. Por ellos, los robots humanoides ne
esitan presentar un 
omportamientointeligente. Atributos 
lave para 
onsiderar el 
omportamiento de un agente 
omointeligente son la 
apa
idad para aprender y adquirir 
ono
imientos basado en la expe-rien
ia, la 
apa
idad para entender y 
omprender 
ara
terísti
as relevantes presentesen el entorno, la 
apa
idad para razonar, y también la 
apa
idad para adaptarse.Un sistema para robots humanoides debe propor
ionar un mínimo nivel de in-teligen
ia, i.e., la 
apa
idad de per
ibir el entorno, aprender, y adaptar sus a

ionespara desempeñarse exitosamente bajo un 
onjunto de 
ir
unstan
ias. Robots hu-manoides, para poder afrontar los desafíos de trabajar en entornos 
ambiantes real-izando una gran variedad de tareas, deben estar provistos de sistemas que les permitanaprender nuevas habilidades, representar el 
ono
imiento de sus habilidades, y adap-tar sus habilidades a nuevos 
ontextos, así 
omo también reprodu
ir robustamentenuevos 
omportamientos en un entorno dinámi
o.Una habilidad en nuestro 
ontexto se de�ne 
omo una traye
toria motora apren-dida por el agente, una 
apa
idad adquirida para la eje
u
ión de una tarea. Unahabilidad robot es un movimiento de a

ión 
omplejo reprodu
ible 
uando sea ne
e-sario, y generalizada para diferentes 
ontextos. Sistemas de aprendizaje son ne
esariospara adquirir habilidades y generar el 
ono
imiento de la tarea sobre 
ómo a
tuar. Al-goritmos de aprendizaje, y de extra

ión de 
ara
terísti
as importantes de una tareason fundamentales 
on el �n de 
onstruir 
omportamientos inteligentes. El Apren-dizaje por Imita
ión formula métodos mediantes los 
uales un usuario humano puedeenseñar a un robot 
omo eje
utar una tarea, y generalizar los movimientos a par-tir de demonstra
iones. Para aprender los movimientos de una habilidad un modeloindependiente del tiempo de la dinámi
a del movimiento se estima mediante un 
on-junto de sistemas dinámi
os de primer orden multi-variable. El algoritmo SEDS seemplea para aprender una estima
ión dinámi
a global del movimiento, en un enfoque



xiiestadísti
o, 
omo una primitiva de movimiento.A pesar de las 
laras ventajas del Aprendizaje por Imita
ión, resulta de todasformas po
o prá
ti
o para un operador humano enseñar al robot las habilidades re-queridas para 
ualquier tarea y para toda situa
ión previsible, ya que por el númerode demonstra
iones que el humano debe dar al robot para generar un nuevo modelose 
onvertiría en un pro
eso 
ostosos y tedioso. Por lo tanto es ne
esario extender elmodelo 
lási
o de Aprendizaje por Imita
ión para aprender un modelo de la habili-dad de forma tal que permita la adapta
ión de los modelos previamente aprendidospor el robot a nuevos 
ontextos. Los modelos de una habilidad son adaptados paragenerar una nueva tarea por una opera
ión de fusión, de transi
ión, 
ombina
ión oa
tualiza
ión sobre los modelos de habilidad robot dados.Para reprodu
ir una tarea adaptada a un nuevo 
ontexto el robot ne
esita tener
ono
imiento sobre el estado del entorno y las restri

iones de la tarea. Utilizandotanto el modelo de una habilidad ya aprendido 
omo las restri

iones de la tareaextraídas del entorno, el modelo de una habilidad robot puede ser adaptado pararealizar la tarea. Es ne
esario que el sistema robóti
o permita guardar, y luegore
uperar, y usar el 
ono
imiento de las habilidades aprendidas. El objetivo seríatener una base de 
ono
imientos de las habilidades del robot disponibles para lareprodu

ión. La base de 
ono
imientos debe 
ontener toda la informa
ión ne
esariapara la reprodu

ión de las habilidades en el entorno. El 
ono
imiento de la tarea sedistribuye entre la representa
ión de los objetos, a

iones y eventos de la tarea y elestado del entorno.Este trabajo se 
entra alrededor de la idea global de los sistemas robóti
os delfuturo, en parti
ular de los robots humanoides, que deben ser 
apa
es de intera
tuar
on los humanos en sus hogares, lugares de trabajo y 
omunidades, prestando apoyoen varias áreas y 
olaborando 
on los seres humanos en su entorno de trabajo. Laaspira
ión es tener robots humanoides a
tuando 
omo 
ompañeros de trabajo que
ompartiendo el mismo espa
io, herramientas y a
tividades que los humanos.Nuestra aten
ión se 
entra en temas rela
ionados 
on el aprendizaje, la repre-senta
ión, la genera
ión y la adapta
ión, y la reprodu

ión de habilidades robot. Eneste trabajo se propone un sistema para el aprendizaje, la genera
ión y adapta
iónde modelos de habilidad del robot para 
umplir 
on las restri

iones de la tarea.El sistema propuesto permite: enseñar y demostrar al robot el movimiento de unahabilidad que debe reprodu
irse; 
onstruir una base de 
ono
imientos de las habil-idades aprendidas lo que permite su alma
enamiento, 
lasi�
a
ión y re
upera
ión;generar y adaptar modelos de habilidades ya aprendidos a un nuevo 
ontexto para el
umplimiento de las restri

iones de la tarea a
tual.



ACKNOWLEDGEMENTFirst of all I'm thankful to my advisers for their support, their suggestions, andtheir patien
e during my resear
h and 
ompletion of this thesis. I want to a
knowledgeDr. Carlos Balaguer, not only for his work as dire
tor of this thesis, but for grantingme the opportunity to be a part of his resear
h group and to work in su
h fas
inatingtopi
s as the one's dealt on this work. I want to a
knowledge Dr. Con
ep
ión Monjefor her guidan
es and valuable advi
es and for her 
orre
tions and help during myresear
h.A very spe
ial thanks to Prof. Aude Billard for re
eiving me at the LASA labo-ratory of the EPFL for a resear
h visit, where I studied the learning te
hniques thatsupport this work. I also extend my thanks to the rest of the LASA laboratory whomake me feel wel
ome at their lab.I also want to thank all my partners working at the Roboti
sLab. To Paolo andMiguel who 
losely worked with me with the HOAP-3 robot. Santi, Juan, Tamara,Juanmi, Jose and Alberto with the humanoids group. Sonia, Edu, Angela and Fer-nando whi
h invaluable support makes all of our work possible. I want to extend mythanks to everyone in the Departamento Ingeniería de Sistemas y Automáti
a where Ihave worked in the 
ompletion of this thesis, and spe
ial a
knowledgements to Martin,Javi, Abdullah, Vi
tor and Raúl for their friendship and to Silvia for everything.I want to a
knowledge everyone at the Universidad Carlos III de Madrid were Ihave spent 6 wonderful years 
ompleting my Masters and Do
toral studies, spe
ially tothe Es
uela de Do
torado, Miriam San
hez, María Belén Gar
ía and María Es
uderofor their help.I must always thank Prof. Gerardo Fernández who introdu
ed me to the world ofroboti
s. And to my dear friends from a
ross the pond: Sylvia, Joshue, Idania, Luis,Juan and Mariana.Finally, I want to thank all my family whi
h I love and who has always supportedme and 
ared about me.



xiv



CONTENTSAbstra
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ixResumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiA
knowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Aim of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Intelligent Ar
hite
tures for Humanoid Robots . . . . . . . . . . . . . . 152.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Challenges in Humanoid Robot Development . . . . . . . . . . . . . . 162.2.1 Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2.2 Sensory Per
eption . . . . . . . . . . . . . . . . . . . . . . . . 242.2.3 Human-Robot Intera
tion . . . . . . . . . . . . . . . . . . . . 252.2.4 Intelligent Behaviour . . . . . . . . . . . . . . . . . . . . . . . 282.3 Robot Planner-Based Ar
hite
tures . . . . . . . . . . . . . . . . . . . 322.4 Robot Behaviour-Based Ar
hite
tures . . . . . . . . . . . . . . . . . . 362.5 Robot Hybrid Ar
hite
tures . . . . . . . . . . . . . . . . . . . . . . . 402.6 Robot Cognitive Ar
hite
tures . . . . . . . . . . . . . . . . . . . . . . 462.7 Framework for Learning and Adaptation of Skills to Task Constraints 572.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 613 Learning Robot Skills Models from Demonstrations. . . . . . . . . . . 633.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 633.2 Learning from Demonstration . . . . . . . . . . . . . . . . . . . . . . 643.3 Providing Demonstrations of a Skill . . . . . . . . . . . . . . . . . . . 703.4 Learning a Robot Skill . . . . . . . . . . . . . . . . . . . . . . . . . . 823.5 En
oding of a Robot Skill . . . . . . . . . . . . . . . . . . . . . . . . 883.5.1 Problem Formalization . . . . . . . . . . . . . . . . . . . . . . 883.5.2 Multivariate Gaussian Mixtures . . . . . . . . . . . . . . . . . 923.5.3 Binary Merging . . . . . . . . . . . . . . . . . . . . . . . . . . 983.5.4 Stable Estimator of Dynami
al Systems . . . . . . . . . . . . . 102



xvi Contents3.6 Reprodu
tion of Learned Robot Skills . . . . . . . . . . . . . . . . . . 1063.7 Robot Skills as Basi
 Primitives of Movement . . . . . . . . . . . . . 1153.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 1184 Representation of Robot Skills Knowledge . . . . . . . . . . . . . . . . 1194.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 1194.2 Knowledge Representation and Reasoning . . . . . . . . . . . . . . . 1204.3 Developing a Repertoire of Robot Skills Knowledge . . . . . . . . . . 1274.4 Representing Obje
ts in the Robot Skills Knowledge . . . . . . . . . 1314.5 Representing A
tions in the Robot Skills Knowledge . . . . . . . . . . 1364.6 Representing Events in the Robot Skills Knowledge . . . . . . . . . . 1424.7 Stru
ture of the Robot Skills Knowledge Base . . . . . . . . . . . . . 1474.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 1565 Generation and Adaptation of Robot Skills . . . . . . . . . . . . . . . . 1575.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 1575.2 Generation and Adaptation of Robot Skills . . . . . . . . . . . . . . . 1585.3 Operations with Robot Skills . . . . . . . . . . . . . . . . . . . . . . 1655.3.1 Stability Con
erns . . . . . . . . . . . . . . . . . . . . . . . . 1665.3.2 Generalizing to Unseen Conditions . . . . . . . . . . . . . . . 1675.3.3 Robustness to Perturbations . . . . . . . . . . . . . . . . . . . 1685.3.4 Obsta
le Avoidan
e . . . . . . . . . . . . . . . . . . . . . . . . 1705.4 Update of Robot Skills . . . . . . . . . . . . . . . . . . . . . . . . . . 1725.5 Merger of Robot Skills . . . . . . . . . . . . . . . . . . . . . . . . . . 1755.6 Combination of Robot Skills . . . . . . . . . . . . . . . . . . . . . . . 1805.7 Transition between Robot Skills . . . . . . . . . . . . . . . . . . . . . 1845.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 1856 Reprodu
tion of Robot Skills . . . . . . . . . . . . . . . . . . . . . . . . 1876.1 Outline of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 1876.2 Development of the Robot Skills Framework . . . . . . . . . . . . . . 1886.3 Learning the Robot Skills . . . . . . . . . . . . . . . . . . . . . . . . 2056.4 Navigating the Robot Skill Knowledge Base . . . . . . . . . . . . . . 2076.5 Generating the Robot Skills Task Models . . . . . . . . . . . . . . . . 2096.6 Reprodu
ing the Robot Skills Task Models . . . . . . . . . . . . . . . 2106.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 2136.8 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 2317 Dis
ussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 2337.1 Dis
ussion on Learning Robot Skills . . . . . . . . . . . . . . . . . . . 2357.2 Dis
ussion on Representation of Robot Skills . . . . . . . . . . . . . . 2367.3 Dis
ussion on Generation and Adaptation of Robot Skills . . . . . . . 2387.4 Dis
ussion on Reprodu
tion of Robot Skills . . . . . . . . . . . . . . . 240



LIST OF TABLES2.1 Histori
al developments in Humanoid Roboti
s . . . . . . . . . . . . . 192.2 Ar
hite
tures for Intelligent Humanoid Robots . . . . . . . . . . . . . 563.1 En
oding Multivariate Dynami
s . . . . . . . . . . . . . . . . . . . . 983.2 En
oding with Binary Merging . . . . . . . . . . . . . . . . . . . . . 1013.3 En
oding with Stable Estimator of Dynami
al Systems . . . . . . . . 1033.4 Performan
e of Learning Methods over 2-D Motions . . . . . . . . . . 1073.5 Comparison of Results with 2-D Motions Samples Set . . . . . . . . . 1083.6 Performan
e of Learning Methods over 3-D Motions . . . . . . . . . . 1103.7 Comparison of Results with 3-D Motions Samples Set . . . . . . . . . 1113.8 Performan
e of Learning Methods over Interse
ting Motions . . . . . 1113.9 Comparison of Results with Interse
ting Motions Sample Set . . . . . 1123.10 On-line Reprodu
tion of the Learned Robot Skill . . . . . . . . . . . 1144.1 Obje
t Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354.2 A
tion Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1404.3 Event Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465.1 Update of a Robot Skill . . . . . . . . . . . . . . . . . . . . . . . . . 1755.2 Merger of a Robot Skill . . . . . . . . . . . . . . . . . . . . . . . . . . 1815.3 Combination of a Robot Skill . . . . . . . . . . . . . . . . . . . . . . 184



xviii List of Tables



LIST OF FIGURES1.1 Developments in Humanoid Roboti
s . . . . . . . . . . . . . . . . . . 31.2 Generalization of a Skill . . . . . . . . . . . . . . . . . . . . . . . . . 51.3 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4 En
oding a skill with a mixture of Gaussian fun
tions. . . . . . . . . 71.5 Representation of skills in knowledge base . . . . . . . . . . . . . . . 91.6 Adaptation of a learn skill . . . . . . . . . . . . . . . . . . . . . . . . 101.7 Generation of a new model of a skill . . . . . . . . . . . . . . . . . . . 112.1 Ar
hite
ture for an Intelligent Agent . . . . . . . . . . . . . . . . . . 312.2 Robot Planner-Based Ar
hite
tures . . . . . . . . . . . . . . . . . . . 332.3 Robot Behaviour-Based Ar
hite
tures . . . . . . . . . . . . . . . . . . 372.4 Robot Hybrid Ar
hite
tures . . . . . . . . . . . . . . . . . . . . . . . 422.5 Robot Cognitive Ar
hite
tures . . . . . . . . . . . . . . . . . . . . . . 492.6 A 
ognitive framework for learning and adaptation of skills . . . . . . 593.1 Module for Learning Models of Robot Skills . . . . . . . . . . . . . . 643.2 RPbD Generalization of Skills . . . . . . . . . . . . . . . . . . . . . . 673.3 Approa
hes for Providing Demonstrations . . . . . . . . . . . . . . . 763.4 Demonstrations by Kinaestheti
 Tea
hing . . . . . . . . . . . . . . . 773.5 Demonstrations in a Motion Capture Systems . . . . . . . . . . . . . 783.6 Demonstrations in a Simulated Environment . . . . . . . . . . . . . . 793.7 Demonstrations with a Computer Vision System . . . . . . . . . . . . 803.8 Control Flow of Learning Framework . . . . . . . . . . . . . . . . . . 873.9 Illustration of the learning pro
ess with mixture models . . . . . . . . 953.10 Illustration of the GMR inferen
e pro
ess . . . . . . . . . . . . . . . . 973.11 Examples of the learned DS . . . . . . . . . . . . . . . . . . . . . . . 1053.12 Sample 2-D DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093.13 Sample 3-D DS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123.14 Sample Self-Interse
ting DS . . . . . . . . . . . . . . . . . . . . . . . 1134.1 Module for Representation of Robot Skills Knowledge . . . . . . . . . 1204.2 Representation of Obje
ts Knowledge . . . . . . . . . . . . . . . . . . 1334.3 Representation of A
tions Knowledge . . . . . . . . . . . . . . . . . . 1394.4 Representation of Events Knowledge . . . . . . . . . . . . . . . . . . 1454.5 An Obje
t-A
tion Skill Knowledge Database Instan
e . . . . . . . . . 1484.6 Representation of skills in obje
t-a
tion knowledge . . . . . . . . . . . 1494.7 Representation of the skills in the knowledge base . . . . . . . . . . . 151



xx List of Figures4.8 Knowledge base 
ontrol �ow . . . . . . . . . . . . . . . . . . . . . . . 1534.9 Knowledge base stru
ture and organization . . . . . . . . . . . . . . . 1555.1 Module for Generation and Adaptation of Robot Skills . . . . . . . . 1585.2 Adaptation of a learned skill . . . . . . . . . . . . . . . . . . . . . . . 1615.3 Generalize the motion to di�erent starting 
onditions . . . . . . . . . 1685.4 Adaptation to target position perturbation . . . . . . . . . . . . . . . 1695.5 Adaptation to robot traje
tory perturbation . . . . . . . . . . . . . . 1695.6 Dire
t in
remental method learning of a skill. . . . . . . . . . . . . . 1745.7 Generative method learning of a skill. . . . . . . . . . . . . . . . . . . 1745.8 Update pro
ess of a robot skill. . . . . . . . . . . . . . . . . . . . . . 1765.9 Robot Skill Merger Pro
ess . . . . . . . . . . . . . . . . . . . . . . . 1795.10 Merger of a Robot Skill . . . . . . . . . . . . . . . . . . . . . . . . . . 1805.11 Combination of two Robot Skills . . . . . . . . . . . . . . . . . . . . 1835.12 Combination of three Robot Skills . . . . . . . . . . . . . . . . . . . . 1836.1 Deployment Diagram of the Proposed Framework . . . . . . . . . . . 1886.2 HOAP-3 Humanoid Robot . . . . . . . . . . . . . . . . . . . . . . . . 1906.3 HOAP-3 Robot Dimensions . . . . . . . . . . . . . . . . . . . . . . . 1916.4 HOAP-3 Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 1926.5 Des
ription of Knowledge Base S
enario Experiment A.1 . . . . . . . 1936.6 S
hema for Knowledge Base S
enario Experiment A.1 . . . . . . . . . 1946.7 Des
ription of Knowledge Base S
enario Experiment A.2 . . . . . . . 1956.8 S
hema for Knowledge Base S
enario Experiment A.2 . . . . . . . . . 1966.9 Des
ription of Generation and Adaptation S
enario Experiment B.1 . 1976.10 S
hema for Generation and Adaptation S
enario Experiment B.1 . . . 1986.11 Des
ription of Generation and Adaptation S
enario Experiment B.2 . 1996.12 S
hema for Generation and Adaptation S
enario Experiment B.2 . . . 2006.13 Des
ription of Robot Skill Reprodu
tion S
enario Experiment C.1 . . 2016.14 S
hema for Robot Skill Reprodu
tion S
enario Experiment C.1 . . . . 2026.15 Des
ription of Robot Skill Reprodu
tion S
enario Experiment C.2 . . 2036.16 S
hema for Robot Skill Reprodu
tion S
enario Experiment C.2 . . . . 2046.17 Deployment Diagram for Robot Skill Learning Module . . . . . . . . 2066.18 Deployment Diagram for Robot Skill Knowledge Module . . . . . . . 2076.19 Deployment Diagram for Robot Skill Adaptation Module . . . . . . . 2096.20 Control Flow for the Robot Skill Reprodu
tion Module . . . . . . . . 2116.21 Workspa
e of Hoap-3 arms. . . . . . . . . . . . . . . . . . . . . . . . 2116.22 Deployment Diagram for Robot Skill Reprodu
tion Module . . . . . . 2126.23 Results of Knowledge Base S
enario Experiment A.1 1 . . . . . . . . 2146.24 Results of Knowledge Base S
enario Experiment A.1 2 . . . . . . . . 2156.25 Results of Knowledge Base S
enario Experiment A.1 3 . . . . . . . . 2166.26 Results of Knowledge Base S
enario Experiment A.2 1 . . . . . . . . 2176.27 Results of Knowledge Base S
enario Experiment A.2 2 . . . . . . . . 2186.28 Results of Knowledge Base S
enario Experiment A.2 3 . . . . . . . . 2196.29 Results of Generation and Adaptation S
enario Experiment B.1 1 . . 220



List of Figures xxi6.30 Results of Generation and Adaptation S
enario Experiment B.1 2 . . 2216.31 Results of Generation and Adaptation S
enario Experiment B.1 3 . . 2226.32 Results of Generation and Adaptation S
enario Experiment B.1 4 . . 2236.33 Results of Generation and Adaptation S
enario Experiment B.2 1 . . 2246.34 Results of Generation and Adaptation S
enario Experiment B.2 2 . . 2246.35 Results of Generation and Adaptation S
enario Experiment B.2 3 . . 2256.36 Results of Generation and Adaptation S
enario Experiment B.2 4 . . 2266.37 Results of Robot Skill Reprodu
tion S
enario Experiment C.1 . . . . 2286.38 Results of Robot Skill Reprodu
tion S
enario Experiment C.2 . . . . 230



xxii List of Figures



1. INTRODUCTIONWork on this thesis fo
uses on the development and implementation of te
hniquesthat allow humanoid robots the ability to 
ontinuously learn new skills and adapttheirs existing skills to new 
ontexts. For this goal it is proposed to follow a frameworkthat allows, i) for an operator to tea
h and demonstrate to the robot the motions ofa skill it must reprodu
e; ii) to build a knowledge base representation of the learnedskills allowing for its storage, 
lassi�
ation and retrieval; iii) generate and adaptlearned models of a skill, to new 
ontexts, for 
omplian
e with the 
urrent task
onstraints.Long before the work of Karel Capek gave us the wordRobot , whi
h �rst appearedin �R.U.R. (Rossum's Universal Robots)� in 1920, the idea of automated ma
hinery,
apable of performing a variety of fun
tions and tasks, and of working and servinghumans, has been a part of the 
olle
tive imagination of mankind. Various examplesof attempts to build su
h automatons 
an be found, from the earlier endeavours of thean
ient Greeks and Arab 
ivilizations, to the work of in�uential thinkers like Leonardoda Vin
i's robot, 
. 1495, et
. The 
urrent vision of roboti
s in so
iety stems fromtelevision, �lms and s
ien
e �
tion; however, te
hnologi
al advan
es throughout the20th 
entury have allowed for the development of roboti
 solutions, in industrial andmanufa
turing appli
ations, to be
ome a reality. It is the author's vision, that inperhaps a not too distant future, there will be a world in whi
h humanoid robotsand humans will work and intera
t side by side, sharing the same spa
e, tools, anda
tivities.This 
hapter lays out the motives and goals for our resear
h and presents theba
kground of the topi
 as a basis for the remainder of the do
ument. Se
tion 1.1presents the issues and motivations that inspired the work on this thesis. Se
tion1.2 presents the aim and obje
tives pursued in this work. Se
tion 1.3 presents the
ontributions of this thesis. In Se
tion 1.4 the outline for the remainder of this workis des
ribed.1.1 MotivationsSin
e the 1980s, robots have been progressively introdu
ed in the industry for theautomation of manufa
turing pro
esses performing pre
ise and repetitive tasks, han-dling deli
ate or dangerous substan
es, lifting heavy obje
ts, et
. Roboti
 systemshave enjoyed wide appli
ations in several areas su
h as the automotive, 
hemi
al,ele
troni
s and food industries. As te
hnologi
al developments in roboti
s s
ien
ehave advan
ed, the range of roboti
 appli
ations has expanded from its initial dom-inant industrial settings into more day to day aspe
ts of the human world. The
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tionnext generations of robots will need to be able to intera
t with humans at homes,in the workpla
e, and in the 
ommunity, providing support in several areas, su
has, servi
es, entertainment, edu
ation, health
are, manufa
turing, and assistan
e[Si
iliano and Khatib, 2008℄.One major goal in roboti
s resear
h is to develop human-like roboti
 systems 
apa-ble of intera
ting and 
ollaborating with humans in the same unstru
tured workingenvironments. Humanoid robots are parti
ularly suitable for these duties be
ausethey are able to intera
t with the environment using the same tools designed forhumans, and 
an 
ollaborate with humans in several ways [Ambrose et al., 2000℄,[Monje et al., 2008℄. Also, it is believed [Ma
Dorman and Cowley, 2006℄, that themost human-like of robots will be best equipped for re
ipro
al relationships with hu-man beings. Sin
e humanoid robots are designed to resemble a human shape andto possess human 
apabilities, they would be ideally suited for performing tasks andto safely share the same spa
e and a
tivities with people without the need to adaptthe environments and with a higher level of a

eptan
e and a more intuitive way forintera
tion between human operators and the roboti
 agents. We envision a worldwhere humanoid robots and humans would work, 
ollaborate and intera
t together,sharing the same spa
e, tools, and a
tivities.From the �rst full-s
aled humanoid robot, WABOT-1 developed by Waseda Uni-versity [Sugano and Kato, 1987℄, and the series of roboti
 prototypes from Honda, E-series 1986-1993, P-series 1993-1997 [Hirai et al., 1998℄, steady progress 
an be seenin the development of humanoid robots. Re
ent years have seen an in
rease in re-sear
h of humanoid robots su
h as the WABIAN-2 from the University of Waseda[Ogura et al., 2006℄, ASIMO of Honda [Sakagami et al., 2002℄, the HRP-2 from theNational Institute of Advan
ed Industrial S
ien
e and Te
hnology of Japan (AIST)[Kaneko et al., 2004a℄, the development of the iCub robot [Tsagarakis et al., 2007℄,for resear
h into human 
ognition and arti�
ial intelligen
e at the Italian Instituteof Te
hnology, the Robonaut proje
t at NASA's JSC [Ambrose et al., 2000℄, Robo-naut 2 was moving aboard the International Spa
e Station on O
tober 2011, the �rsthumanoid robot in spa
e [Diftler et al., 2011℄, Boston Dynami
s PETMAN anthro-pomorphi
 robot whi
h 
an move dynami
ally like a real person [Raibert, 2010℄, theHOAP robot series of Fujitsu [Riezenman, 2002℄ or the RH series of humanoid robots[Arbulú et al., 2009℄, [Martinez et al., 2012℄, designed at the Universidad Carlos IIIde Madrid.Figure 1.1, presents some of the most relevant developments in humanoid roboti
sresear
h. The �eld of humanoid robots has presented important advan
es over theyears. Yet many 
hallenges still remain before robots 
an be fully integrated as partof everyday human a
tivities, espe
ially when thinking about humanoid robots, whi
hmust naturally be expe
ted to deal with a wide range of movements and tasks; theinherent 
omplexities asso
iated with the need to operate in the real world mustalso be taken into 
onsideration. In order to over
ome some of these 
hallenges,humanoid robots must be provided with the 
apabilities to intera
t autonomouslyand intelligently with humans and the environment. They must also be able to learnand adapt their behaviour to a
hieve goals and rea
t to 
hanges in a 
omplex andevolving range of di�erent situations.
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Fig. 1.1: Histori
al developments in the �eld of humanoid roboti
s.Top row (left to right): WABOT-1 of Waseda University (1973), ASIMOof Honda (2000), NASA Robonaut-2 (2010).Middle row (left to right): WABIAN-2 Waseda University (2006), HRP-2from AIST (2002), iCub from IIT (2004).Bottom row (left to right): PETMAN of Boston Dynami
s (2010), TEOfrom Universidad Carlos III de Madrid (2012), HOAP-3 of fujitsu (2005).
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tionA humanoid robot needs to be provided with intelligen
e, that is, the ability tosense the environment, make de
isions and take a
tions, to re
ognize obje
ts andevents, represent knowledge, reason and plan for the future and to a
t su

essfullyunder a large variety of 
ir
umstan
es. Key attributes required to 
onsider the be-haviour of an agent as intelligent are the abilities to learn and a
quire knowledgebased on its experien
e, the 
apa
ity to understand or 
omprehend 
urrent relevantfeatures in the environment, the 
apa
ity for reasoning, and also the ability to adapt.In order to have humanoid robots a
ting �uently in the world, intera
ting with dif-ferent obje
ts and people, they must be able to adapt their motor 
ontrol to dynami

hanges in their intera
tion with the world. Robot systems must be 
ontinuouslyself-adapting [Brooks, 1996℄. An intelligent agent is one that is �exible to 
hang-ing environments and 
hanging goals, learns from experien
e, and makes appropriate
hoi
es given per
eptual limitations and �nite 
omputation [Poole et al., 1998℄. Intel-ligen
e requires an inter
onne
ting system that enables the various system elementsto intera
t and 
ommuni
ate with ea
h other, integrating per
eption, reason, learn-ing and behaviour generation [Albus, 1991℄. [Langley et al., 2009℄ identi�ed, froma roboti
 systems point of view, the di�erent fun
tions of 
ognition as per
eption,learning, motor 
ontrol, reasoning, problem solving, goal orientation, knowledge rep-resentation and 
ommuni
ation. Control ar
hite
tures for intelligent humanoid robotsneed to 
onsider these systems. A framework for humanoid robots needs to provide aminimum degree of intelligent behaviour, that is, the ability to sense the environment,learn, and adapt its a
tions to perform su

essfully under a given set of 
ir
umstan
es.Learning systems are required to a
quire skills and develop task knowledge of howto a
t. Algorithms for learning, and extra
ting important features of task a
tions,and exhibiting altered behaviour be
ause of what has been learned, are fundamentalin order to build intelligent behaviours. For humanoid robots to work with humans inunstru
tured environments, the robot must be able to perform dynami
ally 
hangingtasks that require great adaptations to rea
t to new 
onstraints. The programming ofspe
ialized 
ontrollers for every single task and situation that 
ould be en
ounteredwould not be a pra
ti
al approa
h. To develop the 
apa
ities expe
ted from futurehumanoid robots, �exible and generi
 
ontrol methods that 
an adapt to varioustasks and robot's 
onstraints are ne
essary. Robot Programming by Demonstration(RPbD) [Billard et al., 2008℄, also known as Imitation Learning or Learning fromDemonstrations (LfD) [Argall et al., 2009℄, has appeared as one way to respond tothis growing need for intuitive 
ontrol methods.The Imitation Learning approa
hes fo
us on the development of algorithms thatare generi
 in their representation of the skills and in the way they are generated. Im-plementing LfD methods o�ers the possibility of making learning faster, in 
ontrastto tedious reinfor
ement learning methods or trial-and-error learning. LfD formulatesuser-friendly methods by whi
h a human user 
an tea
h to a robot how to a

om-plish a given task, simply by demonstrating this task [Gribovskaya et al., 2010℄, andgeneralizing the demonstrated movements a
ross a set of demonstrations. LfD fo-
uses on three important issues: e�
ient motor learning; the 
onne
tion betweena
tion and per
eption; and modular motor 
ontrol in the form of movement primi-tives [S
haal, 1999℄. To reprodu
e a skill in a new situation, the robot 
annot simply
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Demonstrations Model of the skill ReproductionFig. 1.2: Generalization of a skill in Robot PbD by extra
ting the statisti
al modela
ross multiple observations. Adapted from [Billard et al., 2008℄


opy an observed behaviour; it must have the 
apability to generalize. In LfD, one
ommon approa
h for generalizing a skill 
onsist in 
reating a model of the skill basedon several demonstrations, performed in slightly di�erent 
onditions [Calinon, 2009℄.The goal is on exploiting the variability inherent to the various demonstrations andto extra
t the essential 
omponents of the task. Figure 1.2 illustrate this pro
ess.Observing multiple demonstrations 
an help to generalize a skill by extra
tingthe task requisites. Current approa
hes to generalizing skills 
an be broadly di-vided between two trends. Firstly, symboli
 level representation, des
ribed by thesequential or hierar
hi
al organization of a dis
rete set of primitives that are prede-termined or extra
ted with prede�ned rules. Se
ondly, traje
tory level representation,des
ribed by temporally 
ontinuous signals representing di�erent 
on�guration prop-erties 
hanging over time [Calinon, 2009℄. One trend of resear
h followed in thiswork investigates how statisti
al learning te
hniques deal with the high variabilityinherent to the demonstrations [Calinon et al., 2007℄, using Gaussian Mixture Models(GMM) to en
ode a set of traje
tories, and Gaussian Mixture Regressions (GMR)to retrieve a smooth generalized version of these traje
tories and asso
iated variabil-ities, allowing learning non-linear dynami
s of the motions as movement primitives[Gribovskaya et al., 2010℄.The Learning from Demonstration (LfD) approa
hes o�er natural, fast and im-pli
it means of tea
hing a robot new skills. But even then, the number of demonstra-tions the human must provide the robot with, in order to generate a new model ofa skill 
ould turn it into a tiresome and time-
onsuming pro
ess; and it would alsobe
ome impra
ti
al for the human operator to tea
h the robot every ne
essary taskand every foreseeable situation. Hen
e, it will be important to enri
h this approa
hwith the 
apa
ity to generate new skill models. Also, though LfD o�ers the 
apabilityto generalize a learned model, this generalization is somewhat limited to 
hanges ininitial 
onditions or to relatively small perturbations during the exe
ution. Therefore,it is ne
essary to extend the 
lassi
al LfD approa
h of learning a skill model in a waythat allows the adaptation of a robot previously learned motion skills to new unseen
ontexts. Some very important questions need solving in this �eld: Is there a basi
set of primitives? How 
an new primitives be learned, and old primitives be 
ombinedto form higher level movement primitives? How 
an sequen
ing and re
ognition ofsequen
es of movement primitives be a

omplished? [S
haal, 1999℄.
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Perceptual 

InputFig. 1.3: Propose framework for the generation and adaptation of learned models ofa skill for 
omplying with task 
onstraints. A knowledge base of skills mod-els, learned through demonstration, is built. From the per
eption of theworld state the 
onstraints of a requested task are extra
ted. A skill modelis retrieve from the knowledge base a new adapted task model is generatedfor reprodu
tion using the 
urrent task 
onstraints and the models of askill in the knowledge base.1.2 Aim of this ThesisFor robots, working alongside humans means dealing with 
ontinuously 
hangingenvironments and a huge variety of tasks whi
h they are expe
ted to perform. Thushumanoid robots should have the ability to 
ontinuously learn new skills and adaptthe existing skills to new 
ontexts. As stated in the previous se
tion, for futurehumanoid robots the ultimate goal is for a roboti
 platform 
apable of performing,autonomously, in the unstru
tured s
enario of humans natural environment, be thisby itself or sharing the workspa
e with a human. Humanoid robots must realizeany number of task whi
h 
ould be reasonably expe
ted from them by their humanoperators during the normal development of a typi
al working day.It is ne
essary for humanoid robots to display a su�
ient level of intelligent be-haviour; this must in
lude the 
apa
ity to per
eive and understand, to 
hoose wisely,and to a
t su

essfully under a large variety of 
ir
umstan
es [Albus, 1991℄. Hu-manoid robots, in order to 
ope with working in 
ontinuously 
hanging environmentsand performing a huge variability of tasks, must be provided with systems that allowthem to 
ontinuously learn new skills and adapt their existing skills to new 
ontexts,as well as to robustly reprodu
e new behaviours in a dynami
 environment.To advan
e in the a
hievement of this vision, though still a long way from theultimate goals of a perfe
t humanoid, we propose to follow a framework that allows:
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ξ
2

ξ1Fig. 1.4: Robot skill modelled with a mixture of Gaussian fun
tions. The robotskill traje
tory in the bottom �gure is modelled by 4 Gaussian fun
tionsdrawn with the 3-sigma ellipses with their 
entres at their respe
tive means
µ, the magnitude and dire
tion of the ellipses are given by the eigenve
-tors and eigenvalues of the 
ovarian
e matrix Σ modelled in the learningpro
ess to follow the shape of the skill traje
tory. The top �gure showsthe 
orresponding Gaussian distributions of the 4 Gaussian 
omponents inthe robot skill model. The �gure is shown in a two dimensional plane forarbitrary state variables ξ1, and ξ2.

• An operator to tea
h, and demonstrate, to the robot the motion of a task skillit must reprodu
e.
• To build a knowledge base of the learned skill models allowing for their storage,
lassi�
ation and retrieval.
• To adapt and generate learned models of a skill, to new 
ontext, for 
omplian
ewith the 
urrent task 
onstraints.Our propose framework is illustrated in Figure 1.3.A Skill in our 
ontext is de�ned as a motor traje
tory motion learned by theagent, an a
quired ability for the exe
ution of a task. A robot skill is a 
omplex a
tionmovement reprodu
ible when appropriate, and generalized to di�erent 
ontexts.To learn the skills motions, a time independent model of the motion dynami
sis estimated through a set of �rst order non-linear multivariate dynami
al systems.[Ijspeert et al., 2002℄ propose an approa
h to Imitation Learning, and on-line tra-je
tory modi�
ation, by representing movement plans based on a set of non-lineardi�erential equations with well-de�ned attra
tor dynami
s. We follow a framework
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tionpresented on [Gribovskaya and Billard, 2009℄, that allows learning of non-linear dy-nami
s of motion in manipulation tasks and generating dynami
al laws for 
ontrolof position and orientation, and employed [Khansari-Zadeh and Billard, 2011℄ algo-rithm to learn global dynami
al estimate of the motions through a set of �rst ordernon-linear multivariate dynami
al systems in a statisti
al approa
h.We build a model estimate of our robot skill, M̄, from a set D of N-dimensionaldemonstrated data points, {ξi, ξ̇i}Di=0, where ξ is a state variable des
ribing the state ofthe robot system. The motion is governed by a �rst order autonomous ordinary di�er-ential equation, ξ̇ = f(ξ, θ). Following a statisti
al approa
h an estimate f̂ is de�nedthrough a Gaussian Mixture Model (GMM). The robot skill is modelled by the pa-rameters θ of f̂ determined by f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, where θi = {π, µ,Σ}of the N i Gaussian de�ne the prior, mean and 
ovarian
e matrix, parameters of the iGaussian 
omponent, and K is the total number of Gaussian fun
tions required to es-timate the motions dynami
s. After training, to re
over the expe
ted output variable
ξ̂ a Gaussian Mixture Regression (GMR) pro
ess is used [Gribovskaya et al., 2010℄.Figure 1.4 illustrates the en
oding the dynami
s of a motion with a mixture of Gaus-sian fun
tions.In order for the robot to be able to perform various di�erent a
tions a repositoryof the available skills is ne
essary. The aim is to populate a knowledge base of therobot learned skills for reprodu
tion. The knowledge base needs to hold all ne
essaryinformation for reprodu
tion of the skills. The tasks the robot is requested to 
arryout are 
onsidered to be of the form 〈 robot pi
k blue ball 〉, 〈 robot pla
e 
up on plate
〉, and so on. in whi
h a Task is des
ribed requesting an operation upon an obje
tfor the exe
ution of a goal oriented skill a
tion. Complex sets of behaviours 
an bebuilt by a planned sequen
ing of tasks.One intuitive way in whi
h to represent elements in the knowledge base is over twoprin
ipal dire
tions of obje
ts and a
tions. However, obje
ts and a
tions alone do notprovide su�
ient and 
omplete information for a robot situated in its environmentto be 
apable of performing its task adequately. For instan
e, for a single behaviourthere 
ould be more than one available pairing of 〈 obje
t, skill model 〉, leading toambiguities. At least one more dire
tion for representations would seem ne
essary,su
h as a des
ription of the state of the environment. To resolve this problems it issuggested to 
onsider two more representational dire
tives, one for the task goal, andone for the 
on�guration of the 
urrent state of the world, mainly obje
ts positionand relationships between themselves, the robot and a human operator.In this way, a Task 
ould be represented by the phrase �Do an A
tion (A),To an Obje
t (O), For a
hieving Goal (G), When State of the World is(W)� . Therefore, the tuple formed by 〈 Do = A
tion(A), To = Obje
t(O), For =Goal(G), When = World State(W) 〉 holds all ne
essary information for the robotreprodu
tion of a task. The framework in Figure 1.3 would allow the robot to extra
tthe knowledge about obje
ts, goals, and the 
urrent state of its working environmentfrom the re
eived per
eptual input. The roboti
 system would be able to retrieve anappropriate Skill from the knowledge base by �nding the answer to the phrase �DoA
tion (A) ... � for its 
urrent 
onstraints when being presented with the triple
〈Obje
t, Goal, World State〉.
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Fig. 1.5: Representation of the skills in the knowledge base. Example of a robotskill model, represented by a Cartesian traje
tory, being sele
ted from the
urrent 
onstraints of the task given by the obje
t, goal and world state.As an example let us 
onsider a simple 
ase in whi
h a humanoid robot is requestedto pla
e a spoon inside a 
up, and pla
e the 
up on top of a sau
er plate, as if itwould be serving a 
up of tea or 
o�ee. Therefore to 
omplete this request the robotwould be required to perform several tasks, su
h as grasping the 
up and pla
ingthe 
up on top of the sau
er plate. Ea
h of these tasks has an Obje
t 〈Spoon, Cup,Plate〉, a Goal 〈Grasp, Pi
k, Pla
e〉, and World State in whi
h the task must beperformed. The robot knowledge base would have di�erent models of skills allowingit to perform di�erent a
tions whi
h may permit the robot to ful�l various tasks indi�erent situations. To su

essfully 
omplete the given tasks a �tting A
tion must beexe
uted by the robot retrieving from its knowledge an appropriate model of a skillfor the 
onstraints given by the Tasks 〈Obje
t, Goal, World State〉.Imagine for instan
e the exe
ution of the 〈 robot pla
e spoon inside 
up 〉 tasks.To perform the task it is assumed that the spoon obje
t has already been pi
ked bythe robot and is in one of its hands, so the target obje
t for the task is the 
up 〈Obje
t: 
up〉. The goal of the task is to attain a state in whi
h the spoon has been pla
edinside the 
up, so 〈Goal : pla
e spoon〉. To 
omplete the task goal the robot 
ouldhave learned and stored di�erent skill models in its knowledge base, ea
h appropriateto su

essfully exe
uting the task in di�erent states. Therefore the state of the worldmust be evaluated next, let's assume it 
ould be one of two states; 〈Ws1 〉 in whi
hthe 
up is on the table inside the robot's arms workspa
e, and a 〈Ws2 〉 in whi
h the
up is grasped in the robot's other hand. And that for the 
urrent exe
ution of the
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Fig. 1.6: Adaptation of a learn skill to new 
ontext by extra
ting the task 
onstraintswith a new observation. The Robot Programming by Demonstration ap-proa
h for generalization of a skill is extended to allow adapting previouslylearn skills models.task the robot �nds its environment to be 〈World State : Ws2 〉. In order to sele
tthe right skill model, i.e., the A
tion to perform, the knowledge base is inspe
ted toretrieve the skill model 
orresponding to the triple 〈
up, pla
e spoon, Ws2 〉. Figure1.5 shows the representation of skills in the knowledge base. The tasks des
ribedin this example are very simple and their reprodu
tion only requires a single skill.However, more 
omplex tasks 
ould require linking two or more skills together.Having already stored in the knowledge base a set of robot skill models, learnedby di�erent demonstrations of the skills to form a basi
 set of motion primitives, toreprodu
e a task the robot is provided with knowledge of the environment and thetask 
onstraints extra
ted from its per
eptual input in the knowledge base. Usingboth, the already learned model of a skill, and the extra
ted 
onstraints informationof the 
urrent task, the model of the skill is adapted to reprodu
e the task. Figure1.6, illustrates the pro
ess of adapting a learned skill in an unseen 
ontext.The robot would re
eive from the di�erent modules of per
eption and intera
tionthe required appropriate 
ommands ordering the reprodu
tion of a skill and wouldextra
t the 
onstraints of the task and its environmental 
on�guration to instantiatedthe appropriate knowledge stru
tures in the knowledge base of the robot's skills. Withthis information taken from the knowledge base, together with the models of the skills
orresponding to the requested task, the module for the generation of task modelsis 
alled to adapt the robot skills a

ordingly and generate the task models for therobot reprodu
tion of the task.A desirable appli
ation for the learned skill models would be in building librariesof so 
alled movement primitives that 
an be readily available for later reuse by therobot, when a situation requires it. A basi
 or primitive skill 
an be understood assequen
es of motor 
ommands exe
uted in order to a

omplish a 
ertain movementa
tion. To generate 
omplex human like motions from a learned set of primitive skills,methods for operating and manipulating the primitives must be developed. The robot
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Fig. 1.7: Generation of a new model of a skill by 
ombining two previously learnedskill models. Two or more basi
 models of a skill 
an be 
ombined (left)to generate a new 
omplex model of a skill (right) for 
omplying with the
onstraints of the 
urrent task. The �gure is shown in a two dimensionalplane for arbitrary state variables ξ1, and ξ2. The top and side panelsshows the 
orresponding Gaussian distributions of the robot skill modelsfor the ξ1 (top) and ξ2 (side) state variables.
skills must be adaptable to 
onditions of its operating environment, they must alsobe updatable when given new information. Additionally, new skills must be generateby merging two or more simpler skills into a new skill or by 
ombining models togenerate new models. Also, working with a set of basi
 or primitives skills must givethe ability to 
reate sequen
es and transitions between robot skill models to generate
omplex behaviours.Joining multiple models 
an provide improvements in performan
e, di�erent meth-ods 
an be found for the 
ombination of models in the �eld of ma
hine learning andpattern re
ognition [Bishop, 2006℄. Methods in
lude using the average predi
tionsmade by di�erent learned models, sele
ting one model out of several, to make thepredi
tion as a fun
tion of the input variables. In this way, di�erent models be
omeresponsible for making predi
tions in di�erent regions. Also, probabilisti
 methodsknown as mixtures of experts, the models 
an be viewed as mixture distributions
onditioned by the input variables, the idea behind this is that di�erent 
omponentsof the learned models of skills 
an model the new skill distribution in di�erent re-gions of input spa
e, and will also look to determine the fun
tions that de
ide whi
h
omponents are dominant in whi
h region. Figure 1.7 illustrates the pro
ess.
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tion1.3 ContributionsThe work that lead to this thesis 
entred around the major idea of future roboti
systems, more spe
i�
ally humanoid robots, that are 
apable of intera
ting with hu-mans in their homes, workpla
es, and 
ommunities, providing support in several areas,and 
ollaborating with humans in the same unstru
tured working environments. Theaspiration is to have humanoid robots a
ting as robot 
ompanions and 
o-workerssharing the same spa
e, tools, and a
tivities.Work on this thesis fo
uses on topi
s 
on
erning the learning, representation,generation and adaptation, and reprodu
tion of robot skills. The main 
ontributionspresented in this thesis are:1. The proposition of a framework for the learning, generation and adaptation ofskill models to 
omply with task 
onstraints, Figure 1.3. The goal of the devel-oped framework is to provide a minimum degree of intelligen
e for humanoidrobots to allow them to work and 
ollaborate with humans. The framework pro-vides humanoid robots with systems allowing them to 
ontinuously learn newskills, represent skill's knowledge, and adapt existing skills to new 
ontexts, aswell as to robustly reprodu
e new behaviours in a dynami
al environment.2. The appli
ation and evaluation of di�erent Learning from Demonstration algo-rithms and modalities. Through the work on this thesis, a number of ImitationLearning te
hniques have been studied and implemented in tea
hing and learn-ing with the robot, the di�erent sets of skills employed in the rest of the frame-work. Methodologies used for the reprodu
tion of the learned motion dynami
sof the robot skills were reviewed, 
omparing the performan
e of the methodspresented through this work.3. The development and implementation of a knowledge base. The knowledgebase represents knowledge of obje
ts, a
tions, world state and task goals. Ourrepresentations in
ludes information about obje
ts and a
tions, the world andsituations, events and goals, for e�e
tive situated performan
e. A method forthe representation of the knowledge of the skills and task 
onstraints needed forreprodu
tion has been developed.4. The development and implementation of modalities that allows for the adapta-tion and generation of new skill models. The development of humanoid roboti
systems requires that models of the skill 
an be operated upon to generatenew behaviours of in
reasing levels of 
omplexity. Di�erent modes were devel-oped and implemented that allow for the adaptation and generation of new skillmodels based on the already learned models of skills.5. The evaluation of di�erent s
enarios to test the performan
e of the variousmodules implemented in our framework and to provide separate validation forthe operation of the system. The proposed framework was demonstrated witha humanoid robot HOAP-3.



1.4. Outline 131.4 OutlineThis do
ument is divided into 5 
hapters, in addition to this introdu
tory one,and a �nal 
hapter of dis
ussion and 
on
lusion bringing the total to 7 
hapters. The
hapters, and the topi
s they address, are organized as follows:Chapter 2 In this 
hapter a state of the art review is presented on the 
hallengesof intelligent humanoid robots and on di�erent proposals for robot ar
hite
tures, inplanner based, behaviour based and 
ognitive exe
ution ar
hite
tures. At the end, ageneral des
ription of the framework proposed in this thesis is also given.Chapter 3 This 
hapter dis
usses the learning by demonstration framework usein this thesis. A review of the LfD algorithms employed for learning the skills models,as well as the state of the art on the �eld is given.Chapter 4 This 
hapter dis
usses the representation of skills knowledge. Themethod developed for the representation, storage, 
lassi�
ation and retrieval of skillsknowledge from the knowledge base is des
ribed throughout every se
tion of this
hapter. The stru
ture and the organization of the knowledge base is developed.Chapter 5 This 
hapter dis
usses the pro
ess for the adaptation and generationof skills models. The pro
ess for adapting a learned robot skill to the task 
onstraintsis des
ribed. The algorithms developed for generating and adapting a skill are de-tailed throughout the 
hapter.Chapter 6 This 
hapter dis
usses the reprodu
tion of skills in the proposed frame-work. A detailed des
ription of the implementation pro
ess of the framework is given.The experimental study and validation of the framework showing the adaptation oflearned models of a skill, to 
omply with a 
urrent task 
onstraint, is presented.Chapter 7 The last 
hapter, dis
usses the 
ontributions of this thesis and de-s
ribes 
urrent and future work.
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2. INTELLIGENT ARCHITECTURESFOR HUMANOID ROBOTS2.1 Outline of the ChapterThis Chapter presents a review of developments, open issues and 
hallenges inthe �eld of humanoid roboti
s. It also fo
uses on di�erent proposals for intelligentagent ar
hite
tures for roboti
 systems. As outlined in the introdu
tion, one majorgoal in roboti
s resear
h is the development of human-like robot systems 
apable ofintera
ting and 
ollaborating with humans in the same unstru
tured working envi-ronments. These humanoid robot systems would need to intera
t autonomously andintelligently with humans and the environment, they must also be able to learn andadapt their behaviour to a
hieve goals and to rea
t to 
hanges in a 
omplex andevolving range of di�erent situations. Intelligent humanoid roboti
 systems need topresent suitable motor skills; the 
apa
ity to sense and per
eive their environment;the natural means for human-robot intera
tion and a high level of autonomy andintelligent behaviour. This presents many 
hallenges that need to be over
ome. Areview of di�erent approa
hes and ar
hite
ture proposals aimed at ta
kling this issuesand developing intelligent roboti
 systems is presented. From deliberative planningar
hite
tures to behaviour-based and hybrid approa
hes and 
ognitive ar
hite
tures.Finally, a general des
ription of a framework for a 
ognitive model for the generationand adaptation of learned models of robot skills, whi
h 
an be used to 
omply withtask 
onstraints presented in this thesis is also given. The organization of this 
hapteris as follows:
• Se
tion 2.2 dis
uss the 
hallenges of developing intelligent humanoid robot sys-tems. Future human-like robot systems need to perform dynami
ally 
hangingtasks and be able to operate in the real world. Several issues emerge for motor
ontrol, per
eption, intera
tion and intelligent behaviour.
• Se
tion 2.3 presents a review of approa
hes to robot planner-based ar
hite
tures.Deliberative or hierar
hi
al planning ar
hite
tures follow the Sense-Plan-A
t
y
le from 
lassi
al AI approa
hes. Intelligen
e resides on a 
entral planner,with world models and system goals that produ
e appropriate plans of a
tionfor robot reprodu
tion.
• Se
tion 2.4 presents a review of approa
hes to robot behaviour-based ar
hite
-tures. Behaviour-based ar
hite
tures present dire
t 
oupling between per
ep-
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hite
tures for Humanoid Robotstion and a
tion with no need for internal models. Intelligen
e emerges as aresult of an embodied agent intera
tion with the environment.
• Se
tion 2.5 presents a review of approa
hes to robot hybrid deliberative/rea
-tive ar
hite
tures. Hybrid ar
hite
tures advo
ate the use of the advantageousaspe
ts of both the behaviour-based and the planner-based approa
hes 
om-bining them to produ
e a new ar
hite
ture that 
an deal with more 
omplexs
enarios.
• Se
tion 2.6 presents a review of approa
hes to robot 
ognitive ar
hite
tures.Many attempts at developing ar
hite
tures to provide 
ognitive pro
ess arepresented.
• Se
tion 2.7 presents the proposed framework followed in the rest of this work toallow the generation and adaptation of learned models of a skill for 
omplyingwith 
urrent task 
onstraints.2.2 Challenges in Humanoid Robot DevelopmentThe idea of automata moving ma
hines in general, and human-like in parti
ular,whi
h are 
apable of performing a variety of fun
tions and tasks, and of workingand serving humans, have been a part of the 
olle
tive imagination of mankind for
enturies.The drive to developed human-like robots is supported by three basi
 ideas: 1)Sin
e humanoid robots are designed to resemble a human shape and to possess hu-man 
apabilities, they would be ideally suited to performing tasks and to safely sharethe same spa
e and a
tivities with people without the need to adapt the environ-ments. Designing general purpose humanoid robots would make them more �exiblein handling a wide range of 
hore; and less expensive and e�
ient than developingspe
ialized robots for every task. 2) A humanoid robot would allow for more naturalmeans of intera
tion, sharing a similar embodiment would give for humans an easierway to tea
h a robot and to understand its movements and intentions. Also, the nat-ural human tenden
y of anthropomorphizing obje
ts would be bene�
ial in 
reatinghuman-humanoid robot partnerships. 3) It is expe
ted that human-like robots wouldbe more friendly and a

eptable for re
ipro
al relationships with human beings. Arobot system with a human-like shape and behaviour would be more a

eptable toregular 
itizens and non-roboti
 experts as a household servant and 
ompanion or asa 
o-worker and partner to perform everyday tasks.Histori
al Developments in Humanoid Roboti
sMany proje
ts and resear
h laboratories have put their e�orts into designing,building and testing humanoid roboti
 systems. Over the years great progress hasbeen made in this �eld, and 
urrently humanoid robots that 
an walk, 
limb stairs,
arry obje
ts, perform 
omplex a
tivities like dan
e routines and intera
tions with
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es are very en
ouraging and fore
ast the majorprogress to 
ome. Roboti
 resear
hers envision a world, sooner rather than later,where humanoid robots and humans would work, 
ollaborate and intera
t togethersharing the same spa
e, tools, and a
tivities.Sin
e the �rst full-s
ale humanoid robot, WABOT-1, developed by Waseda Univer-sity [Sugano and Kato, 1987℄, great advan
es have been made in humanoid roboti
sresear
h, espe
ially during the last two de
ades. Detailing the advan
es and resear
he�orts in the �eld during this time would be too extensive. Table 2.1 summarizes themajor histori
al developments in humanoid roboti
s resear
h. Currently there arerobots that walk, run or 
limb stairs; robots that 
an handle and manipulate obje
ts,or 
arry heavy loads; robots that intera
t and play games with people and 
hildrenand robots for entertainment that have taken part in shows and demonstrations,dan
ing or performing 
omplex 
horeographies. However, all these robots exist in thes
ope of resear
h departments of universities or te
hnology 
ompanies, there are no
ommer
ially available humanoid robots for general publi
 use as of today. Despiteall the advan
es, the ultimate goal of an intelligent and autonomous humanoid robot
ompanion is still far from rea
h.Date Name (Resear
h Center) Development1921 R.U.R. (Rossum's UniversalRobots) Karel Capek introdu
ed the word �robot� in his playR.U.R.1961 Unimate (Unimation) The �rst digitally operated and programmable indus-trial robot, the Unimate 
reated by George Devol, isinstalled on a General Motors assembly line.1973 WABOT-1 (Waseda Univer-sity) WABOT-1, the �rst humanoid robot, 
onsisted of alimb-
ontrol system, a vision system and a 
onversationsystem, it was able to walk.1984 WABOT-2 (Waseda Univer-sity) WABOT-2 was 
reated as a �spe
ialist robot�, a musi-
ian humanoid robot able to 
ommuni
ate with a per-son.1986 E-series (HONDA) Honda resear
h and development proje
t was initiatedwith the E-series of walking biped robots, E0-E6 from1986 to 1993.1990s Cog (MIT) Cog was an upper-torso humanoid robot build as a gen-eral purpose �exible and dexterous autonomous robotwith the s
ienti�
 goal of understanding human 
ogni-tion.1993 P-series (HONDA) Development of the P-series of manlike models with up-per limbs and body, P1-P3 from 1993 to 1997.1995 WABIAN (Waseda Univer-sity) WABIAN humanoid robot was developed, is a robotwith a 
omplete human 
on�guration that is 
apable ofwalking on two legs, and it is 
apable of 
arrying things.1998 HERMES (Bundeswehr Uni-versity Muni
h) Servi
e robot HERMES presented for the �rst time atHannover Fair, an experimental robot of anthropomor-phi
 size and shape.2000 ASIMO (HONDA) HONDA introdu
ed the �rst version of ASIMO, it 
anrun, walk on uneven slopes and surfa
es, turn smoothly,
limb stairs, and rea
h for and grasp obje
ts.Tab. 2.1: Histori
al developments e�orts in the �eld of humanoidroboti
s
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hite
tures for Humanoid RobotsContinued from previous page.Date Name (Resear
h Center) Development2000 ARMAR (KIT) The Karlsruhe Institute of Te
hnology built the hu-manoid robot ARMAR, with a mobile wheel-drivenplatform, two anthropomorphi
 redundant arms, twosimple gripper and a head.2001 QRIO (Sony) Sony unveiled the Sony Dream Robot, later namedQRIO, a new line of humanoid robots for entertainmentrobots.2001 HOAP-1 (Fujitsu) Fujitsu produ
e its �rst 
ommer
ial humanoid robotnamed HOAP-1.2001 KHR-0 (KAIST) Korea Advan
ed Institute of S
ien
e and Te
hnologybegan developing humanoid robots, starting with KHR-0 whi
h has 2 legs without the upper body.2001 Leroy (UC3M) Universidad Carlos III de Madrid began e�orts re-sear
hing humanoid robots with the development of the7 DOF bipedal robot Leroy.2002 HRP-2 (AIST) Developed under the HRP proje
t. Biped walking robotHRP-2 is 154 
m in height with a mass of 58 kg, in
lud-ing batteries.2002 ARMAR-II (KIT) The se
ond version of the ARMAR series, the anthro-pomorphi
 body of the robot was pla
ed on a mobileplatform, it was able to bend forward, ba
kward andsidewards.2002 Robonaut (NASA) Developed by NASA and DARPA, with a human formand s
ale, Robonaut was design to use many astronauttools and work in the same tight 
orridors as astronauts.2002 RH-0 (UC3M) Developed at Universidad Carlos III de Madrid, RH-0was a full-size humanoid robot, with 21 DOF.2003 HOAP-2 (Fujitsu) HOAP robots were designed for broad range appli
a-tions for Resear
h and Development of robot te
hnolo-gies.2004 KHR-2 (KAIST) KHR-2 was built as a 
omplete humanoid with 41 DOFand featured improved sensoring with the addition ofCCD 
ameras, inertial sensors, and tilt sensors.2004 iCUB (IIT) Italian Institute of Te
hnology began developing theiCub humanoid robot, its aim repli
ating the physi
aland 
ognitive abilities of a 3 year old baby.2005 HRP-3 (AIST) The humanoid robot HRP-3 was presented as the su
-
ession of humanoid HRP-2, it presented improving 
a-pabilities of manipulation and handling.2005 KHR-3 HUBO (KAIST) Continued KASIT KHR series, HUBO design aimedto have as many DOF as possible, long working time,
ompa
t appearan
es, low development 
osts, minimummaintenan
e.2005 HOAP-3 (Fujitsu) Continued the HOAP series, HOAP-3 added movableaxis for the head and hands, CCD 
ameras, a mi
ro-phone, a speaker and LEDs to show expression.2005 RH-1 (UC3M) Continued UC3M RH-1 series, RH-1 humanoid robothave 21 DOF, 150 
m height, 50 kg weight, main obje
-tives were stability 
ontrol and gait generation.Tab. 2.1: Histori
al developments e�orts in the �eld of humanoidroboti
s



2.2. Challenges in Humanoid Robot Development 19Continued from previous page.Date Name (Resear
h Center) Development2006 NAO (Aldebaran Roboti
s) Aldebaran roboti
s presented is �rst humanoid robotNAO, is a small biped robot, fully arti
ulated, easilyprogrammable and low 
ost.2006 LOLA (TUM) Development of LOLA at Te
hni
al University of Mu-ni
h. LOLA is 180 
m and 55 kg, build for fast, human-like, autonomous walking.2006 ARMAR-III (KIT) ARMAR-III was presented to the publi
 at CEBIT inspring 2006 in Hannover, ARMAR-III hopes to 
loselymimi
 the sensory-motor 
apabilities of humans.2006 Justin (DLR) Justin developed at DLR, the two-arm system Justin isa powerful upper body humanoid robot that is able tolift weights up to 20 kg.2008 RH-2 TEO (UC3M) Development started for the humanoid robot RH-2, re-named TEO, It has 26 DOF, a wider workspa
e andhigher manipulability in the di�erent 
on�gurations.2009 HRP-4C (AIST) AIST presented HRP-4C, it has the appearan
e andshape of a human being and 
an walk and move like one,and intera
ts with humans using spee
h re
ognition.2009 PETMAN (Boston Dynam-i
s) Boston Dynami
s began developing PETMAN, the �rstanthropomorphi
 robot that moves dynami
ally like areal person.2010 Robonaut2 (NASA) NASA developed the se
ond generation Robonaut, up-grades in
luded in
reased for
e sensing, greater rangeof motion, higher bandwidth, and improved dexterity.2011 ASIMO (HONDA) Honda unveiled its se
ond generation ASIMO Robot.The new ASIMO is the �rst version of the robot withsemi-autonomous 
apabilities.2011 Robonaut 2 (NASA) Robonaut 2 is the �rst humanoid robot sent into spa
e,arriving at the International Spa
e Station in early2011.2012 COMAN (IIT) IIT released the Compliant huManoid robot, CoMan,designed for robust dynami
 walking and balan
ing inrough terrain.2013 ATLAS (Boston Dynami
s) Boston Dynami
s presented ATLAS for the DARPARoboti
s Challenge.Tab. 2.1: Histori
al developments in the �eld of humanoid roboti
sImportant 
hallenges remain to be solved or addressed. Fun
tional humanoidrobots would need to exe
ute a wide range of movements, with high e�
ien
y interms of energy and performan
e, and in a natural human-like manner. They wouldalso need to pro
ess information from multiple sensors into a reliable representationof the world in order to understand and rea
t to their environment. Humanoid robotswould need to provide means for a meaningful intera
tion with their human partners;they must be engaging and responsive. And they must present intelligent, natural,predi
table and reasonable behaviours. Mu
h work remains to be done in order toimprove the 
apabilities of humanoid robots for lo
omotion, per
eption, intera
tion,
ognitive behaviour and 
ompeten
e at performing tasks.
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hite
tures for Humanoid Robots2.2.1 Motion ControlA major issue for roboti
s in general, and more so when dealing with humanoidrobots, is motion 
ontrol. Unlike industrial robots, whi
h are limited to a well knownset of movements, and whi
h in general are stationary or need many displa
ementsa
ross established rails inside a room, the appeal and interest in developing humanoidrobots is that they are general and �exible in the range of tasks they 
an perform,as are humans, and that they would be able to move around the whole environmentas it is, instead of needing the environment to be adapted in order to allow them tonavigate it. Furthermore, sin
e humanoid robots are thought to work, 
ollaborate andintera
t in proximity to people, unlike industrial robots that perform on their own aspart of automated produ
tion lines, humanoid robots movements must be 
ompliantand safe for human-robot intera
tion. In addition to being safe, physi
ally, humanoidrobots must a
t in human-like form and their movements must seem natural andpredi
table in order to fa
ilitate their a

eptan
e and the 
omfort of their human
ompanions. All these spe
ial needs and demands present great 
hallenges in thedevelopment and implementation of 
omplex 
ontrol systems, as well as the buildingand designing of humanoid robots in terms of materials, power supplies, a
tuators,motors, sensors, et
.Building humanoid robots requires 
omplex me
hani
al designs in order to repro-du
e and mimi
 the features of human motions. A typi
al human being possessesseveral joints DOF. A human leg, 
onsidered with rigid toes, would have 3 DOF inthe hip, 1 DOF in the knee, and a 2 DOF ankle, in total, ea
h leg has 6 DOF of angu-lar motion [Herman, 2007℄. For ea
h arm, 
onsidering all �ngers rigid, the shoulderhas 3 DOF, the elbow is a hinge of 1 DOF, the wrist 2 DOF, and a additional 1DOF, a pivot motion of the radius rolling on the ulna, for a total of 7 DOF in thearm [Herman, 2007℄. With 6 DOF for every leg and 7 DOF in ea
h arm, in additionto 3 DOF for the head and waist, a typi
al human person would have in ex
ess of 30DOF. This does not take into 
onsideration the DOF in the human hand, whi
h has4 DOF for ea
h �nger plus 5 DOF for the thumb and its over 20 DOF in total. Typ-i
al humanoid robots have in ex
ess of 20 DOF to over 40 DOF [HONDA, 2012℄,[Kaneko et al., 2002℄, [Kim et al., 2005℄, [Asfour et al., 2006℄, [Vernon et al., 2007℄,[Martinez et al., 2012℄. Most of these humanoid robots do not have fully arti
ulatedhands. The Shadow hand, one of the most advan
ed, o�ers 24 DOF, position sensingon every joint and pressure sensing on every mus
le [Company, 2012℄.Key designing de
isions in humanoid robots are whi
h materials and a
tuatorsto employ, as this would determine the weights and loads of the robots, and limitsome 
apa
ities of the robot, su
h as speed and strength, maximum 
arrying pay-loads, and 
omplexity of the low-level 
ontrol. Most humanoid robots have employedDC motors, either brushed or brushless, but some examples 
an be found that imple-ments hydrauli
 a
tuators, as Sar
os, or pneumati
 a
tuators, as Lu
y [Behnke, 2008℄.DC servo motors with harmoni
 drive and redu
tion gear systems are employed forthe ASIMO [Hirai et al., 1998℄, HRP [Aka
hi et al., 2005℄, KHR [Park et al., 2004℄,ARMAR [Albers et al., 2006℄ and TEO [Monje et al., 2011℄ humanoid robots. Fu-ture te
hnologi
al advan
es will allow the development of smaller, more powerful,
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ient and less expensive a
tuators. Sin
e the role of humanoid robots is one
loser to humans than that of industrial robots, pre
ision, for
e and speed are notas important; however while the requirement for safety and 
omplian
e take pre
e-den
e. Re
ent approa
hes aim at developing humanoid robots safe for human-robotintera
tion exploring the use of 
ontrollable sti�ness a
tuators like arti�
ial mus
les[Sugisaka, 2009℄ or series elasti
 a
tuator, used by Robonaut2 [Diftler et al., 2011℄.Su
h 
ompliant a
tuators will signi�
antly 
ontribute to the safe operation of robotsin the 
lose vi
inity of humans [Behnke, 2008℄.Another issue, that remains to be solved, is the development of adequate powersupplies. Powering a humanoid robot requires big and heavy battery pa
kages orother power supplies. Currently battery powered humanoid robots 
an provide nomore than 30 minutes of autonomy [Hirai et al., 1998℄, [Martinez et al., 2012℄. Re-sear
h into better and more e�
ient te
hnologies for power supplies is fundamental[Monje et al., 2011℄. For fun
tional humanoid robots the life and energy 
apa
itiesof their batteries, or any future power supply, must be greatly improved, in terms ofduration, e�
ien
y, weight and spa
e, heat dissipation, re
harging, et
.Humanoid robots' movements need to be done in the most natural and human-like way possible. Primary for full-body humanoid robots is the ability for bipedlo
omotion. Motions like walking, running, going up or down stairs, whi
h seemsintuitive and simple for humans, are very 
omplex and di�
ult to imitate in humanoidrobots, and though great advan
es have been made it is a problem that is not yetfully solved due to the 
omplexity of the non-linear dynami
s that must be resolved.Most humanoid robot approa
hes to biped walking are based on the theory of ZeroMoment Point (ZMP) [Vukobratovi
 and Borova
, 2004℄. ZMP de�nes the point onthe ground about whi
h the sum of the moments of all the a
tive for
es equals zero.The bipedal robot is dynami
ally stable if it 
an guarantee that the ZMP would fallwithin the support polygon of all the 
onta
t points between the feet and the groundduring the lo
omotion. Prominent humanoid robots, relying on ZMP-based 
ontrol,in
lude Honda ASIMO, whi
h is 
apable of running at a pa
e of 6km/h. However, itsgait with bent knees does not look human-like and it requires the ground to be �at andstable for walking [Behnke, 2008℄. A di�erent strategy 
onsists of the simpli�
ation ofthe 
omplex dynami
s of the robot by limiting the model of the robot to a simpli�edform. [Kajita et al., 2001a℄ introdu
ed a 3D linear inverted pendulum to model therobot dynami
s of the 
enter of mass. The other well know model for the dynami
 ofa biped robot is the 
art-tabled model [Kajita et al., 2003℄. Other approa
hes followbiologi
al inspired 
ontrols and rely on 
entral pattern generators involving non-linearos
illators [Tsu
hiya et al., 2003℄, [Righetti and Ijspeert, 2006℄. Another approa
h isto utilize the passive dynami
s of the robot to take advantage of the swinging limbmomentum for greater e�
ien
y. It has been proved that planar walking down a slopeis possible without a
tuators and 
ontrol. These ma
hines are able to walk on levelground. However, they 
annot stand still not they 
an start or stop walking and arenot able to 
hange speed or dire
tion [Behnke, 2008℄. The development of balan
e
ontrol algorithms is fundamental for humanoid robots if they are to be as fun
tionalas humans, moving over di�erent types of terrains and, slopes and, avoiding obsta
les,et
.
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hite
tures for Humanoid RobotsThe ability to handle and manipulate tools is also essential for humanoid robotsto a
hieve their full potential and exploit their adaptability. Dexterous manipulationwould not only require 
apable hands, but also hand-arm 
oordination and the 
o-ordination of two hands and the vision system [Behnke, 2008℄. As mentioned above,the human hand possesses a high number of DOF, is very �exible and strong andwith a high level of sensibility whi
h makes repli
ating its fun
tionalities a very 
hal-lenging resear
h goal. Resear
hers are working on various dexterous tasks rangingfrom juggling and 
at
hing balls, to performing telesurgery or pouring 
o�ee and
hopping vegetables [Pradesh, 2006℄. Robonaut2 [Diftler et al., 2011℄, ARMAR-III[Asfour et al., 2006℄, and Justin [Ott et al., 2006℄, are among the most advan
ed hu-manoid robots in manipulation, though none of them has legs, while the performan
eof these robots is impressive, it stills presents limitations, like, for example, their notbeing able to grasp and manipulate unknown obje
ts [Behnke, 2008℄.Humanoid robots need to in
orporate 
ontrol systems that 
an deal with a broadrepertoire of motions, variable speeds and 
onstraints, and most importantly, un
er-tainty in the real-world environment in a fast, rea
tive manner [Peters et al., 2003℄.To allow humanoids to move in 
omplex environments, planning and 
ontrol mustfo
us on self-
ollision dete
tion, path planning, obsta
le avoidan
e and rea
tion toperturbations. Some approa
hes have relied on teleoperation 
ontrol of the humanoidrobots. A teleoperation system for 
ontrolling a humanoid robot 
an present advan-tages; the teleoperated humanoid robot 
an be more versatile in dealing with varioustasks and environments. However the 
hara
teristi
s of humanoid robots presentmore di�
ulties for 
ontrolling the whole body motion of the humanoid robot fromteleoperated 
ommands. Challenges arise from the 
ontrol of the many DOF of hu-manoid robots, satisfying severe balan
e 
onstraints and the geometri
al and dy-nami
al di�eren
es between humanoid robots and humans [Hasunuma et al., 2006℄.Teleoperation systems for 
ontrolling humanoid robots 
an be employed for vari-ous interesting s
enarios, a
ting as proxies for humans in hazardous or dangeroustasks, the teleoperation of humanoid robots for spa
e operations 
ould be an impor-tant appli
ation [Pierro et al., 2009℄. [Glassmire et al., 2004℄ presents NASA e�ortsat developing teleoperation systems for the Robonaut astronaut humanoid robot. In[Neo et al., 2007℄ a teleoperation system for whole-body motion generation, using joy-sti
ks to 
ontrol a humanoid robot performing a variable set of tasks is introdu
ed.[Stilman et al., 2008℄ presents the manipulation of obje
ts with varying loads with ateleoperated system. In [Evrard et al., 2009℄ a teleoperation 
ontrol is used for in-ter
ontinental, multimodal, wide-range tele
ooperation. As useful as teleoperation
ontrol 
an be for 
ertain humanoid robot missions, in order to bene�t from the fullpotential of humanoid robots. 
ontrol ar
hite
tures 
annot rely on teleoperation sin
ehumanoid robots are expe
ted to perform their tasks in an autonomous way. E�ortsin teleopration 
ontrol look for ways of providing robots with in
reasing levels of au-tonomy, going from the fully teleoperated robots towards shared 
ontrol 
ollaborativerobots [Pierro et al., 2012b℄, [Stilman et al., 2008℄.Planning 
ontrol of motions and tasks is the fo
al point of humanoid robots 
on-trol ar
hite
tures. The 
ontrol of humanoid robots is most often distributed in ahierar
hi
al manner and 
omprises of several layers from lower joint motor 
ontrol
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ollision, obsta
le avoidan
e and stabilization
ontrol. The main task for the motion 
ontrol is the generation of stable bipedlo
omotion gaits or full-body traje
tories for the humanoid in its environment. Ap-propriate joint motor 
ontrol is essential for humanoid robots; the joint motor 
ontrolproblem in humanoid robots is more 
omplex be
ause of the high number of DOFand the possible disturban
es from high vibration and external for
es that 
an o

urduring robot lo
omotion [Kaynov et al., 2007℄. Due to the 
omplex dynami
s of theme
hani
al stru
ture involved in the performan
e of bipedal translational motions ofthe humanoid robots, even if ea
h joint follows a 
orre
t and well 
ontrolled motionpattern this does not guarantee stable biped lo
omotions; the implementation of ad-ditional 
ontrols for stabilization are needed. A stabilization 
ontroller is proposed in[Kaynov et al., 2009℄ for joint-position 
ontrol stabilization with a general, pra
ti
aland open strategy.At higher levels of humanoid robot motion 
ontrol resear
hers fo
us on the plan-ning of safe motions, 
ollision and obsta
le avoidan
e. [Harada et al., 2007a℄ presentsa real-time gait planning of humanoid robot for for
e-
ontrolled manipulation. In[Yoshida et al., 2008℄ a planning framework is presented for generating 3-D 
ollision-free motions that take 
omplex robot dynami
s into a

ount. An iterative algorithmis introdu
ed in [Lengagne et al., 2011℄ for the replanning of safe motions, ensuringsafety, balan
e and integrity of humanoid robots over the duration of the motions. A
ollision avoidan
e methods is des
ribed in [Ohashi et al., 2007℄. [Guan et al., 2006℄addresses the problem of humanoid robots stepping over obsta
les, fo
ussing on theplanning and the feasibility analysis of motions. [Stasse et al., 2009℄ presents strate-gies for dynami
ally walking over large obsta
les. This is only a small list sin
e almostevery work on humanoid robot 
ontrol o�ers modules for ta
kling these issues.The majority of these approa
hes generates the humanoid robot planned traje
to-ries o�ine, thus making it impossible or 
hallenging to respond to unforeseen events.Sin
e replanning of new motions is a 
omputationally heavy and time 
onsumingpro
ess, it is therefore ne
essary to have 
ontrol algorithms that are 
apable of re-a
ting to perturbations and online adaptation. Ma
hine learning te
hniques are seenas the best alternatives to o�er fast, safe, adaptable 
ontrol for humanoid robots.[S
haal et al., 2000℄ o�ers several lo
ally weighted learning algorithms that have beentested su

essfully in real-time learning of 
omplex robot tasks. [Atkeson et al., 2000℄explores easier ways of programming behaviours in a humanoid robot employing learn-ing from demonstration algorithms. Learning from demonstration has appeared asone way to respond to the need for intuitive 
ontrol methods [Calinon et al., 2007℄presents a demonstration framework for generally extra
ting the features of a taskand generalizing the skills in a di�erent 
ontext. [Tani et al., 2008℄ presents a hu-manoid robot learning to manipulate obje
ts with a re
urrent neural network thathas a hierar
hi
al stru
ture. [Hwang et al., 2006℄ fo
uses on determination of opti-mal 
on�guration posture for a pushing task of the humanoid robot employing simplegeneti
 algorithm. [Kamio and Iba, 2005℄ has proposed an integrated te
hnique ofgeneti
 programming (GP) and reinfor
ement learning (RL) to enable a real robotto adapt its a
tions to a real environment. Reinfor
ement learning o�ers a generalframework to o�er roboti
s true autonomy and versatility. However, applying RL to
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hite
tures for Humanoid Robotshumanoid robots systems, with its high dimensionality, remains an unsolved prob-lem. [Peters et al., 2003℄ dis
usses di�erent approa
hes of reinfor
ement learning fortheir appli
ability in humanoid roboti
s. [Stulp et al., 2010℄ presents a probabilisti
reinfor
ement learning approa
h, derived from the framework of sto
hasti
 optimal
ontrol and path integrals, demonstrated to be able to e�
iently learn humanoidmotor skills whi
h require full-body motion.2.2.2 Sensory Per
eptionSensory per
eption is one prominent topi
 of resear
h for roboti
s, and one ofmajor importan
e for humanoid robots. It is quite 
lear that, just like humans, hu-manoid robots need to per
eive their own state and their environment for them toperform su

essfully. One hurdle in sensory per
eption would be the integration ofthe large set of multiple sensor modalities and the pro
essing of this information intoa reliable input to the rest of the 
ontrol ar
hite
ture. There is a large range ofsensors that 
ould be implemented in humanoid robots to measure many kinds ofenvironmental variables, yet visual and auditory per
eption remain the most impor-tant modalities for sensory per
eption, together with the ne
essary proprio
eption forself-estimation. Providing humanoid robots with ta
tile sensors seems like a naturalapproa
h given the importan
e that the sense of tou
h has for humans. There havealso been attempts to give robots the sense of smell.For proprio
eption, most robot motors are equipped with en
oders, relative orabsolute, to measure their own joint positions; others 
ould employ for
e sensors, orpotentiometers. Most humanoid robots are also equipped with some type of inertialsensors to estimate the robot attitude; either a

elerometers, gyros
opes, magnetome-ters or 
ombinations of all three. For
e-torque sensors at the wrist and ankles arealso used in many humanoid robots for sensing ground rea
tion for
es or for
es atgrasping and manipulating obje
ts with the hands.For humans, the sense of vision is the most important and versatile of all, usedto qui
kly per
eive the environment and generate fun
tional representation of work.Providing robots with vision 
apabilities by means of 
omputer vision is therefore oneof the great 
hallenges in roboti
 resear
h. Great advan
es have been made over theyears, yet 
omputer vision is still not 
lose to repli
ating the 
apa
ities and abilitiesof the human eye. In general, humanoid robots are equipped with two 
ameras intheir heads, to simulate human eyes, and provide the robots with stereo vision. These
ameras are used as a
tive vision systems, allowing the robots to fo
us their attentiontowards relevant obje
ts in their environment. Most humanoid robots are equippedwith on-board 
omputers for image interpretation. Interpreting real-world imagesequen
es is not a solved problem, and many humanoid vision systems only workwell in a simpli�ed environment [Behnke, 2008℄. Re
ent developments on RGB-D
ameras 
ould greatly in
rease humanoid robot 
apa
ities for depth per
eption and3D interpretation of their world.Providing humanoid robots with auditory per
eption is an important resear
hobje
tive, parti
ularly for human-robot intera
tion where they would be expe
tedto understand the human natural language. Auditory per
eption is provided by a
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rophone or an array of mi
rophones. In addition to fa
ilitate hearing, an ar-ray of mi
rophones 
an provide the 
apability of also identifying the sour
e of thesound, this however 
an in
rease the di�
ulty of interpreting the audio signal. Onemajor problem is the separation of the sound sour
e of interest from other soundsour
es and noise. Turning the mi
rophones towards the sour
e of interest and beamforming in mi
rophone arrays are means of a
tive hearing [Behnke, 2008℄. Thoughmany spee
h re
ognition systems exist, very few are openly available. CMU Sphinx[Huggins-Daines et al., 2006℄, is one of the leading open sour
e toolkits available forspee
h re
ognition. Spee
h re
ognition systems performan
e has been 
ontinuouslygetting better, even if substantial word error rates remains.Resear
h e�orts are also made in providing humanoid robots with a sense oftou
h. An idea is to 
over the robot with a for
e-sensitive skin; these robot skinsare 
omposed of a large number of spatially distributed ta
tile elements organizedin pat
hes, whi
h are surfa
e 
ompliant stru
tures 
overing large parts of a robotbody [Baglini et al., 2010℄. Some attempts 
an be found in this area. The iCubrobot, for instan
e, is being �tted with a 
apa
itive skin system in the �ngertipsand palms that enables measurement of 
onta
t [Consortium, 2012℄. The sense ofsmell is also important for humans. A robot working 
ollaboratively with a humanthat 
an't alert the presen
e of a smell relevant to the task would la
k an importantfun
tionality,[Corades
hi et al., 2006℄. For Ishida, the ability to re
ognize smells willbring robots 
loser to humans and provide new ways of dire
ting navigation of au-tonomous robots [Ishida et al., 2005℄. The �rst resear
h on an arti�
ial sensing systemable to dis
riminate di�erent odours was published in 1982. Sin
e then, resear
hershave done extensive resear
h on developing ele
troni
 noses [Corades
hi et al., 2006℄.An ele
troni
 nose 
onsists of an array of 
hemi
al sensors with partial spe
i�
ity anda pattern-re
ognition system. The major problem in the development of arti�
ialolfa
tion is that no sensor as versatile as odour re
eptor 
ells exists.A key aspe
t for robot per
eption is the pro
essing, �ltering and representation ofthe information gathered by the multi-sensory system into manageable stru
tures forthe robot interpretation of its state and that of the environment. To provide robotswith s
ene understanding and proper situation awareness the robots would need tobuild adequate representations of the environment base on the signals re
eived formthe various sensors. This is not a trivial task, and mu
h work in this area remains tobe done.2.2.3 Human-Robot Intera
tionHumanoids robots are one of the main topi
s in servi
e robots investigation. Hu-manoid robots have many features that make them a very suitable partner in 
ollabo-rative working environments. Therefore, a major fo
us of resear
h is in the intera
tionbetween robots and humans, as this presents one of the main tasks whi
h has to bea
hieved if we want a world where humans and robots 
an work together. One impor-tant motivation is the idea that the e�
ient te
hniques whi
h evolved in our 
ulturefor human-human 
ommuni
ation 
an work also for intuitive human-ma
hine 
om-muni
ation, sin
e they are designed to have a similar or identi
al embodiment. This
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hite
tures for Humanoid Robotsin
ludes multiple modalities like spee
h, fa
ial expressions, gaze and body language[Behnke, 2008℄.Mu
h work in this area is fo
used on 
oding or training me
hanisms that al-low robots to pi
k up visual 
ues su
h as gestures and fa
ial expressions that guideintera
tion. One important example of a robot built for studying intera
tion andso
ializing with humans is the robot Kismet. Kismet is designed to per
eive a varietyof natural so
ial 
ues from visual and auditory 
hannels, and to deliver so
ial signalsto the human 
aregiver through gaze dire
tion, fa
ial expression, body posture, andvo
alizations [Breazeal, 2001℄. Movable eyes, head, and 
hest 
ommuni
ate wherethe robot fo
uses its attention. When the robot looks at the intera
tion partner, thepartner feels addressed.Robots present di�erent models of intera
tion, from dire
t 
ontrol or teleoper-ation of the robot, to robots with an autonomous and independent behaviour andambient intelligen
e. The optimal ideal for the human-robot intera
tion is for thehuman operator to a

ept and re
ognize the robot system, just as one more partnerin a working team 
omposed of multiple human and roboti
 agents. A human-robotteam 
an present many advantages. Robots 
an be used in order to 
over humanlimitations or to assist them in numerous tasks. Human-Robot Collaboration is animportant topi
 of resear
h in this area. Sin
e robots are expe
ted to live with usand share our environment, studying the possible means of 
ollaboration is of majorinterest. One example of a humanoid robot working in 
ollaboration with humansis NASA JSC's Robonaut [Johnston and Rabe, 2006℄. Another important platformin the �eld of the human-robot 
ollaboration is the HRP-2 robot from Kawada in-dustries [Kaneko et al., 2004b℄. This robot is able to manipulate obje
ts under theorders of a human [Neo et al., 2008℄ and also to assemble a panel by 
ooperating witha human [Harada et al., 2007b℄. Robots 
an also be of great assistan
e for a humanworker at a 
onstru
tion s
enario, taking most of the workload in a transportationor an assembly task and performing more risky a
tivities. A robot partner 
an alsoperform pre
ise or sensitive tasks in an industrial or fa
tory s
enario.Humanoid robots that allow the users to perform tasks in the real world by swit
h-ing between 
ontinuous teleoperation and autonomous operation have been proposedby Yokoi in [Yokoi et al., 2008℄. In order for 
ollaboration to be meaningful, it isimportant for the human operator to see the robot as not just a tool but as a 
ol-league in a team [Siino et al., 2008℄. In the work of [Fong et al., 2002℄ a model for
ollaboration is proposed in whi
h, instead of a supervisor di
tating to a subordinate,the human and the robot engage in dialogue to ex
hange ideas, to ask questions, andto resolve di�eren
es. In [Pierro et al., 2012b℄ a shared 
ontrol 
on
ept is proposed,the 
ollaboration fo
uses on a human-robot intera
tion were the human is not just asupervisor dire
ting the robot, but a partner in whi
h the robot 
an look for assis-tan
e. By sharing 
ontrol a

ording to ea
h one best 
apabilities the advantages of ahuman-humanoid partnership 
an be exploited.Another issue to take into a

ount for the design and development of humanoidrobots is the phenomenon known as the �un
anny valley�. In 1970 Professor Moriintrodu
ed the term �un
anny valley� to explain the hypothesized eerie response aperson would have at en
ountering a robot trying to resemble a human shape but
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ate a lifelike appearan
e [Mori et al., 2012℄. The �un
anny valley� de-s
ribes the relation between human likeness of a ma
hine and a�nity towards it, therelationship behaves as a monotoni
ally in
reasing fun
tion until a point in whi
h, afailure in 
orresponden
e between the human-like appearan
es and its arti�
ial per-forman
e be
omes unsettling and produ
es a steep drop in the a�nity 
reating thelo
al minimum named the �un
anny valley� [Gee et al., 2005℄. When motion is 
on-sidered, the e�e
t of unsettling eeriness is heightened. Even though the extent ofProfessor Mori's hypothesis has not been fully validated, the 
on
ept of the �un
annyvalley� is generally a

epted and applied in areas like 
omputer-graphi
s, animation,�lms and roboti
s. For humanoid robots resear
h, where it is expe
ted for humansand robots to generate 
lose relationships and intera
t and 
ollaborate together, it isvery important to 
onsider the level of a

eptan
e the humanoid robots would haveby the general population. Humanoid robots design must take into 
onsideration the�un
anny valley�, and try its best to prevent it or over
ome it. This requires designguidelines for both the appearan
e and the motion performan
e of robots. Dis
ussionon the �un
anny valley� often fo
uses mainly on the appearan
e dimensionality, for-getting the problem of repli
ating human-like motion and aiming to a
hieve a lessersimilarity in physi
al appearan
e. Even Professor Mori re
ommends taking the �rstpeak as the goal, aiming at a moderate human likeness with a 
onsiderable sense ofa�nity [Mori et al., 2012℄. This, however, omits an important part of the problem asboth aspe
ts are relevant to humanoid roboti
s and ne
essary for human-robot inter-a
tion. Consisten
y between appearan
e and motion play a large part in a

eptan
ewhen they 
annot be reviewed independently [Gee et al., 2005℄. The 
ontinuous de-velopments in roboti
s should move forward both dimensions, appearan
e and motionperforman
e, retaining the a

eptan
e. It is, therefore, ne
essary that developmentsin humanoid robots go hand in hand with appearan
e and performan
e to generatebetter human-robot intera
tions. Humanoid robots must not only simulate our em-bodiment and try to mimi
 our physi
al appearan
e they must also repli
ate humansmotions and try to resemble our behaviour.Human-robot intera
tion is an open and very a
tive �eld, involving several dis
i-plines and a large set of topi
s. Important progress has been made in this �eld, andseveral working roboti
 systems 
an be found allowing for multimodal human-robotintera
tion [Stiefelhagen et al., 2007℄, [Gorostiza et al., 2006℄, providing robots withspee
h re
ognition [Gomez et al., 2012b℄, obje
t attention lo
alization and identi�
a-tion [Haas
h et al., 2005℄, gesture re
ognition interfa
es [Berts
h and Hafner, 2009℄,[Stiefelhagen et al., 2004℄, fa
e dete
tion [Bueno et al., 2012℄, tea
hing and learningintera
tions [S
hmidt-Rohr et al., 2010℄, [Kronander and Billard, 2012℄, natural dia-logue pro
essing [Alonso-Martin and Sali
hs, 2011℄, user interfa
es [Chen et al., 2007℄,et
. Still, the most relevant topi
s in human-robot intera
tion 
an be 
onsidered un-resolved. Major work on human-robot intera
tion fo
uses on assistive and health
are robots, lifelike robots, remote robots, robot 
ompanions, long term intera
tion,multi-modal intera
tion, awareness and monitoring, robot-team learning and 
ollab-oration, software ar
hite
tures for HRI, user studies and experiments on intera
tion,
ollaboration and a

eptan
e.
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hite
tures for Humanoid Robots2.2.4 Intelligent BehaviourIn addition to robust and e�
ient motor 
ontrols, for allowing humanoid robotsto generate smooth, natural human-like motions, 
omprehensive multi-sensory per-
eptual systems and appropriate strategies for meaningful and engaging human-robotintera
tions, humanoid robots need to present behaviours with a minimum level ofautonomy and intelligen
e. Development of intelligent systems is a long term goal inthe �elds of roboti
s resear
h, arti�
ial intelligen
e and 
ognitive s
ien
e. To trulyexploit humanoid robots full potential it would be ne
essary to provide them with anintelligen
e that is similar to that of humans. This presents an even greater 
hallengethan endowing humanoids with the ability to repli
ate human-like motions or simu-late human intera
tions. Parti
ularly sin
e the pro
ess of human intelligen
e is onethat is not fully understood, in whi
h many 
ompeting ideas 
an be found and whereno generally a

epted theory of intelligen
e exists that satis�es every group.The study of intelligen
e is a relevant topi
 of resear
h in many �elds, su
h aspsy
hology, philosophy, neurobiology, edu
ation, 
ognitive s
ien
e, and arti�
ial in-telligen
e, ea
h one with its own views on what 
onstitutes intelligent agents andintelligent behaviours. Despite all this debate, whi
h has en
ompassed many yearsand a wide �eld of resear
h, no one single standard de�nition of intelligen
e hasemerged. However, from the many de�nitions that have been proposed, it is nothard to �nd some strong similarities and a 
ommon ground between them on whi
hbehaviours are to be expe
ted from an agent in order to be 
onsidered intelligent.Reviewing the various de�nitions, as the basis of intelligen
e the abilities to learnand a
quire knowledge, to make judgements and de
isions based on reason, to ef-fe
tively adapt to the environment, to su

eed in solving problems and a
hievinggoals 
an all be found. Intelligen
e is de�ned in [Ameri
an-Heritage, 2006℄ as theability to a
quire, understand and use knowledge. Seeing it from the view point ofpsy
hology [Gardner, 1993℄, intelligen
e is the ability to solve problems, or to 
reateprodu
ts, that are valued within one or more 
ultural settings. Also [Anastasi, 1992℄intelligen
e is a 
omposite of several fun
tions, a 
ombination of abilities required forsurvival and advan
ement within a parti
ular 
ulture. In [Albus, 1991℄ intelligen
e isde�ned as the ability of a system to a
t appropriately in an un
ertain environment,where appropriate a
tion is understood as that whi
h in
reases the 
han
es of su

essfor the behavioural goal and subgoals. In a more 
omputational intelligen
e frame, for[Poole et al., 1998℄ an intelligent agent is one that is �exible to 
hanging environmentsand 
hanging goals, learns from experien
e, and makes appropriate 
hoi
es given per-
eptual limitations and �nite 
omputation. For [Legg and Hutter, 2006℄ intelligen
emeasures an agent ability to a
hieve goals in a wide range of environments.A survey of de�nitions of intelligen
e 
olle
ted in [Legg and Hutter, 2007℄, leadsthem to 
onstrue intelligen
e as a property of agents in their intera
tion with theenvironment, that are related to the agent ability to su

eed in respe
t to some goal,depending on the agent 
apa
ity to adapt to di�erent obje
tives and environments.As a summary from the various views of intelligen
e it is possible now for an iden-ti�
ation of the key attributes required for 
onsidering the behaviour of an agent asintelligent. An intelligent agent 
an be thought of as one that features the abilities to
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quire knowledge based on its experien
e, the 
apa
ity to understand or
omprehend 
urrent relevant features in the environment, to exhibit situation aware-ness, the 
apa
ity for reasoning, to 
ompute or dedu
e the 
ourse of a
tions to follow,the forming of 
on
lusions and value judgements. Also, the ability to adapt, be itof itself, its obje
tives or its environment, a

ording to every situation and obje
-tive. Finally, a fundamental ability to su

eed, i.e., to survive, in the wider possiblerange of environments, to e�
iently a

omplish one's goals. In order to 
onsider thatan agent has displayed intelligent behaviour, it must be required that it presenteda su

essful performan
e, that is, it has a
hieved its goal and obje
tives e�e
tively,regardless of any form of unplanned disturban
e that 
ould have been en
ounteredin the environment. An environment, that 
ould be arbitrarily 
omplex in natureand that 
ould be dynami
ally 
hanging and unpredi
table, from whi
h the agentdoes not ne
essarily have any prior knowledge. Finally, the agent behaviour must berepli
able over time and a
ross di�erent situations.For humanoid robots to be
ome intelligent agents, and present intelligent be-haviours it is ne
essary to have repli
able models of intelligen
e. [Sternberg, 2000℄dis
usses some relevant, 
ontemporary, models of human intelligen
e. In the triar
hi
theory of intelligen
e there are three intera
ting fa
tors of intelligen
e: an internalaspe
t, 
onsisting of information pro
essing skills guiding intelligent behaviour; anexternal aspe
t, the pra
ti
al ability to adapt a parti
ular environment to mat
h oneown skills; and an experimental fa
tor, involving the ability to 
apitalize on experi-en
es in pro
essing novel or unfamiliar information [Sternberg, 2000℄. The theory ofmultiple intelligen
es of Gardner fo
uses on domains of intelligen
e. There are eightfairly independent, equally important types of intelligen
e, whi
h are based on abilitiesvalued within di�erent 
ultures. The intelligen
es des
ribed are, visual-spatial, verbal-linguisti
, bodily-kinaestheti
, logi
al-mathemati
al, interpersonal, musi
al, intraper-sonal and naturalisti
 intelligen
e. The models reviewed above present 
ontrastingdi�eren
es, however, one 
ommon aspe
t between them is that they all value adapt-ability of 
ognitive pro
essing as an important aspe
t of intelligen
e.[Albus, 1991℄ has proposed a model that integrates knowledge from resear
h inboth natural and arti�
ial systems. The model 
onsists of a hierar
hi
al system ar-
hite
ture. Di�erent levels of intelligen
e in the hierar
hy 
an be a
hieved, dependingon the 
omputational power of the system and the sophisti
ation of its pro
essingalgorithms for various fun
tionalities, su
h as, world modelling, behaviour genera-tion, value judgement, and global 
ommuni
ation, and the information and valuesthe system has stored in its memory. A minimal level of intelligent requires at leastthe ability to sense the environment, make de
isions and take a
tions. Higher levelsof intelligen
e may in
lude the ability to re
ognize obje
ts and events, to representknowledge in a world model and to reason about and plan for the future. More ele-vated forms of intelligen
e provide the 
apa
ity to per
eive and understand, to 
hoosewisely, and to a
t su

essfully under a large variety of 
ir
umstan
es [Albus, 1991℄.The 
urrent humanoid robots may only be around the minimum and mid-levels ofintelligen
e. As developments of systems, ar
hite
tures and algorithms 
ontinue to ad-van
e the intelligent 
apabilities of humanoid robots will in
rease. Humanoid robotsneed to rea
h a fun
tional level of intelligen
e that allows them to fun
tion properly
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hite
tures for Humanoid Robotsintera
ting with humans and the environment, even if perhaps the ultimate levels ofintelligen
e 
ould turn out to be out of rea
h, and 
reating robots that repli
ate thetotal s
ope of human intelligen
e may prove impossible. Humanoid robots need toa
hieve a su�
iently high level in the hierar
hy in order to be 
onsidered by theirhuman partners as intelligent, namely, a sensing, a
ting system that per
eives, learns,plans, and su

eeds in a
hieving its goals in the world. This is a major 
hallenge inhumanoid robot resear
h.As a minimal requirement, an intelligent robot system or agent needs to be thoughtof as per
eiving its environment through sensors and a
ting upon that environmentthrough a
tuators [Russell and Norvig, 2010℄. Sensors and a
tuators represent theinputs and outputs from intelligent systems. Its ability to rationalize and make de-
isions in the middle of the per
eption-a
tion determines its level of intelligen
e. Toa
hieve a higher level it is needed to integrate per
eption, reason, knowledge, emo-tion, and behaviour. The model in [Albus, 1991℄, identi�es four elemental systemsof intelligen
e: sensory pro
essing, world modelling, behaviour generation, and valuejudgement. Similarly, from the �eld of 
ognitive s
ien
e and intelligent agents, theimportan
e of the di�erent fun
tions of 
ognition were identi�ed in a roboti
 sys-tem point of view as per
eption, learning, motor 
ontrol, reasoning, problem solving,goal orientation, knowledge representation and 
ommuni
ation [Langley et al., 2009℄.The phenomena of intelligen
e, however, require more than a set of dis
onne
ted ele-ments. Intelligen
e requires an inter
onne
ting system ar
hite
ture that enables thevarious system elements to intera
t and 
ommuni
ate with ea
h other in intimate andsophisti
ated ways [Albus, 1991℄.Figure 2.1 illustrates a model of an ar
hite
ture for an intelligent agent basedon the general prin
iples stated above. For an intelligent agent, with the needs of ahumanoid robot, it is ne
essary to have systems for per
eption, a
tion, intera
tion,reasoning, world knowledge and learning. The per
eption, intera
tion and a
tion sys-tems are the outward 
omponents of the ar
hite
ture, in 
harge of dealing with, anda�e
ting the environment. Per
eption systems pro
ess sensor information to a
quireand maintain internal models of the world. World knowledge systems store and main-tain memory data gathered and pro
essed from the reasoning and learning systems.Learning systems must learn appropriate behaviours from the per
eption and the in-tera
tion data, and also store them in memory. The reasoning system intera
ts withthe a
tion system so as to pursue behavioural goals, it also may intera
t with theper
eption, world knowledge and learning system to reason about the environmentand the task, the spa
e, time, geometry, et
., and to formulate or sele
t a
tion plans.Per
eption establishes and maintains 
orresponden
e between the internal modeland the external real world. Sensory pro
essing is the me
hanism for per
eption. Thesensory input data form multiple ranges of sensors are pro
essed and integrated into a
onsistent uni�ed per
eption of the state of the world. Sensory pro
essing algorithms
ompute distan
e, shape, orientation, surfa
e 
hara
teristi
s, physi
al and dynami
alattributes of obje
ts and regions of spa
e.A
tion is a pro
ess of the systems a
tuators that move, exert for
es, move manip-ulators and, handle tools. It represents the means by whi
h the agent produ
es ane�e
t on the world, intera
ting and altering its environment in order to a
hieve its
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LearningFig. 2.1: Model for an ar
hite
ture of intelligent agents. For an intelligent agent,with the needs of a humanoid robot, it is ne
essary to have systems forper
eption, a
tion, intera
tion, reasoning, world knowledge and learning.goals. Task and goal behaviours are de
omposed into a
tions.Reasoning systems evaluate the observed state of the world and the predi
ted re-sults of hypothesized plans. They provide the 
riteria for making intelligent de
isions.Reasoning systems 
ompute 
osts, risks, and bene�ts both of plans and a
tions, thedesirability, attra
tiveness, and un
ertainty of obje
ts and events. Reasoning systemssele
t goals, and plans and exe
utes tasks. Tasks are re
ursively de
omposed into sub-tasks, and subtasks are sequen
ed so as to a
hieve goals. Logi
 has been a favouredtool of arti�
ial intelligen
e theorist, pra
ti
al intelligent systems have tended to usete
hniques su
h as rules, 
ases and neural networks. However there is a growing useof probabilisti
 reasoning in intelligent systems [Thagard, 2005℄.World modelling estimates of the state of the world. The world model thus 
anprovide answers to requests for information about the present, past, and probablefuture states of the world. It in
ludes databases of knowledge about the world, anddatabase management systems that store and retrieve information. The world modelis the representation of the external world, it provides the reasoning system informa-tion ne
essary to make de
isions. It maintains world knowledge, keeping it 
urrentand 
onsistent.Learning is required to a
quire and develop task knowledge. Learning systemswork the me
hanisms for storing knowledge about the external world and for a
quir-ing skills and knowledge of how to a
t; the algorithms for learning and extra
tingimportant features of task a
tions in order to build intelligent behaviours. The learn-ing system 
onsolidates short-term memory into long-term memory, and exhibiting
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hite
tures for Humanoid Robotsaltered behaviour be
ause of what was remembered.For humanoid robot systems to present the intelligent behaviours that would beexpe
ted from them, from the ability to sense the environment, make de
isions andtake a
tions, to re
ognize obje
ts and events, represent knowledge, reason and plan forthe future, and a
t su

essfully under a large variety of 
ir
umstan
es, the intelligentrobot ar
hite
tures developed to 
ontrol humanoid robots must implement, all or asubset of, these systems.2.3 Robot Planner-Based Ar
hite
turesAs stated throughout this 
hapter, for the development of fun
tional humanoidrobots, that work together with humans, helping them in a
hieving everyday tasks,roboti
 agents need to be
ome intelligent, they need to be endowed with 
ontrolme
hanism that enables them to produ
e intelligent behaviours. That is, they mustbe 
apable of performing su

essfully 
omplex tasks in a dynami
 environment. Au-tonomous roboti
 systems need to be able to perform a wide range of fun
tions,in order to work in 
omplex evolving environments, seeking for the su

essful a
-
omplishment of their goals. Robots would need to present many di�erent skills,and implement several 
ompeting behaviours. Among the desirable abilities that au-tonomous robots should present is the ability to per
eive and understand, the abilityto a
t and intera
t, the ability to learn, the ability to reason and a
quire knowledge,the ability to plan a
tions and goals, and make de
isions, the ability to adapt to tasksand/or environmental 
hanges, et
. All these fun
tionalities present many 
hallengesthat the 
ontrol system ar
hite
tures of autonomous robots need to address.Intelligent agents, at their most basi
 de�nition, 
an be thought of as somethingthat per
eives and a
ts in an environment [Russell and Norvig, 2010℄, one in whi
ha
tions are well thought of, logi
ally inferred, and reasoned from the information,gathered and pro
essed, from the environment. In this simpli�ed 
onstrue for anintelligent agent, it is easy to identify three basi
 building blo
ks for a 
ontrol systemsar
hite
ture: a per
eption module, that senses the external world; a reasoning module,that pro
esses the 
olle
ted information from the environment and reasons about theplans of a
tions to a

omplish goals; and an a
tion module that translates the planned
ommands into physi
al a
tions in the world. Other modules 
ould be thought ofsu
h as a learning module, or a memory module, a knowledge module, an adaptationmodule, et
. However when 
onsidering the basi
 de�nition of agents, as systemsthat sense and a
t in an environment, in pursuit of their own obje
tives and goals,in order to build intelligent robot systems, e�orts 
ould well be �rst 
on
entrated onthe fundamental modules for per
eption, reason, and a
tion. Front this point of view,the 
lassi
al approa
h from AI emerged, fo
using on de
omposing the 
ontrol systemsfor autonomous robots into the three fun
tional elements forming the sense-plan-a
t
y
le. The sensing system's fun
tion is to translate raw sensor input into a worldmodel. The planning system's work is to take the goals and the world model andgenerate plans that a
hieve these goals. The exe
ution system's job is to generate thea
tions pres
ribed by the plan [Gat, 1997℄.
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hi
al planning or deliberative ar
hite
tures follows the Sense-Plan-A
t 
y
le from 
lassi
al AI approa
hes. These ar
hite
tures are form bythree 
omponents. Information �ows unidire
tionally from sensors to per-
eption, to planning, to motor 
ontrol, to a
tuators. The system intelli-gen
es resides on the planner, with world model and system goals, produ
esappropriate plans of a
tion for the robot.Classi
al approa
hes from the �eld of AI fo
us their e�ort on building intelligentsystems on the symboli
 representation of physi
al world entities, whi
h 
ould be
ombined, 
omputed or operated upon. And in the belief that intelligent agents 
ouldbe formulated as information pro
essing systems, taking a representation of the worldas input and outputting appropriate sets of a
tions. The development of planning ordeliberative strategies that generate the sequen
es of tasks to a

omplish robot goalsis the 
entral aspe
t of the 
lassi
al AI 
ontrol ar
hite
tures. Figure 2.2 presentsthe general planning or deliberative ar
hite
tures. The ar
hite
tures are formed bythree 
omponents, from the sense-plan-a
t hierar
hi
al problem solving paradigm: aper
eption 
omponent for sensing the environment; a plan 
omponent, with worldmodel and system goals, for produ
ing a plan of a
tion; a motor 
ontrol 
omponentfor translating the planned a
tions to proper motor 
ommands. The 
ontrol s
hemeof information �ows unidire
tionally and linearly from sensors to per
eption, to theworld model, to planning, to motor 
ontrol, to a
tuators.Hierar
hi
al planning or deliberative ar
hite
tures use a high level stru
tured ap-proa
h, relying on a traditional top-down strategy 
entred on planning for de
ompos-ing the robot goal tasks, having an expli
it symboli
 model of the world, and in whi
hde
isions are made via logi
al reasoning [Wooldridge and Jennings, 1995℄. Work onhierar
hi
al planner-based or deliberative ar
hite
tures has fo
used on the planningof long-term a
tions for a
hieving a set of basi
 goals. The intelligen
e of the systemar
hite
ture, is said to live, in the planner or the programmer, not the exe
utionme
hanism [Gat, 1997℄. As represented in Figure 2.2, the robot ar
hite
ture followsa stri
t sequen
e of distin
t stages during exe
ution: �rst the robot senses the world,
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hite
tures for Humanoid Robotsthen plans the next move and a
ts a

ordingly. In the sense stage of per
eption, therobot would a
quire information about its environment from its available sensors.The world model data stru
ture is 
reated using this information. The world modelare symboli
 des
riptions, 
omprising priori information of the environment, with theinformation 
olle
ted from the robot sensors and any other 
ognitive knowledge thatthe spe
i�ed task 
ould need to assist the robot [Murphy, 2000℄. The planning stagetakes a symboli
 des
ription of both the world and goal states, it then attempts to�nd a sequen
e of a
tions that will a
hieve the goal [Wooldridge and Jennings, 1995℄,several di�erent automated planning algorithms 
ould be employed. When the �nalgoal 
omprised of 
omplex situations and world states, the planner breaks the goalinto sub goals and a

ount for ea
h one in turn to a
hieve the �nal goal. The a
tstage represents the exe
ution of a
tuator 
ommands that are generated a

ordingto the sequen
e orders from the planning stage. After the robot's a
tuators �nish o�the planned task, the 
y
le begins again and 
ontinues until the goal is rea
hed.The most representative methodology that has been built, based on the planner-based paradigm, was STRIPS [Fikes and Nilsson, 1971℄. The STRIPS method takesa symboli
 des
ription of both the initial state and a desired goal state, and a set ofa
tion 
onditions and operations, whi
h 
hara
terise the pre and post-
onditions thatare asso
iated with the various a
tions. Constru
ting the world model was impera-tive and the a
tion to be 
hosen at a 
ertain point was sele
ted from a des
riptivetable 
alled the di�eren
e table. For the planning stage of ea
h 
y
le a di�eren
e-evaluator would measure the di�eren
e between the goal state and the 
urrent state,enabling the planner to 
hoose the best 
orresponding 
ommands from the di�eren
etable, that would minimize the di�eren
e, and pass them on to the a
tuators. TheSTRIPS method was used for the robot Shakey by the Stanford Resear
h Institute[Nilsson, 1984℄. The STRIPS planning algorithm was very simple, and proved to beine�e
tive on problems of even moderate 
omplexity. Hierar
hi
al and non-linearplanning were proposed in e�orts to raise the e�
ien
y of the planner, but remainedsomewhat weak while working in a system with time 
onstraints [Nilsson, 2007℄.In spite of these di�
ulties, various attempts to 
onstru
t an agent planner 
ompo-nent 
an be found: the Integrated Planning, Exe
ution and Monitoring (IPEM) sys-tem is based on a sophisti
ated non-linear planner [Ambros-Ingerson and Steel, 1988℄.The AUTODRIVE system has planning agents operating in a highly dynami
 envi-ronment [Wood, 1993℄. The PHOENIX system in
ludes planner-based agents thatoperate in the domain of simulated forest �re management [Cohen et al., 1989℄. TheBelief-Desired-Intention model has also been of relevan
e for deliberative planner ar-
hite
tures, the model 
all for a rational agent must allow for means-end reasoning,for the weighing of 
ompeting alternatives, and for intera
tions between these twoforms of reasoning. One example is the Intelligent Resour
e-bounded Ma
hine Ar-
hite
ture (IRMA) [Bratman et al., 1988℄. It presents a high-level spe
i�
ation ofthe pra
ti
al-reasoning 
omponent of an ar
hite
ture for a resour
e-bounded ratio-nal agent. This ar
hite
ture has four key symboli
 data stru
tures: a plan library,and expli
it representations of beliefs, desires, and intentions. Another examples isGRATE* [Jennings, 1993℄, a layered ar
hite
ture in whi
h the mental attitudes ofbeliefs, desires, intentions and joint intentions, guide the behaviour of an agent.
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tures 35Numerous examples of hierar
hi
al 
ontrol systems 
an be found [Arkin, 1989b℄addresses the task of navigational path-planning, whi
h provides the robot with apath guaranteed to be free of 
ollisions with any modelled obsta
les. [Albus, 1997℄,[Meystel, 1988℄, promote the idea of top-down, hierar
hi
al 
ontrollers, ea
h exe
ut-ing a sense-plan-a
t feedba
k loop. The NASREM ar
hite
ture [Albus et al., 1987℄,is a stri
t hierar
hi
al framework for task de
omposition, per
eption and world mod-elling. [Meystel, 1986℄ proposed a theory for a nested hierar
hi
al 
ontroller (NHC),enhan
ing the planner by de
omposing it into three distin
t 
omponents, namely,the mission planner, navigator and the pilot. NHC looks to give a more re
eptiveresponse to 
hanges in the environment by having the sensors 
ontinuously updatingthe world model even while the a
tuators were 
arrying out the 
ommands.The symboli
 approa
hes to intelligent agents, embodied by the planner-basedor deliberative ar
hite
tures presented numerous short
omings. Among the biggestissues that hinder the hierar
hi
al planner-based paradigm with time were the trans-du
tion problem, translating the real world into an a

urate, adequate symboli
 de-s
ription, the 
lose world assumption, and the representation or frame problem, ofhow to symboli
ally represent information about 
omplex real-world entities in timefor the results to be useful [Wooldridge and Jennings, 1995℄. The required assump-tion for the 
lose world model, that the robot obtains all the information from theenvironment that it needs, presents signi�
ant problems sin
e the planner 
annotkeep tra
k of all the 
hanges in the environment in a 
ontinuous manner. The frameproblem refers to the inability to represent all the world information that was neededby the robot in a 
omputationally viable method. Consequently, addressing un
er-tainty in the event of a bigger problem was too tedious and was not worth the e�ort[De Silva and Ekanayake, 2008℄.Planning and world modelling turned out to be very di�
ult problems, and open-loop plan exe
ution was 
learly inadequate in the fa
e of environmental un
ertaintyand unpredi
tability [Gat, 1997℄. Un
ertainty in sensing and a
tion, and 
hangesin the environment, 
an require frequent replanning, the 
ost of whi
h may be pro-hibitive for 
omplex systems [Matari
, 1997℄. The planner-based or deliberative ar-
hite
ture has presented its strengths and its weakness: they 
an handle 
omplextasks by breaking them into more manageable sub tasks, spe
ifying the 
urrent andfuture a
tivities and 
onstraints [Simmons, 1994℄. They allow for expli
itly formulat-ing task and goals of the system and estimating the quality of the agent's performan
e[Matari
, 1997℄. And they 
an produ
e optimal, domain-independent solutions. How-ever, they generally fail to address un
ertainty, and are therefore un�t to operate in
hanging environments, sin
e they are unable to re-plan their a
tions qui
kly enough.Planner-based approa
hes have high 
omputational 
osts, making their performan
epoor when there is a need for frequent replanning.Resear
hes in the 80s began to feel unsatis�ed with the poor results obtained fromplanning-based ar
hite
tures and started to look for other alternative te
hniques.The problems of the planner-based or deliberative ar
hite
tures led to questioningthe viability of the whole paradigm, and to the development of what are generallyknown as rea
tive ar
hite
tures [Wooldridge and Jennings, 1995℄. Many resear
hersbegin a shift of viewpoints away from the traditional AI symboli
 representation,
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hite
tures for Humanoid Robotsabandoning the requirement for a 
entral world model, and the idea that intelligen
eis a 
omputational pro
ess that takes an input and produ
es an output [Brooks, 1996℄.2.4 Robot Behaviour-Based Ar
hite
turesEarlier attempts to develop intelligent agents, following the 
lassi
 AI approa
hesfor symboli
 reasoning, failed to produ
e adequate levels of intelligent behavioursfor robots. Although the deliberative thinking approa
h proved su

essful for 
er-tain tasks, for planning operations, by real autonomous agents in 
omplex dynami
environments, the obtained results have been poor [Maes, 1991b℄. Therefore, manyresear
hers saw the need for developing di�erent types of ar
hite
tures and me
ha-nism for repli
ating intelligen
e. Attention turned away from the symboli
 and AIand attempts to model behaviour through expli
it representations and abstra
t rea-soning. Instead, the ideas that real intelligen
e is situated in the world, and thatintelligen
e behaviours 
an only emerge as a result of an embodied agent intera
tionwith the environment, gained preferen
e.This novel AI approa
h was based on the hypothesis that to build intelligentsystems it is ne
essary to have their representations grounded in the physi
al world[Brooks, 1990℄. Instead of fo
using on the design of systems 
apable of intelligentthinking, the emphasis 
hanged to 
reating agents that 
ould a
t intelligently. Re-sear
hers took inspiration from biologi
al and ethologi
al advan
es, studying animalbehaviour and 
oordination. Approa
hes 
entred on the re�exive behaviours of an-imals as stimulus-response mappings, responses to a parti
ular sensory input aredire
tly wired with an a
tion response whi
h is 
arried out without any higher 
og-nitive involvement [De Silva and Ekanayake, 2008℄. The behaviour-based or rea
tiveparadigm is founded on the building of behaviours, dire
t 
ouplings of sensory inputsto a pattern of a
tions that in turn 
arries out a spe
i�
 task [Murphy, 2000℄.Central to the de�nition of a rea
tive ar
hite
ture is that it does not in
lude anykind of 
entral symboli
 world model, and does not use 
omplex symboli
 reasoning[Wooldridge and Jennings, 1995℄. De
isions are based on real-time information fromsensors, and the global system behaviour emerges from the intera
tions of lo
al be-haviours with the environment. Behaviour-based or rea
tive ar
hite
tures implemen-tations are founded on the 
onstant-time run-time dire
t en
odings of the appropriatea
tions for ea
h input state, these mappings rely on a dire
t 
oupling between sens-ing and a
tion, and fast feedba
k from the environment [Matari
, 1997℄. This allowsrea
tive autonomous agents to respond faster, and in a somewhat more natural man-ner, and for a
hieving real-time performan
es. Rea
tive systems maintain no internalmodels and perform no sear
h. A generally simple fun
tional mapping between stim-uli and appropriate responses is employed, usually in the form of a look-up, this beingon a table, a set of a
tion rules, a simple 
ir
uit, a ve
tor �eld, or a 
onne
tionistnetwork [Matari
, 1997℄.Figure 2.3 shows a generi
 representation for a rea
tive behaviour-based ar
hite
-ture. The behaviour-based paradigm presents a dire
t 
oupling between per
eptionand a
tion. A 
olle
tion of preprogrammed 
ondition-a
tion pairs is embedded into
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hite
tures presents a dire
t 
oupling be-tween the per
eption and a
tion modules. A 
olle
tion of preprogrammedbehaviours, typi
ally 
onsisting of a 
olle
tion of rules, is embedded intothe agent 
ontrol strategy. Behaviour-based systems maintain no internalmodels and perform no state spa
e sear
hs. The rea
tive behaviour-basedautonomous agents 
an respond faster and a
hieve real-time performan
es.the agent 
ontrol strategy. The behaviours in rea
tive or behaviour-based ar
hite
-tures typi
ally 
onsist of a 
olle
tion of rules, taking inputs from sensors or otherbehaviours in the system, and sending outputs to the e�e
tors, or other behaviours[Ni
oles
u and Matari
, 2002℄. The system intelligent behaviours emerge from thebottom-up, instead of the top-down approa
h of the planner-based models.[Brooks, 1986℄ introdu
ed the subsumption ar
hite
ture as an instan
e of a behaviour-based approa
h to building robots that operate in the real world. The subsumptionar
hite
ture is the best known e�ort from the behaviour-based paradigm for agentintelligen
e: it enables a tight 
onne
tion of per
eption to a
tion, embedding robots
on
retely in the world. The subsumption ar
hite
ture presents a hierar
hy of task-a

omplishing behaviours, built on layering progressively more 
omplex task-spe
i�

ompeten
ies, ea
h one 
onne
ted to its own sensory inputs. The behaviours are de-
omposed in a verti
al arrangement, on top of ea
h other, based on task a
hievingbehaviours in their order of sophisti
ation. Thus, the most basi
 �survival� behaviours,su
h as avoiding obje
ts are at the lowest layer while more 
omplex `
ognitive' be-haviours, su
h as reasoning about the behaviour of obje
ts, are at the higher levels[Brooks, 1986℄. The higher layers would have the ability to repla
e or subsume thebehaviours of the lower layers. Ea
h layer of behaviour 
ompeten
es re
eives its ownsensorial input system, and is supposed to exe
ute independently, with ea
h behaviourbeing unaware of what is happening in the other layers. Sin
e ea
h layer exe
utesa dedi
ated behaviour, this avoids the need for it to know the 
omplete s
enario itis trying to solve, whi
h in turn simpli�es ea
h layer's 
omputational needs and al-lows it to abandon the need for internal models of representation. The subsumption
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hite
tures for Humanoid Robotsar
hite
ture does not 
ome without its short
omings: in
luding the 
ompeten
ies oflower layers into higher levels leads to a waste of resour
es; the subsumption ar
hi-te
ture pre
ludes the layers from passing information between themselves, and failsto take into a

ount any advantage a planning module 
an introdu
e to the system[De Silva and Ekanayake, 2008℄.[Chapman and Agre, 1987℄ also began to explore alternatives to the AI planningparadigm proposing that an e�
ient agent ar
hite
ture 
ould be based on the ideaof `running arguments'. The idea is that as most de
isions are routine, tasks, on
elearned, 
an be a

omplished in a routine way, they 
an be en
oded into a low-levelstru
ture, whi
h only needs periodi
 updating. The approa
h was illustrated by thePENGI system [Agre and Chapman, 1987℄. PENGI is a simulated 
omputer game,with the 
entral 
hara
ter 
ontrolled using a s
heme su
h as that outlined above.[Maes, 1991a℄ developed an agent ar
hite
ture in whi
h an agent is de�ned asa set of 
ompeten
e modules loosely resembling the behaviours of the subsumptionar
hite
ture. Ea
h module is spe
i�ed in terms of pre and post-
onditions and ana
tivation level. The higher the a
tivation level of a module, the higher the proba-bility that this module will in�uen
e the agents behaviour. On
e spe
i�ed, a set of
ompeten
e modules is 
ompiled into a spreading a
tivation network, in whi
h themodules pre- and post-
onditions de�ne the ways they are linked to one another.Similarities between the agent network ar
hite
ture and neural network ar
hite
turesexist. Perhaps the key di�eren
e is in the di�
ulty of saying what the meaning of anode in the net is. In a neural net it only has a meaning in the 
ontext of the netitself. Sin
e the 
ompeten
e modules are de�ned in de
larative terms, it is very mu
heasier to say what their meaning is [Wooldridge and Jennings, 1995℄.[Matari
, 1992℄ implemented an ar
hite
ture that integrates a map representationinto a rea
tive, subsumption-based mobile robot. It presented a fully integrated rea
-tive system removing the distin
tion between the 
ontrol program and the map. Pro-grammed with a 
olle
tion of simple, in
rementally designed behaviours, the robotperforms 
ollision-free navigation, dynami
 landmark dete
tion, map 
onstru
tionand maintenan
e, and path planning. [Ni
oles
u and Matari
, 2002℄ presents an ap-proa
h for implementing hierar
hi
al task representations 
on
epts into behaviour-based systems. It des
ribes a Hierar
hi
al Abstra
t Behaviour Ar
hite
ture thatallows for the representation and exe
ution of 
omplex, sequential, hierar
hi
allystru
tured tasks within a behaviour-based framework. The ar
hite
ture introdu
esthe notion of abstra
t behaviours and enables the re-usability of behaviours a
rossdi�erent tasks. [Ni
oles
u and Matari
, 2003℄ uses a behaviour-based approa
h asan underlying 
ontrol ar
hite
ture in whi
h time-extended a
tions that a
hieve ormaintain a parti
ular goal are grouped for representing robot skills behaviours. Thebehaviours are built from two 
omponents: one related to per
eption (Abstra
t be-haviour), the other to a
tions (Primitive behaviour). This ar
hite
ture provides asimple and natural way of representing robot tasks in the form of behaviour networks[Ni
oles
u and Matari
, 2002℄. The ar
hite
ture is used to endow the robots with theability to 
onvey their intentions by a
ting upon their environment and to learning
omplex tasks from observing a demonstration by a tea
her [Ni
oles
u and Matari
, 2003℄.[Lenser et al., 2001℄ des
ribes a highly modular hierar
hi
al behaviour-based 
on-
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hite
tures 39trol system for robots. The ar
hite
ture is designed to present features for easyaddition and removal of behaviours, easy to program hierar
hi
al stru
ture, abil-ity to exe
ute non-
on�i
ting behaviours in parallel, a unique reward based 
om-binator to arbitrate amongst 
ompeting behaviours su
h as to maximize reward.[Bal
h and Arkin, 1998℄ presents and evaluates rea
tive behaviours implementing for-mations in multirobot teams. The formation behaviours are integrated with othernavigational behaviours to enable a roboti
 team to rea
h navigational goals, avoidhazards and simultaneously remain in formation. Another approa
h in the rea
tiveparadigm is the methodology known as the Potential Fields Methodology (PFM).In PFMs ea
h behaviour is represented as a ve
tor, thus this methodology is inher-ently regarded to be 
on�ned to the navigational robots. Behaviours are 
ombinedin ve
tor summation to produ
e the emergent behaviour. These behaviours are as-sumed to exert on the robot in the form of for
e �elds, the robot is assumed to bea parti
le entering into the for
e �eld and the behaviour of the robot is the pathit takes as a result of the multiple potential �elds [De Silva and Ekanayake, 2008℄.Many other navigational systems using rea
tive 
ontrol have been developed. Thesein
lude Paytons re�exive behaviours [Payton, 1986℄, Kadono�s arbitration strategies[Morave
 et al., 1986℄, Arkins motor s
hemas [Arkin, 1989a℄.The behaviour-based or rea
tive ar
hite
tures lead to a signi�
ant advan
e inthe development of autonomous robots, although not everything was positive. Thebehaviour-based approa
hes presented greatly improved performan
es in robot nav-igation and obsta
le avoidan
e. Rea
tive ar
hite
tures showed great �exibility andadaptability, and were ideally suited to performing in dynami
 and unpredi
table envi-ronments. Also, these approa
hes were robust, simple and 
omputationally tra
table.However, they also have some drawba
ks: behaviours-based or rea
tive ar
hite
turesdo not in
lude expli
itly the a
hievement of a goal in their behaviour des
ription;plans and goals are to emerge from the robot intera
tion with the environment; theapproa
hes only in
lude `lo
al' information, 
olle
ted from the environment; theypresent a short-term view, with no long-term planning 
apabilities, and o�ered lim-ited appli
ability. One of the most important 
hara
teristi
s of the behaviour-basedparadigm is their abandonment of the abstra
t symboli
 representation, this pre-sented their advantages but also limits the possibility to employ them at higher levelstask. The purely rea
tive approa
hes a
hieved great e�
ien
y at run-time, but theirlimited representational power results in a la
k of run-time �exibility [Matari
, 1997℄.Another short
oming of the rea
tive behaviour-based paradigm is in the 
omplex-ity of the intera
tion dynami
s between the behaviours and the environment, andbetween the behaviours themselves. This hampers the debugging and understandingof the robots emerging behaviour, it also hinders the development and implementationof a large number of behaviours. Also, the behaviour-based ar
hite
ture prevents theautomati
 reusability of behaviours a
ross di�erent tasks and thus, the automati
 gen-eration of behaviours. Even though the behaviours themselves are usually reused anda

umulated into behaviour libraries, the behaviour-based systems are to be manuallyprogrammed, involving the 
ustomized redesign of behaviours in a

ordan
e with thespe
i�
s of any new task [Ni
oles
u and Matari
, 2002℄.The rea
tive behaviour-based paradigm emerged as a response to the problems
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hite
tures for Humanoid Robotspresented in the planner-based ar
hite
tures. The rea
tive approa
hes o�ered a solu-tion for the rigidities en
ountered within the hierar
hi
al paradigm, and their limita-tions in performing in dynami
 environments. The behaviour-based paradigm provedto be more than satisfa
tory in robots exe
uting simple tasks, and performs remark-ably well and fast in 
ollision free navigation tasks, and in working within the envi-ronment. However, a need for planning and higher representations emerged in orderto deal with more 
omplex tasks. Many roboti
ists turned to new ways of 
om-bining the planning pro
ess with the rea
tive behaviour of robots and new breedof ar
hite
tures under the name Hybrid Deliberative/Rea
tive paradigm was born[De Silva and Ekanayake, 2008℄.2.5 Robot Hybrid Ar
hite
turesFor some time resear
hers trying to develop intelligent roboti
 agents exploredtheir implementations in two 
ompeting paradigms, the deliberative planner-basedar
hite
ture, 
entred on 
lassi
al AI approa
hes in the symboli
 representation of theworld and the deliberative planning of robots' a
tions, and the rea
tive behaviour-based ar
hite
ture, that fo
used on alternative approa
hes generating appropriatebehaviours to rea
t to real-time robot intera
tions with their environments. Both therea
tive and deliberative based ar
hite
tures had their advantages and presented earlysatisfa
tory results. Nevertheless, ea
h approa
h displayed various short
omings.The deliberative planner-based approa
hes, dominant through the �rst de
ades ofAI, tried to build intelligent agents by means of symboli
 reasoning and representa-tions of the world that were 
apable of generating deliberative plans of a
tions, afterreasoning in relation their goals in the world. However, these approa
hes proved un-su

essful in dealing with dynami
 
hanging environments, where the 
omputationalspeed for planning was slower than the environment rate of 
hange. Two major prob-lems hindered the progress of the deliberative planner-based ar
hite
tures. First, asmentioned, the world may 
hange during 
omputation of the planning phase in a waythat invalidates the resulting plan. Se
ond, unexpe
ted out
omes or errors duringthe exe
ution of the planned steps 
an 
ause the subsequent steps in the plan to beexe
uted in an inappropriate 
ontext [Gat, 1997℄.The rea
tive behaviour-based approa
hes appear as a rea
tion to the failures of
lassi
al AI approa
hes. An attempt was made at building intelligent agents that
ould perform in real-time, situated in the real world. The idea of symboli
 reasoningand of maintaining a world model was abandoned in favour of a dire
t 
oupling be-tween the sensing and the a
tion, extra
ting information dire
tly from the world, asits best model [Brooks, 1990℄. Though the approa
h a
hieved dramati
 early su

ess,its limitations and drawba
ks were qui
kly apparent. Behaviour-based approa
hes of-fered limited appli
ability, often 
on�ned to low-level tasks. One signi�
ant problemwas the la
k of modularity: upper layers interfere with the lower layers' fun
tion-alities so that they 
annot be designed independently. Also, the 
omplexity of theintera
tion dynami
s between the behaviours and the environment, and between thebehaviours themselves, in 
ases where a large number of behaviours are implemented,
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hite
tures 41makes the understanding of the robot's emerging behaviour quite di�
ult to pre-di
t and design, therefore hindering their development and implementation. Also, byeliminating internal state representations, the rea
tive approa
h avoided the problemof maintaining that state, but ran headlong into the problem of extra
ting reliableinformation about the world through sensors [Gat, 1997℄.Intelligent robot agents, in order to be su

essfully employed, working alongsidehuman partners, need to address three main 
hallenges: adapt qui
kly to 
hanges inthe environment; understand high level human 
ommands; be engaging for people[Stoyt
hev and Arkin, 2001℄. Traditionally, the �rst 
hallenge has been adequatelyaddressed by the behaviour-based rea
tive 
ontrollers. The se
ond 
hallenge 
an wellbe addressed by using a deliberative planner-based approa
h. The hybrid deliber-ative/rea
tive ar
hite
tures naturally emerged as attempts to bridge these two ap-proa
hes and use the strengths of ea
h other in redu
ing their respe
tive short
omings.The hybrid deliberative/rea
tive paradigm advo
ates for the use of the advantageousaspe
ts of both the behaviour-based and the planner-based approa
hes, 
ombiningthem to produ
e a new ar
hite
ture that 
an deal with more 
omplex s
enarios. Inpra
ti
e, this means the integration of the planning aspe
t of the hierar
hi
al de-liberative paradigm with the rapid exe
ution 
apabilities of the rea
tive paradigm[De Silva and Ekanayake, 2008℄.The hybrid ar
hite
tures idea was to attempt a 
ompromise between the purelyrea
tive and deliberative approa
hes and integrate both of them as subsystems ofthe ar
hite
ture. Generally, the rea
tive system, 
apable of performing behaviours atfaster speeds, is given pre
eden
e over the deliberative system. The hybrid deliber-ative/rea
tive ar
hite
tures usually adopt a rea
tive system at the low-level 
ontrol,where modules are 
loser to sensors and a
tuators, and a planner-based approa
h atthe high-level, for higher de
ision making [Matari
, 1997℄. Therefore, the motion 
on-trol loops are 
losed at the lower levels produ
ing di�erent behaviours. At the sametime, de
isions based on internal models and plans 
an be rea
hed, modifying lowerbehaviours variables. The rea
tive behaviour system makes short term de
isions inlo
al areas, and the deliberative planning system makes mid and long term de
isionsin global areas. This type of stru
ture leads naturally to the idea of a layered ar-
hite
ture. The ar
hite
ture is arranged into a hierar
hy of 
ontrol subsystems, withthe lower levels 
loser to the physi
al world, sensors and a
tuators, and in whi
h thehigher levels deal with information at in
reasing levels of abstra
tion.In general, hybrid deliberative/rea
tive ar
hite
tures usually divide the 
ontrolsystem into a layered stru
ture. This ar
hite
ture stru
ture to 
ontrol intelligentrobots needs the integration of three separate 
omponents: a rea
tive feedba
k me
h-anism for 
ontrolling low level primitive a
tivities; a deliberative planning systemfor de
ision-making 
omputations; and a sequen
ing system that 
ontrols the inter-a
tions between the other two 
omponents. This three layered stru
ture, or similar
on�gurations, 
an be found in the majority of hybrid ar
hite
ture approa
hes, su
has the ATLANTIS ar
hite
ture [Gat, 1992℄, the SSS ar
hite
ture [Connell, 1992℄, andthe 3T ar
hite
ture [Bonasso et al., 1995℄.Figure 2.4 represents a general hybrid ar
hite
ture divided into three fun
tionallayers: a behaviour 
ontrol layer, for rea
tive feedba
k 
ontrol of the robot low-level
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Fig. 2.4: Hybrid deliberative/rea
tive ar
hite
tures usually divide the 
ontrol sys-tem into layered stru
tures with three main 
omponents: a behaviour 
on-trol layer, for rea
tive feedba
k low level 
ontrol; a sequen
e exe
utionlayer, for 
ontrolling the exe
ution of behaviours in a planned sequen
e;and a planning layer for time-
onsuming deliberative 
omputations, plan-ning high level goals and maintaining the world model.behaviours; a sequen
e exe
ution layer, whose tasks are the a
tivation and inhibitionof the other layers and the 
ontrol of the exe
ution of behaviours in a sequen
e orderto 
arry out their task; and a planning layer for performing time-
onsuming delib-erative 
omputations, planning high level goals and maintaining the world model.These 
omponents run as separate asyn
hronous 
omputational pro
esses. Usually,algorithms in the three-layer ar
hite
tures are organized a

ording to the role of theirinternal state representation. Sensor-based algorithms, that 
ontain no state repre-sentation, inhabit the 
ontrol behaviour layer 
omponent. Algorithms that maintainmemory of the past inhabit the sequen
er layer. Algorithms that make predi
tionsabout the future inhabit the planner deliberator layer [Gat, 1997℄.In the ATLANTIS ar
hite
ture [Gat, 1992℄, these layers are 
alled the 
ontroller,the sequen
er, and the deliberator. For the 3T ar
hite
ture [Bonasso, 1991℄, the
omponents are 
alled the skill layer, the sequen
ing layer, and the planning layer,respe
tively. The behaviour 
ontrol layer is responsible for the 
ontrol of primitivea
tivities, that is, simple rea
tive sensorimotor pro
esses. Usually it 
ontains librariesof primitive behaviours or skills, the a
tivation of whi
h is determined by an externalinput to the 
ontrol layer, the sequen
er or 
ertain sensory inputs. The algorithmsthat go into the behaviour 
ontrol layer need to follow some important 
onstraints[Gat, 1997℄. The 
omputing 
y
les must be of 
onstant-bounded time and spa
e 
om-plexity, small enough to a�ord stable 
losed loop 
ontrol for the desired behaviour.The algorithms should dete
t failure to perform the adequate fun
tions, allowinghigher 
omponents of the system to take 
orre
tive a
tions for failure re
overy. In-ternal states in the 
ontroller should have limited time life, and should not introdu
e
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ontinuities. It is the responsibility of the sequen
er to manage transitions betweenregimes of 
ontinuous operation.The sequen
e exe
ution layer is responsible for 
ontrolling the sequen
es of prim-itive behaviours and deliberative 
omputations. The job of the sequen
er is sele
tingwhi
h primitive behaviour the behaviour 
ontrol layer should be a
tivated at a giventime, and to supply parameters for the behaviours. By 
ontrolling the a
tivationand dea
tivation of behaviours at appropriate moments the robot 
an be made toperform useful tasks. The sequen
e exe
ution layer initiates and terminates primitivebehaviours by a
tivating and dea
tivating sets of modules in the behaviour 
ontrollayer. In addition, it 
an send parameters to the behaviour 
ontrol layer, and mon-itor the progress of the a
tive behaviours [Gat, 1992℄. The 
ontrol of sequen
es isrequired to handle several di�
ult situations. The sequen
er must be able to deale�e
tively with unexpe
ted failures. Also, if behaviours must be interrupted, thenthe sequen
er must ensure that the interrupted a
tivity is properly terminated, andthe system must ensure that two a
tivities whi
h interfere with ea
h other are notenabled simultaneously.The planning layer is responsible for the performan
e of time-
onsuming 
ompu-tational tasks su
h as de
ision making, planning generation and maintaining worldmodels. The planning layer performs under the 
ontrol of the sequen
er whi
h ini-tiates and terminates its pro
esses. The planning layer often runs as a 
on
urrently
omputational pro
ess in one or more separate 
ontrol threads. Several behaviourtransitions 
ould o

ur between the time a deliberative algorithm is invoked and thetime it produ
es a result, with no restri
tions on the 
omputational stru
ture ex
eptthe sequen
er's ability to initiate and terminate its fun
tions. The planning layerintera
tion with the rest of the system usually follows one of three broad methods[De Silva and Ekanayake, 2008℄. The planning layer provides lower layers dire
tlywith the information on whi
h to a
t. It 
an produ
e plans for the sequen
er toexe
ute, or it 
an respond to spe
i�
 queries from the sequen
er. The planning layerworks prior to or jointly with the behaviour layer, updating the robots behaviouralparameters or 
hanging the world state. Coupled planning and behavioural layerso

ur 
on
urrently making plans and rea
tive exe
ution.Many examples of implementations of hybrid ar
hite
tures 
an be found. TheAutonomous Robot Ar
hite
ture, AuRA [Arkin and Ma
kenzie, 1994℄, is one of theearliest approa
hes attempting the integration of hierar
hi
al planning and rea
tivebehaviours me
hanisms. In AuRa two major planning and exe
ution 
omponentsare present: a behaviour rea
tive 
omponent, s
hema 
ontroller, 
oupled with a hi-erar
hi
al planning 
omponent system that is formed by a mission planner, at thehighest level of the ar
hite
ture, 
on
erned with establishing high level goals, a spa-tial reasoner, that 
onstru
t sequen
es of paths using stored knowledge, and a plansequen
er, that translates ea
h path generated by the spatial reasoner into a set ofmotor behaviours for exe
ution [Arkin and Bal
h, 1997℄.Under the hybrid paradigm the most popular hybrid deliberative/rea
tive ar
hi-te
tures are the three-layered ar
hite
tures. [Gat, 1992℄ introdu
ed the ATLANTISar
hite
ture as an early example, it was �rst implemented on robot Robby in 1990.ATLANTIS is a heterogeneous asyn
hronous ar
hite
ture for 
ontrollingmobile robots
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hite
tures for Humanoid Robotsbased on the a
tivity model of a
tion. It has three layers, namely the 
ontroller, thesequen
er, and the deliberator. The 
ontroller is a rea
tive 
ontrol of primitive a
-tivities with no de
ision-making 
omputations. The sequen
er is a spe
ial-purposesystem whi
h 
ontrols initiation and termination of the primitive a
tivities, and thetime-
onsuming deliberative 
omputations, performed in the deliberator, like plan-ning and world modelling [Gat, 1992℄.Another ar
hite
ture, similar in stru
ture to ATLANTIS is SSS, Servo-Subsumption-Symboli
, whi
h 
ombines a servo-
ontrol layer, a �subsumption� layer, and a symboli
layer. Unlike ATLANTIS in the SSS ar
hite
ture the middle layer is based on thesubsumption ar
hite
ture [Brooks, 1986℄, and the symboli
 layer is inside the 
ontrolloop. The 3T ar
hite
ture [Bonasso et al., 1995℄, separates the general robot intel-ligen
e problem into three intera
ting tiers or layers. First, a skill layer where adynami
ally reprogrammable set of behaviour rea
tive skills is 
oordinated by theskill manager. A sequen
ing layer, that a
tivates and dea
tivates the sets of skillsto a

omplish spe
i�
 tasks, this use the Rea
tive A
tion Pa
kages (RAPs) system.And the planning layer with deliberative planning 
apabilities that reason about thegoals, resour
es and time 
onstraints.[Ferguson, 1991℄ developed the TOURINGMACHINES hybrid agent ar
hite
ture.It 
onsists of 
omponents for per
eption and a
tion in dire
t intera
tion with the envi-ronment, and three independent 
ontrol layers 
on
urrently exe
uting pro
ess undera 
ontrol framework. The rea
tive layer, implemented in the style of the subsump-tion ar
hite
ture [Brooks, 1986℄, as a set of situation-a
tion rules, generates 
oursesof a
tion in response to qui
k 
hanging events. The planning layer 
onstru
ts plansand sele
ts a
tions to exe
ute in order to a
hieve the agents goals. The modellinglayer 
ontains symboli
 representations of the 
ognitive state of other entities 
orre-sponding to the environment. The three layers are embedded in a 
ontrol frameworkthat mediates between the layers, and deals with 
on�i
ting a
tion proposals fromthe di�erent layers.INTERRAP [Müller and Pis
hel, 1994℄, is a layered ar
hite
ture, with ea
h su
-
essive layer representing a higher level of abstra
tion. The INTERRAP ar
hite
turefurther subdivides these layers into two verti
al ones: the �rst 
ontaining layers ofknowledge bases and, the other 
ontaining 
ontrol 
omponents. The lower-layer is aworld interfa
e 
ontrol 
omponent that manages the interfa
e between the agent andits environment, and thus , deals with a
ting, 
ommuni
ating, and per
eption as anabstra
tion layer for the rest of the stru
ture. The next layer is the behaviour-based
omponent that implements and 
ontrols the basi
 rea
tive 
apability of the agent.Above the behaviour-based 
omponent is the plan-based 
omponent layer whi
h 
on-tains a planner that is able to generate single-agent plans in response to requests fromthe behaviour-based layer. The knowledge 
omponent at this layer 
ontains a set ofplans, in
luding a plan library. The highest layer for the INTERRAP ar
hite
tureis the 
ooperation layer, whi
h is able to generate joint plans that satisfy the goalsof a number of agents. These plans are generated in response to requests from theplan-based 
omponent. The knowledge 
omponent at this layer 
ontains a so
ial planlibrary, from whi
h the 
ooperation layer 
an sele
t plans for elaboration.The Task Control Ar
hite
ture (TCA) [Simmons, 1994℄, provides an integrated
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tures 45set of 
ontrol 
onstru
ts for implementing deliberative and rea
tive robot behaviours.The 
ontrol 
onstru
ts mean to fa
ilitate the development of modular and evolution-ary systems, they are used to integrate and 
oordinate planning, per
eption, andexe
ution, and to in
rementally improve the e�
ien
y and robustness of the robotsystems. The TCA 
ontrol 
onstru
ts in
lude support for distributed inter-pro
ess
ommuni
ation, task de
omposition, management and allo
ation of resour
es, ex
ep-tion handling and exe
ution monitoring. A TCA robot system 
onsists of a number ofrobot-spe
i�
 modules, and a 
entral 
ontrol module, whi
h is 
ommon to all systemsthat use TCA. The modules 
ommuni
ate by passing 
oarse-grained messages to the
entral 
ontrol, whi
h then routes messages to the appropriate modules that wouldhandle them. In this stru
tured 
ontrol approa
h, the deliberative 
omponents han-dle normal situations and the rea
tive behaviours, whi
h are expli
itly 
onstrainedas to when and how they are a
tivated, handle ex
eptional situations. The TCAar
hite
ture has been used in over a half-dozen robot systems, in
luding a six-leggedrobot that autonomously walks over rugged terrain [Simmons, 1994℄.The A
tion-Deliberative (AD) ar
hite
ture [Malfaz et al., 2011℄, was designed try-ing to avoid rigidity in the planning-sequen
ing-a
ting paradigm that 
an be found inthe three layer ar
hite
tures. It is 
omposed of only two levels: one for deliberativea
tivities and a se
ond one for automati
 a
tivities. The sequen
ing pro
esses aredistributed between the deliberative and automati
 levels, providing more �exibilityto the hybrid ar
hite
ture. The AD ar
hite
ture has been further enhan
ed by alsoadding a biologi
ally inspired de
ision making system [Malfaz et al., 2011℄.The hybrid deliberative/rea
tive ar
hite
tures present some advantages over bothpurely deliberative and purely rea
tive ar
hite
tures, mostly in shortening their re-spe
tive drawba
ks. Hybrid deliberative/rea
tive ar
hite
tures 
ombine the rapidreal-time responses and ability to adapt to qui
kly 
hanging environments providedby behaviour-based systems with the higher level reasoning, planning and de
isionmaking 
apabilities of planner-based approa
hes, enabling them to perform in a bet-ter wider range of tasks, 
oupling the strengths of both paradigms, providing moresu

essfully a
ting intelligent agents. However, these types of ar
hite
tures are notdevoid of problems and 
riti
s. Hybrid deliberative/rea
tive ar
hite
tures tend mostlyto be very spe
i�
, appli
ation dependent, and la
king general design guiding method-ologies. A potential di�
ulty with hybrid ar
hite
tures is that while their stru
turesare well-motivated from a design point of view, it is not 
lear that they are motivatedby any deep theory [Wooldridge and Jennings, 1995℄. The la
k of good theoreti
almodels for agent ar
hite
tures prevents the true understanding of the me
hanismfrom whi
h the systems works, di�
ulting the generalization and reprodu
tion oftheir results for varying domains. However, psy
hologi
al and neurophysiologi
al ev-iden
e 
an be found for the 
o-existen
e of two distin
t planning systems in humans[Norman et al., 1980℄, supporting this approa
h as a potentially e�e
tive methodol-ogy for roboti
 systems.
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hite
tures for Humanoid Robots2.6 Robot Cognitive Ar
hite
turesWhen developing robot systems with human like embodiments and fun
tional 
a-pa
ities and behaviours that are similar to that of humans, su
h as those neededfor the humanoid robots that have been dis
ussed in the above se
tions, it be
omes
lear that di�erent me
hanisms are ne
essary to repli
ate the 
omplex level of skillsand operations presented by humans than those employed to simulate simpler be-haviours. In order to deal with the ri
her set of intri
ate abilities that are expe
tedfrom humanoid agents, the intelligent ar
hite
tures need to provide new stru
turesand models. The deliberative planning and behaviour-based approa
hes on their ownseem to be insu�
ient to deal with the inherent 
omplexities related to represen-tation and modelling of reasoning in the human mind. In [Brooks, 1996℄, a neededshift in viewpoint is dis
ussed for 
ases when the fo
us of resear
h goes to buildinghumanoid robots, designed to present a full human level intelligen
e, that must be
apable of operating and intera
ting in the world in mu
h the same way a humanagent would. Here, approa
hes are led to di�erent ar
hite
tural de
ompositions fromthose 
onsidered from both the traditional AI planning approa
hes and the behaviour-based approa
hes, largely implemented for mobile robots. These de
ompositions aremotivated by fundamentally di�erent 
on
erns at many di�erent levels of analysis,requiring to deal with a number of important issues, su
h as, bodily form, motivation,
oheren
e, self adaptation, inspiration from the brain, et
.In dealing with these 
on
erns, whi
h arise when thinking about building robotswith human level intelligen
e and fun
tionality, the agents' ar
hite
ture stru
turalparadigm shifts from the produ
tion and emergen
e of intelligent behaviours as asystem output towards a viewpoint whose main pursuit is in the development of in-telligen
e thinking at the system internal pro
essing. These approa
hes are 
entredon the me
hanism that allows for the generation of thought and the interior work-ings of 
ognition. This 
alls for an organization of intelligen
e in terms of 
ognitivemodels. Dealing with these issues, and the organization and intera
tion of 
ognitive
omponents, is one important aspe
t for the development of 
ognitive ar
hite
turesand 
ognitive roboti
s.The deliberative planning approa
hes, while appli
able for state-spa
e sear
h ands
heduling systems, proved to be un�t to operate in 
hanging environments whi
hwould be required of humanoid robots. The rea
tive and behaviour-based approa
hespresented great performan
es in robot navigation and obsta
le avoidan
e, and indynami
 and unpredi
table environments, yet their true appli
ability is limited tolow level behaviours and they would not be suited to dealing with the 
omplexitiesof behaviours present in humanoid robots. The hybrid approa
hes have attemptedto 
ombine the strengths of deliberative and rea
tive approa
hes and 
an be readilyemployed as the system ar
hite
ture for several roboti
 platforms. However, theyignore issues of per
eption, learning, world model, and di�erent me
hanisms thatwould be ne
essary to repli
ate the 
omplex level of skills and operations presentedby humans and la
k of good theoreti
al models. Resear
h in 
ognitive ar
hite
tures
onstitute a solid basis for building intelligent systemde
ompositionss 
entred on the
on�guration and intera
tion of 
ognitive modules dealing with the various me
hanism
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onstitute the various pro
ess of human intelligen
e.The study of the mind, intelligen
e, and the working pro
esses of intelligentthought are the 
ompeten
ies of 
ognitive s
ien
e. Resear
h in 
ognitive s
ien
estands at the interse
tion of various �elds, embra
ing philosophy, psy
hology, arti�-
ial intelligen
e, neuros
ien
e, linguisti
s, and anthropology. A 
entral point for thedevelopment of 
ognitive theories lies in studying the nature of knowledge. The mostagreed view by 
ognitive s
ientists is that knowledge in the mind 
onsists of mentalrepresentations, and that intelligent behaviour and thought are the resultant prod-u
ts of manipulating, reasoning and operating upon these internal representations.Mu
h debate in the �eld is fo
used on the 
lass and nature of these knowledge rep-resentations, on the representational me
hanisms for a
quisition, organization, andutilization of knowledge, and on whether the internal representations are even neededat all or whether or not another paradigm is required.The 
entral task of a knowledge representation is 
apturing the 
omplexity ofthe real world [Davis et al., 1993℄. Representations thus perform as fun
tional ab-stra
tions of the per
eived environment, en
oding an agents' knowledge of its world,obje
ts, a
tions, events, et
., into manageable internal stru
tures. An agent system,having useful representations, 
an therefore operate on them by abstra
ting itselfbeyond the world. The knowledge representation 
onstitutes an important propertyfor the design of a 
ognitive agent ar
hite
ture, along with the organization and useof the represented knowledge, and the me
hanism supported for the a
quisition andrevision of the knowledge in the representation [Langley et al., 2009℄.The dominant analogy in 
ognitive s
ien
es has been to 
ompare the mind, andthe brain, to 
omputers, where thinking 
an be understood as 
omputational pro
e-dures. The metaphor assumes that the mind has mental representations analogousto data stru
tures in a 
omputer program, and 
omputational pro
edures similar toprogrammed algorithms [Thagard, 2005℄. The 
omputational hypothesis has beenthe most expanded and dominant theoreti
al and experimental theory of mind de-veloped so far. Other theories have also arisen to 
hallenge the major premises ofthe 
omputational-representational understanding of mind (CRUM) thesis as themost suitable one for 
ognition. Conne
tionist models have proposed novel ideasexpanding theoreti
al frame of 
ognitive s
ien
e about representation and 
ompu-tation that uses neurons and their 
onne
tions. The 
onne
tionist analogy is thatmental phenomena 
an be des
ribed by inter
onne
ted networks of simple and oftenuniform units, where neuron patterns and network 
onne
tions 
an be 
ompared todata stru
tures, and neuron �ring and spread a
tivation is analogous for algorithms[Thagard, 2005℄. More re
ent approa
hes in 
ognitive s
ien
e have taken a growinginterest in dynami
al systems. The dynami
al systems metaphor promotes thinkingabout the underlying for
es, ve
tor �elds, from whi
h observed patterns of behavioursemerge [S
höner, 2008℄. In this view, the brain is thought of as a dynami
 physi
alsystem and the pro
esses in the mind 
an be des
ribed by di�eren
es and di�erentialequations. The driving idea motivating the dynami
al systems approa
h is that 
og-nitive pro
esses, 
ontrary to the 
omputational hypothesis of dis
rete representationaloperations, must unfold 
ontinuously and simultaneously in real time. Therefore, a
ognitive system would not be a sequential manipulation of dis
rete stati
 representa-
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tures, but rather, a stru
ture of mutually and simultaneously in�uen
ing
hange [van Gelder and Port, 1995℄.The traditional 
ommitment of 
ognitive s
ien
es to a 
omputational-representationalview of the mind, where intelligen
e is a problem of symbol manipulation, has fa
edin
reasing 
hallenges and s
epti
ism over the years, in whi
h, the very 
entral notionof internal representation has been questioned. This 
hallenges have been expli
itlystated by [van Gelder, 1995℄, and are also present in works by [Thelen and Smith, 2007℄,[Wheeler et al., 1994℄, [Haselager et al., 2003℄, et
. The representational approa
h,a

ording to this hypothesis, is viewed as in
apable of produ
ing timely suitable 
og-nitive responses, and as detrimental and 
ounterprodu
tive for developing intelligentphysi
al agents. The 
riti
al distin
tion is not between representational and non-representational solutions but among an a
tion-neutral form of internal representa-tion, requiring disembodied symboli
 
omputational pro
essing, and a
tion-orientedforms, in whi
h a behavioural response is embedded into the representation itself[Clark, 2004℄. A ne
essary emphasis is pla
ed on the 
lose link of 
ognition with thesensory and motor pro
esses and the environments in whi
h these are immersed. Mod-els of 
ognition must be embodied pro
esses that 
apture the unfolding of 
ognitionin time and the asso
iated sensory and motor surfa
es embedded in the environmentin whi
h 
ognitive phenomena takes pla
e [S
höner, 2008℄. The embodied 
ognitionview maintains that there is more to 
ognition than just mental representations.Humans' problem solving ability involves �intensive 
ooperation� between internalrepresentation, 
omputations and intera
tions with the environment. The 
laim isnot an outright reje
tion of the legitima
y of representations, however in order tobe valid, for embedded 
ognition, the representations are to be limited, physi
allygrounded to the environment and oriented toward the spe
i�
 needs of the givenagent [Anderson, 2003℄. Development of 
ognitive roboti
s will relied on o�-linedmodelling and operation on internal representations, and emulation me
hanism forenvironmentally 
oupled responses [Clark and Grush, 1999℄.The ideas of knowledge representation and reasoning are 
entral for high level 
og-nitive roboti
 
ontrol [Levesque and Lakemeyer, 2008℄. The development of robot sys-tems endowed with a human like embodiment, fun
tional 
apa
ities and behaviours,
apable of repli
ating the 
omplex level of skills and operations presented by humans,would require 
omplex 
ontrol ar
hite
tures, whi
h allowed them to display 
ognitiveabilities. Cognitive ar
hite
tures spe
i�es the underlying infrastru
ture for an intel-ligent system. The representational formalisms by whi
h an agent would en
ode itsknowledge are a 
entral aspe
t of a 
ognitive ar
hite
ture [Langley et al., 2009℄. As ade�nition, let's take the one provided by [Albus and Barbera, 2005℄: a 
ognitive ar-
hite
ture is an organizational stru
ture, of knowledge representations and fun
tionalstru
tures, set for enabling the modelling of 
ognitive phenomena. A 
ognitive ar
hi-te
ture would attempt to provide the basi
 primitive 
omputational resour
es neededfor developing intelligent systems. Among their basi
 properties are those related tomemory, representation, pro
essing, organization, performan
e, intera
tion, reason-ing, and learning. Resear
h on 
ognitive ar
hite
tures is a very important topi
 sin
eit supports a 
entral goal of arti�
ial intelligen
e, 
ognitive s
ien
e, and roboti
s, the
reation and understanding of agents built for supporting the same 
apabilities as
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KnowledgeFig. 2.5: A Robot Cognitive Ar
hite
ture must support several 
apabilities. Per-
eption and motor abilities must be present for a 
ognitive robot agenta
ting in an environment. The 
apa
ity for modelling and 
hara
terizingthe environment is 
entral to the performan
e of all other 
ognitive fun
-tions. Memory storage is also fundamental for a 
ognitive robot agent.The ability for learning, adapting and improving the agent skills is vitalfor the performan
e of a 
ognitive agent over time. Reasoning and de
isionmaking abilities guide agent a
tion, 
hoosing, from the per
eived, stored,and learned knowledge, appropriate set of skills and proper behaviours toexe
ute.humans [Langley et al., 2009℄.The Cognitive ar
hite
ture fun
tion is to provide a 
omprehensive initial frame-work for the modelling and understanding of 
ognitive phenomena, in a variety oftask domains, [Sun, 2009℄. The ar
hite
ture design must spe
ify overall stru
tures,essential divisions of modules and their interrelationships, basi
 representations, es-sential algorithms and a variety of other aspe
ts. The various attempts at developing
ognitive ar
hite
tures 
an di�er in the assumptions they make, and the design de-
isions they take about how to manage these aspe
ts. A 
ognitive ar
hite
ture 
ansupport several 
apabilities, and 
an di�er variedly in their set of abilities. Per
eptionand re
ognition, de
ision making, memory, and learning are the most 
entral abilitiesan ar
hite
ture must support to 
over the range of human-level intelligen
e. Otherrelevant abilities are those of problem solving and planning, predi
tion, reasoning,
ommuni
ation and a
tion exe
ution [Langley et al., 2009℄.Figure 2.5 represents a general model for a robot 
ognitive ar
hite
ture. Here var-ious interlinked models are present for supporting per
eption, motor 
ontrol, world
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hite
tures for Humanoid Robotsmodelling, memory, reasoning, and learning abilities. A 
ognitive robot agent, em-bedded in an environment requires modules for per
eption and motor 
ontrol of itsa
tions with the world. A 
omprehensive model of the agents environment, allowingfor the agent situatedness and understanding of the 
urrent state of the world is ane
essary prerequisite for pra
ti
ally every other 
ognitive fa
ulty the agent 
ould dis-play. A memory module for knowledge storage is of 
entral importan
e for a 
ognitive,adaptive, intelligent agent. Stored knowledge 
ould be of de
larative or pro
eduralnature. Modules for reasoning or de
ision making guide all motor a
tivity, based onthe per
eive, store, and learned knowledge of the agent. The module for reasoningwould 
hoose appropriate sets of a
tions and proper behaviours to exe
ute. Sup-porting modules for learning, and improving, the agents skill set, is a vital part of a
ognitive ar
hite
ture in order to guarantee an agents' su

ess over time.An intelligent agent exists inside an external environment that it must sense, per-
eive, and interpret. Multiple sensor modalities 
ould be implemented by the agent.Per
eption involves integrating results from the di�erent modalities into a model ofthe environment whi
h 
ould be used by other 
ognitive pro
esses. The per
eptionmust go beyond per
eiving isolated obje
ts or events to interpret the broader envi-ronmental situation, and 
ompose a large model of the 
urrent environment.Intelligent agents require the ability to re
ognize situations as instan
es of knownor familiar patterns, and 
ategorize su
h obje
ts, situations, or events to known 
on-
epts. To support re
ognition and 
ategorization, a 
ognitive ar
hite
ture must pro-vide some way to represent patterns and situations in memory [Langley et al., 2009℄.De
ision making abilities to sele
t from alternatives is an important ability re-quired for an intelligent agent. A 
ognitive ar
hite
ture, in order to support de
isionmaking, must possess a way to represent alternative 
hoi
es or a
tions, and also o�era pro
ess of sele
tion between these alternatives.A 
ognitive ar
hite
ture requires me
hanisms that draw inferen
es using its knowl-edge stru
tures. Reasoning lets an agent augment its knowledge state, drawing 
on-
lusions from beliefs and assumptions that the agent already holds. The 
ognitiveagent 
an engage in various forms of reasoning su
h as, dedu
tive reasoning, indu
tivereasoning, addu
tive inferen
e, as well as the ar
hite
tures a�orded by it. Cognitivear
hite
tures are essentially models of human reasoning [Russell and Norvig, 2010℄.Storing, and retrieving, an agent 
ognitive pro
ess in memory is an importantability that 
rosses all other 
ognitive 
apa
ities of the agent. In order to `remember'an agent 
ognitive a
tivity, the ar
hite
ture must en
ode and store the 
ognitivestru
tures that are generated during the agent's a
tivity. Memory must store andindex this knowledge, and be able to retrieve it when needed. Cognitive ar
hite
turesmost often distinguish between a short-term memory, holding information relevantto 
urrent environment models, and long-term memory storing knowledge 
apture bythe agent over periods of its a
tions.Cognitive ar
hite
tures must in
orporate some way from whi
h to learn, and im-prove, their 
ognitive 
apa
ities. Learning involves pro
essing, and generalizing, mem-ory 
ognitive stru
tures to improve the 
apabilities of the agent, beyond spe
i�
 beliefsand events. The data on whi
h learning operates may 
ome from all sour
es sup-ported by the ar
hite
ture, in
luding observation of another agent, problem-solving
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tures 51behaviour, per
eption and 
ategorization, predi
tion, reasoning, skills and exe
utionpoli
ies. A 
ognitive ar
hite
ture should also be able to learn from instru
tion andexperien
e.Problem solving and planning abilities are ne
essary in order to generate plansand a
hieve an agents goals in several situations. Intelligent agents operating indynami
 environments must often modify existing plans in response to unanti
ipated
hanges [Langley et al., 2009℄. To support these abilities, the 
ognitive ar
hite
turemust be 
apable of representing the planned a
tions, as ordered set of a
tivities,and expe
ted results. It should also be able to generate plans and solution from
omponents available from its memory, or learning.Cognitive agents 
an bene�t from the ability to predi
t future situations. Thisrequires the ar
hite
ture to provide me
hanisms 
apable of predi
ting future situationsusing present knowledge stru
tures. Predi
tion requires a model of the environmentand of the e�e
ts an a
tion has on it [Langley et al., 2009℄.Communi
ation is another important ability for 
ognitive ar
hite
tures to supportsin
e a 
ognitive agent intera
ts with other agents and the transfer of knowledgefrom one agent to another is a possible o

urren
e. Cognitive ar
hite
tures shouldsupport me
hanisms for transforming knowledge into the form and medium throughwhi
h it will be 
ommuni
ated [Langley et al., 2009℄. Agents 
an 
ommuni
ate aboutper
eptions and a
tions, plans, inferen
es, de
isions made, predi
tions and anomalies,et
. Building 
ognitive ar
hite
tures fa
ilitates the intera
tion between humans andintelligent systems be
ause of similarities in 
ognitive abilities [Sun, 2009℄. In
reasingthe 
ognitive 
apa
ities of a roboti
 system is an important task in order to a
hievea meaningful and natural intera
tion and 
ollaboration in a human-robot team.The 
ognitive ar
hite
tures must allow for the exe
ution of skills and a
tions in theenvironment. The ar
hite
ture must be able to represent and store motor skills thatenable the agents a
tivity. Cognitive ar
hite
tures should present the �exibility tosupport a behavioural range, as 
an humans, from autonomous open-loop behaviours,to rea
tive 
losed-loop behaviours.In the �eld of Arti�
ial Intelligen
e and Cognitive Systems there are variousworks on the development of 
ognitive ar
hite
tures to model 
ognitive pro
essesand fun
tionalities of humans. Among the better known ar
hite
tures there is Soar[Laird et al., 1987℄, ACT-R [Anderson et al., 2004℄, PRODIGY [Veloso et al., 1995℄,EPIC [Kieras and Meyer, 1997℄, ICARUS [Langley and Cummings, 2004℄, CLARION[Sun et al., 2001℄, et
.The Soar (State Operator And Result) [Laird et al., 1987℄, 
ognitive ar
hite
turehas been under 
ontinuous development sin
e the early 1980s. The ar
hite
ture isbased on the theoreti
al framework of knowledge-based systems seen as an approxi-mation to physi
al symbol systems [Du
h et al., 2008℄. Soar stores its knowledge inthe form of produ
tion rules, whi
h are in turn organized in terms of operators thata
t in the problem spa
e. The basi
 deliberative a
ts of the system are performedby the operators, with knowledge used to dynami
ally determine their sele
tion andappli
ation [Langley et al., 2009℄. In Soar, tasks are formulated as goal a
hievingattempts. The primary learning me
hanism in Soar is 
hunking. Chunking o

urswhen one or more results are produ
ed in a subgoal. The 
hunk a
tions are based on
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onditions are based on the relevant aspe
ts of the goal abovethe subgoal. Soar has multiple learning me
hanisms: 
hunking and reinfor
ementlearning a
quire pro
edural knowledge, whereas episodi
 and semanti
 learning a
-quire their own 
orresponding types of de
larative knowledge [Langley et al., 2009℄.Resear
hers have used Soar ar
hite
ture to develop a variety of sophisti
ated agentsthat have demonstrated several high-level 
ognitive fun
tions [Du
h et al., 2008℄.ACT-R (Adaptive Control of Thought-Rational) [Anderson et al., 2004℄, ar
hite
-ture is primarily 
on
erned with modelling human behaviour. The aim is to buildsystems that perform the whole spa
e of humans 
ognitive tasks and des
ribe me
h-anisms' underlying per
eption, thinking and a
tion [Du
h et al., 2008℄. The ACT-Rar
hite
ture is organized into a set of modules, in
luding sensory modules for visualpro
essing, motor modules for a
tion, an intentional module for goals, and a de
lar-ative module for long-term de
larative knowledge. Ea
h module pro
esses di�erenttypes of information and has its own asso
iated bu�er to hold 
hunks of de
larativestru
tures, taken together these bu�ers 
omprise the ar
hite
ture short-term memory[Langley et al., 2009℄. ACT-R employs a top-down learning approa
h to adapt to thestru
ture of the environment [Du
h et al., 2008℄. Produ
tions or 
hunks are mat
hedto per
eptions and fa
ts, mediated by a
tivation levels of obje
ts. There exe
utionis made to a�e
t the environment or alter de
larative memory. The ar
hite
ture op-erates by mat
hing produ
tions on per
eptions and fa
ts, mediated by the real-valuea
tivation levels of obje
ts, and exe
uting them to a�e
t the environment or alterde
larative memory. Learning in ACT-R involves 
reating new fa
ts and produ
tions,as well as updating base a
tivations and utilities asso
iated with these stru
tures. TheACT-R ar
hite
ture has been applied in intelligent tutoring systems, psy
hologi
alstudies, in
luding aspe
ts of memory, attention, reasoning, problem solving, et
., andto 
ontrol mobile robots that intera
t with humans [Langley et al., 2009℄.ICARUS [Langley and Cummings, 2004℄, de�nes an integrated 
ognitive ar
hite
-ture for physi
al agents where two distin
t forms of knowledge are stored. Con
epts,
ontaining knowledge of general 
lasses of obje
ts and relationships, and skills spe
-ifying knowledge about ways of doing things. The ar
hite
ture in
ludes a numberof modules: a per
eptual system, a planning system, an exe
ution system, and sev-eral memory systems [Du
h et al., 2008℄. The ICARUS interpreter operates on are
ognize-a
t 
y
le. Con
eptual memory dire
ts bottom-up, per
ept-driven inferen
ewith the pro
ess 
ontinuing until ICARUS infers all dedu
tively implied beliefs. Skillmemory 
ontrols top-down, goal-driven sele
tion of a
tions, starting from a top-levelgoal: it �nds a path downward through the skill hierar
hy when a path terminatesin a primitive skill with exe
utable a
tions; the ar
hite
ture applies these a
tionsto a�e
t the environment [Langley et al., 2009℄. ICARUS is able to learn new 
on-
epts in
rementally, in an e�
ient way, by 
onstru
ting feature trees that the system
an 
omprehend [Du
h et al., 2008℄. ICARUS ar
hite
ture has been used to developagents for a number of domains involving a 
ombination of inferen
e, exe
ution, prob-lem solving, and learning. Ongoing work aims to link ICARUS to physi
al robots that
arry out joint a
tivities with humans [Langley et al., 2009℄.PRODIGY [Veloso et al., 1995℄, in
orporates two kinds of knowledge stru
tures,domain rules, whi
h en
ode the 
onditions under whi
h a
tions have 
ertain e�e
ts
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ontrol rules, whi
h spe
ify the 
onditions under whi
h the ar
hite
ture shouldsele
t, reje
t, or prefer a given operator. PRODIGY performs sear
hes through aproblem spa
e to a
hieve one or more goals, relying on means-ends analysis, sele
t-ing an operator that redu
es di�eren
es between the 
urrent state and the goal. If
ontrol knowledge is absent, the ar
hite
ture makes a 
hoi
e at random and pursuesa depth-�rst means-ends sear
h with ba
ktra
king [Langley et al., 2009℄. Resear
hin PRODIGY framework has fo
uses mainly on problem solving and planning is-sues. However, PRODIGY has also formed the basis for a mobile robot with in-terleaved planning and exe
ution and a

epted asyn
hronous requests from users[Langley et al., 2009℄.CLARION (Conne
tionist Learning with Adaptive Rule Indu
tion ON-line), isan integrative ar
hite
ture [Sun et al., 2001℄, it 
onsists of four distin
t subsystems:a
tion-
entered subsystem (ACS), non-a
tion-
entered subsystem (NCS), motivationalsubsystem (MS), and meta
ognitive subsystem (MCS). Ea
h of these intera
ting sub-systems 
onsists of two levels of representation. CLARION ar
hite
ture in
orporatesa distin
tion between expli
it (symboli
) and impli
it (sub-symboli
) pro
esses and
aptures the intera
tions between the two [Du
h et al., 2008℄. In general, for ea
hsubsystem, the top level en
odes expli
it knowledge and the bottom level en
odesimpli
it knowledge [Sun, 2009℄. The role of the ACS module is to 
ontrol and regu-late the agent a
tions, whether they are external physi
al movements or for internalmental operations. The role of the NCS module is to maintain the general systemknowledge, either impli
it or expli
it. The role of the MS module is to provide un-derlying motivations for per
eption, a
tion, and 
ognition. The role of MCS moduleis to monitor, dire
t and alter the operations of the other three modules. CLAR-ION 
ognitive ar
hite
ture has seen appli
ations to multi-agent so
ial simulations[Sun, 2009℄.EPIC, (Exe
utive Pro
ess Intera
tive Control) [Kieras and Meyer, 1997℄, aims at
apturing human per
eptual, 
ognitive and motor a
tivities through several inter-
onne
ted pro
essors working in parallel, and to build models of human-
omputerintera
tion for pra
ti
al purposes [Du
h et al., 2008℄. The ar
hite
ture en
odes long-term knowledge as produ
tion rules, and a set of per
eptual (visual, auditory, ta
tile)and motor pro
essors. Resear
h on EPIC has in
luded a strong emphasis on a
hievingquantitative �ts to human behavior, espe
ially in tasks that involve intera
ting with
omplex devi
es [Langley et al., 2009℄.Polys
heme [Cassimatis et al., 2004℄, 
ognitive ar
hite
ture integrates multiplemethods for representations, reasoning, and problem solving [Du
h et al., 2008℄. Ea
hrepresentation has a spe
ialist asso
iated module, modelling a di�erent aspe
t of theworld, it supports forward inferen
e, subgoaling, and other basi
 operations, whi
hare mat
hed against the shared dynami
 memory with elements grounded in per
ep-tion and a
tion [Langley et al., 2009℄. The ar
hite
ture 
ould be used for abstra
treasoning and also for 
ommon sense physi
al reasoning in robots. The PolyS
hemear
hite
ture makes a stronger semanti
 
ommitment than most other ar
hite
tures:it en
odes all stru
tures within a basi
 set of relations of time, spa
e, events, identity,
ausality, and belief [Langley et al., 2009℄. Polys
heme ar
hite
tures has been used tomodel infant reasoning, in
luding obje
t identity, events, 
ausality, spatial relations
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hite
tures for Humanoid Robots[Du
h et al., 2008℄.IBCA (Integrated Biologi
ally-based Cognitive Ar
hite
ture), is a biologi
ally in-spired 
ognitive ar
hite
ture [O'Reilly et al., 1998℄, it imitates automati
 and dis-tributed notions of information pro
essing in the brain. The ar
hite
ture 
ontem-plates three modules inspired by the role of three regions in the brain, posterior
ortex (PC), frontal 
ortex (FC), and hippo
ampus (HC) [Du
h et al., 2008℄. ThePC module fo
uses on sensory-motor as well as multi-modal, hierar
hi
al pro
essing,assuming overlapping, distributed lo
alist organizations. In the FC module, work-ing memory units are isolated from one another, 
ontributing 
ombinatorially, in anon-overlapping, re
urrent lo
alist organization. The HC module utilizes a sparse,
onjun
tive globalist organization, in whi
h units 
ontribute intera
tively to a givenrepresentation. In the IBCA framework, the underlying regularities of the world andsensory-motor a
tivities, are 
aptured by employing slow integrative learning, in thePC and FC modules, that blends many individual experien
es. The HC module addsa fast learning retaining and dis
riminating over he individual experien
es. Cooper-ation between HC and FC/PC re�e
ts the 
omplementary learning paradigms in thebrain [Du
h et al., 2008℄.RCS (Real-time Control System) [Albus, 1997℄, is a 
ognitive ar
hite
ture, orig-inally designed for the sensory-intera
tive goal-dire
ted 
ontrol of laboratory ma-nipulators. It has evolved over three de
ades into real-time 
ontrol ar
hite
ture forintelligent ma
hine tools, fa
tory automation systems, and intelligent autonomousvehi
les [Albus and Barbera, 2005℄. The RCS ar
hite
ture 
onsists of a multi-layeredhierar
hy of 
omputational modules, operating in parallel, 
ontaining elements ofsensory pro
essing (SP), examining the 
urrent state, world modelling (WM), pre-di
ting future states, value judgment (VJ), sele
ting among alternatives, behaviourgeneration (BG), 
arrying out tasks, and a knowledge database (KD). The Knowl-edge representation is heterogeneous, in
luding frames, rules, images, and maps[Langley et al., 2009℄. At the lower levels, goal-seeking rea
tive behaviours are gen-erated. At higher levels, de
ision making, planning, and deliberative behaviour takespla
e [Albus and Barbera, 2005℄. The higher level modules in�uen
e, in a top downmanner, the lower level modules, whi
h in turn pass information ba
k up.Other approa
hes to 
ognitive ar
hite
tures or frameworks in
ludes, PRS (Pro
e-dural Reasoning System) [Ingrand et al., 1992℄, a well know agent ar
hite
ture, basedon the belief-desire-intention paradigm. PRS in
ludes a plan library, of partially-elaborated plans 
alled knowledge areas, as well as expli
it symboli
 representa-tions of beliefs, desires, and intentions [Wooldridge and Jennings, 1995℄. The frame-work stores the hierar
hi
al pro
edures, e�e
ts, and ordered steps that invoke subpro
edures. Among dynami
 stru
tures in
ludes, agent belief about the environ-ment, desired goals to a
hieve, and planned intentions of the agent. At ea
h 
on-trol 
y
le, PRS ar
hite
ture de
ides on whether to 
ontinue exe
uting its 
urrentintention or to sele
t a new intention to pursue [Langley et al., 2009℄. PRS hasbeen evaluated in a simulation of maintenan
e pro
edures, as well as other domains[Wooldridge and Jennings, 1995℄. SULTAN (Simultaneous User Learning and TAskexe
utioN) [Balaguer et al., 2011℄, o�ers a framework for an intelligent servi
e roboti
system that 
an be 
apable of physi
al and 
ognitive 
ollaboration. The SULTAN
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on
ept sets the problem in a user-task-obje
t domain, aimed at solving the 
hallengeof how an agent 
an robustly perform a set of tasks for di�erent users in di�erent envi-ronments. In SULTAN the learning pro
ess is based on hierar
hi
al Bayesian networksbuild on the base of the Bayesian approa
h to 
ognitive system [Balaguer et al., 2011℄.A model of the user is maintained by SULTAN learning module, and the representa-tion of the physi
al intera
tion tasks is 
on
urrently re�ned keeping expli
it a

ountof user learning. The framework allows the augmentation of personal 
apabilities, itsmain fo
us is the 
reation of a human+robot binomial in whi
h physi
al and 
ognitive
ollaboration is a
hieved as a whole with potential appli
ations for assistive roboti
s[Balaguer et al., 2011℄. ISAC 
ognitive ar
hite
ture [Kawamura et al., 2008℄, devel-oped for the humanoid robot ISAC, is a multi-agents ar
hite
ture, based on the IMA[Pa
k et al., 1997℄. The ISAC 
ognitive ar
hite
ture provides three 
ontrol loops for
ognitive 
ontrol of robots: Rea
tive, Routine and Deliberative. It relies on the par-allel operation of several 
ognitive agents, su
h as a Per
eptual Agent, an A
tionAgent, a Self Agent, a Central Exe
utive Agent, a Goal Agent. Also three mem-ory 
omponents are implemented in the ar
hite
ture, in
luding: Working MemorySystem (WMS), Short Term Sensory Memory (STM), Long Term Memory (LTM)[Tan, 2012℄. Work on ISAC fo
used on human-robot intera
tion and development of
ognitive 
ontrol for humanoid robots [Pa
k et al., 1997℄.E�orts in 
ognitive ar
hite
tures have produ
ed important advan
es in 
ognition,reasoning and 
on
eptual aspe
ts of human thinking. [Levesque and Lakemeyer, 2008℄o�ers an overview of the 
hallenges and e�orts taken in the subje
t of 
ognitiveroboti
s. A 
omprehensive review of various di�erent 
ognitive ar
hite
tures, issuesand 
hallenges, 
an be found in [Langley et al., 2009℄, many of whi
h have seen pra
-ti
al use in real-world problems. To date, 
ontributions to the development of 
ogni-tive ar
hite
tures for humanoid robots have been rather sparse. However, attemptsto provide 
ognitive pro
esses and fun
tionalities for a humanoid robot 
an be foundin the works of [Brooks et al., 1999℄, [Burghart et al., 2005℄, [Zoliner et al., 2005a℄,[Galindo et al., 2005℄, [Jung et al., 2007℄, [Lemaignan et al., 2010℄, [Choi et al., 2009℄,[Kim et al., 2010℄, and [Tan, 2012℄, among others.Further resear
h into 
ognitive ar
hite
tures, frameworks and 
ognitive models isimportant to improve the 
ontrol and design of the intelligent roboti
 agents. Themost obvious arena for improvement 
on
erns the introdu
tion of new 
apabilities,and additional resear
h on the stru
tures and pro
esses that support su
h 
apabili-ties [Langley et al., 2009℄, whi
h bear the wide range of human skills and 
ognitiveabilities. The ar
hite
tures must address the issue of the agents' physi
al limited re-sour
es. Frameworks are needed that 
an en
ode knowledge in a variety of formalisms,and use them with greater �exibility and more e�e
tively to support intelligent be-haviours [Langley et al., 2009℄. Cognitive ar
hite
tures need to 
onfront the roles ofthe intera
tion with the environment, agents' internal drives, emotions, et
. Thereis also the need for experimental methods for the thoughtful evaluation of 
ognitivear
hite
tures [Langley et al., 2009℄. The development of 
ognitive ar
hite
tures sup-port the 
entral goal of arti�
ial intelligen
e, 
ognitive s
ien
e and roboti
s: and ofbuilding arti�
ial systems that are as 
apable as human beings. The reviewed 
ogni-tive ar
hite
tures 
onstitute a solid basis for building intelligent systems, sin
e they
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tures for Humanoid Robots
Ar
hite
ture Deliberative Rea
tive Hybrid CognitiveDesignParadigm Sense-Plan-A
t
y
le Hierar
hy of
oupled sense-a
tbehaviours Low-level rea
tivelayers and high-level deliberativelayers Inter
onne
tedstru
ture of fun
-tional 
ognitivemodulesStrengths -Planning of longterm a
tions.-Break 
om-plex task intosubtasks.-Can produ
eoptimal, domain-independentsolutions.

-Improved naviga-tion and obsta
leavoidan
e.-Great e�
ien
yat run-time.-Robust, simpleand 
omputation-ally tra
table.
-Combine real-time response andadaptability ofrea
tive systemswith planning andde
ision makingof deliberativeapproa
hes.

-Solid basis forbuilding intelli-gent systems.-Inter
onne
tedmodels of 
og-nitive abilitiessupport range ofskills and a
tions.Challenges -Fail to addressun
ertainty.-High 
omputa-tional 
ost.-Poor perfor-man
e whenfrequent replan-ning.
-No long-termplanning.-Limited appli
a-bility.-Di�
ult todebug and under-stand emergingbehaviour.

-Very appli
ationdependant.-La
k general de-sign, methodolo-gies.-Di�
ult to gen-eralize in varyingdomains.
-Introdu
e new
apabilities.-Address agentphysi
al limitedresour
es.-Experimentalmethods to evalu-ate ar
hite
tures.Implementations STRIPS, IRMA,et
. Subsumption ATLANTIS, SSS,3T, AuRA, et
. Soar, ICARUS,ACT-R,EPIC, et
Appli
abilityforHumanoidRobots Un�t to operate in
hanging environ-ments. O�ers limitedappli
ability 
on-�ned to low leveltasks. Couple strengthsof deliberative/re-a
tive paradigms.La
k of good the-oreti
al models. Support goalfor intelligentarti�
ial systems.Further resear
his important.Tab. 2.2: Comparison of Intelligent Ar
hite
tures with their strengths, 
hallengesand possibilities for appli
ation in the �eld of humanoid roboti
s.
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ognitive resear
h [Sun, 2009℄.The desired 
ognitive agents must display 
apa
ities for environmentally 
oupled em-bedded a
tion: and at the same time, they must think or reason abstra
tly aboutthe world in a de-
oupled manner, as argued by the theories of embodied situated
ognition.Table 2.2 summarizes the most relevant aspe
ts and short
omings of the intelli-gent ar
hite
ture approa
hes for developing humanoid robots that have been reviewedthroughout this 
hapter. Comparing their their design, strengths, 
hallenges, imple-mentations and possibilities for appli
ation in the �eld of humanoid roboti
s.2.7 Framework for Learning and Adaptation of Skills to TaskConstraintsFrom everything that has been stated throughout this 
hapter, it be
omes 
learthat the envisioned humanoid robots of the future, 
apable of working autonomouslyand serving humans, are required to have advan
ed motor 
ontrol skills, 
omprehen-sive per
eptual systems, and suitable intelligen
e, with an intelligent agent being un-derstood as in [Poole et al., 1998℄, as one that is �exible to 
hanging environments and
hanging goals, and one that learns from experien
e and makes appropriate 
hoi
es,given per
eptual limitations and �nite 
omputation. The previous se
tions presenteda review of di�erent approa
hes for developing a robot's fun
tional ar
hite
ture thatwould endow it with the 
apabilities for performing intelligent behaviours in the en-vironment. Clearly this is a very 
hallenging topi
 in whi
h 
ompletely satisfa
torysolutions have not yet been rea
hed. Although great e�orts and advan
es have beenmade over the years, obtaining important 
ontributions through the �eld.When thinking about what 
ould 
onstitute a general typi
al task for a humanoidrobot operating in a domesti
 environment together with other human agents, let us
onsider a kit
hen setting and a 
ooperative task of setting a table for supper. Therobot would be required to pi
k up, pla
e and hand di�erent obje
ts into di�erentpla
es at di�erent times, not ne
essarily following a parti
ular order or sequen
e es-tablished beforehand, and in a world being 
hanged not only by its a
tions, but alsoby other agents working in the same spa
e. In this s
enario, deliberative planningapproa
hes would be unsuitable, sin
e they are inappropriate to operate in dynami

hanging environments. A rea
tive and behaviour-based approa
h would be limitedin its appli
ability, and 
on
entrated only on low level rea
tive behaviours. Hybridapproa
hes 
ould be employed when designed to resolve the 
hallenges of one parti
u-lar task but a di�erent me
hanism would be ne
essary when the fo
us is on humanoidrobots presenting human level intelligen
e and in repli
ating the 
omplex level of skillsand operations presented by humans. The agent's ar
hite
ture paradigm must 
on-
entrate on the development of intelligent thinking at the system internal pro
essing,
entred on an organization of intelligen
e in terms of the 
on�guration and inter-a
tion of 
ognitive modules. Resear
h in 
ognitive ar
hite
tures 
onstitutes a solidbasis for building intelligent systems, but even though some attempts on the �eldhave been made for providing 
ognitive pro
esses for humanoid robots, there are no
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hite
tures for Humanoid Robotsfully developed 
ognitive ar
hite
tures 
apable of endowing robots with the ne
essaryfun
tional intelligen
e readily available.[Albus, 1991℄ proposed a multi-layered hierar
hi
al system ar
hite
ture, wheredi�erent levels of intelligen
e in the hierar
hy 
an be a
hieved, depending on the
omputational power of the system and the sophisti
ation of its pro
essing algorithms.A minimal level of intelligen
e requires at least the ability to sense the environment,make de
isions and take a
tions. Higher levels of intelligen
e may in
lude the abilityto re
ognize obje
ts and events, to represent knowledge in a world model, and toreason about and plan for the future. More elevated forms of intelligen
e provide the
apa
ity to per
eive and understand, to 
hoose wisely, and to a
t su

essfully undera large variety of 
ir
umstan
es.The 
urrent humanoid robots may only be around the minimum and mid-levelsof intelligen
e. Even if perhaps the ultimate levels of intelligen
e 
ould turn out tobe out of rea
h, and 
reating robots that repli
ate the total s
ope of human intelli-gen
e may prove impossible, it is ne
essary for future humanoid robots to a
hieve asu�
iently high level in the hierar
hy. A 
ognitive framework for humanoid robotsneeds to provide a minimum degree of intelligent behaviour; this is the ability to sensethe environment, learn, and adapt its a
tions to perform su

essfully under a set of
ir
umstan
es.The referen
e model ar
hite
ture [Albus and Barbera, 2005℄, [Albus, 1991℄, iden-ti�es �ve elemental systems 
ontained in ea
h layer, su
h as, sensory pro
essing, worldmodelling, behaviour generation, value judgement and knowledge, inter
onne
ted in away that enables the various system elements to intera
t and 
ommuni
ate with ea
hother in intimate and sophisti
ated ways. Resear
h e�orts must fo
us on building thene
essary modules of 
ognition that would form the layers in this hierar
hy and allowfor assembling the levels of intelligen
e.Humanoid robot agents to be su

essfully used for working alongside human part-ners would need to address important 
hallenges su
h as high level understanding,engaging intera
tions and qui
k adaptations to environmental dynami
al 
hanges[Stoyt
hev and Arkin, 2001℄. The ability to self-adapt and learn from experien
eis a major 
on
ern. In order to have humanoid robots a
ting �uently in the world,intera
ting with di�erent obje
ts and people, they must be able to learn and adapttheir motor 
ontrol to dynami
 
hanges in their intera
tion with the world, that is,robot systems must be 
ontinuously self-adapting [Brooks, 1996℄.It be
omes apparent that humanoid robots must be provided with systems thatallow them to 
ontinuously learn new skills and adapt their existing skills to new
ontexts, as well as to robustly reprodu
e new behaviours in a dynami
al environmentin order to 
ope with working in 
ontinuously 
hanging environments and performingan unlimited variability of tasks.Motivated by the design of multi-layered referen
e model ar
hite
tures, in thespirit of [Albus, 1991℄, and in�uen
ed by the ideas of the Dynami
al System approa
hto embodied 
ognition, as promoted by the works of [van Gelder and Port, 1995℄,[Clark and Grush, 1999℄, [Clark, 2004℄, [Beer, 2000℄, and in the Learning from Demon-stration approa
hes for en
oding 
omplex motions as Dynami
al Systems, �rst intro-du
ed by [Ijspeert et al., 2001℄, [Ijspeert et al., 2002℄, representing movement plans
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InputFig. 2.6: Proposed framework of a 
ognitive model for the learning and adaptationof robot skills to task 
onstraints. A knowledge base (2) is built withthe models of the robot skills learned through demonstrations (1). The
onstraints of a requested task are extra
ted from the per
eption of theworld state. With the 
urrent task 
onstraints and the models of a skillretrieved from the knowledge base an adapted task model (3) is generatedfor reprodu
tion (4).as mixtures of non-linear di�erential equations with well-de�ned attra
tor dynami
s,in this work a framework is proposed for a 
ognitive module for the generation andadaptation of learned models of robot skills for 
omplying with task 
onstraints.We follow a view whi
h 
laims that models of 
ognition must be embodied pro-
esses 
apturing the unfolding of 
ognition in time, mindful of the asso
iated sensoryand motor surfa
es embedded in the environment in whi
h 
ognitive phenomena takespla
e [S
höner, 2008℄. And that systems' internal representations may be modellednot as simple inner states but as dynami
al patterns of just about any 
on
eivablekind [Clark, 2004℄. Here, thought 
an be des
ribed by variables governed by a set ofnon-linear di�erential equations and an agent behaviour 
an be generated from the
omplex dynami
al evolution of stable states and their instabilities in a non-lineardynami
al system [S
höner, 2008℄.For the rest of this work, and throughout the following 
hapters, a frameworkfor the generation and adaptation of learned skills to task 
onstraints is presented,developed, implemented and validated. Figure 2.6 illustrates our proposed framework.The main purpose of the framework is to provide the humanoid robot with a basi
level of intelligen
e, namely, the ability to sense the environment, learn and adaptits a
tions to perform su

essfully under a set of 
ir
umstan
es. In the developedframework a knowledge base of skills is built with the models of the skills learned
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hite
tures for Humanoid Robotsthrough demonstrations. During exe
ution the 
onstraints of a requested task areextra
ted from the per
eptual system from the working environment and the modelsof an appropriate skill are retrieved from the skills knowledge base. With all availableinformation a new adapted task model is generated for reprodu
tion.The framework provides humanoid robots with systems that allow them to 
on-tinuously learn new skills, represent their skills' knowledge, and adapt their existingskills to new 
ontexts, as well as to robustly reprodu
e new behaviours in a dynami
alenvironment. The proposed framework is formed by 4 fundamental modules:1. Module for the learning of robot skills.2. Module for the management and representation of robot skill knowledge.3. Module for the generation and adaptation of robot skill models.4. Module for the reprodu
tion of robot skills.The robot skill learning module 
olle
ts the learning pro
esses and algorithms usedfor learning and en
oding the models of the skills. The robot skill knowledge module
ontrols the developed knowledge base. The robot skill generation and adaptationmodule governs the pro
ess by whi
h the learned model of a skill 
an be operated toreprodu
e a new task. The robot skill reprodu
tion module produ
es the adequate
ontrol signals to the robot for the reprodu
tion of those skills. Additionally, a per-
eption and intera
tion module is in 
harge of pro
essing the outside information ofthe robot's working environment to use in the other modules. The following 
hapterswill des
ribe in more detail the modules for learning the robot skills models, rep-resenting the robot skills knowledge, generating and adapting robot skills, and thereprodu
tion of the robot skills.The ultimate goal for a humanoid robot would require them to present full level
ognitive and intelligent ar
hite
tures, yet 
urrent developments are not yet even near
lose to these 
apa
ities. The 
ognitive ar
hite
ture ar
hetype 
ould, eventually, verywell be the most suitable approa
h for building the humanoid robots' intelligen
e
apabilities. However, a majority of 
urrent 
ognitive approa
hes fo
us more onsolving intelligen
e as an abstra
t reasoning pro
ess and do not take into a

ountthe physi
ally embedded aspe
ts of 
ognition and the parti
ular 
hallenges humanoidroboti
s represents. Furthermore, fully developed 
ognitive ar
hite
tures with the
apabilities for endowing robots with the needed fun
tional intelligen
e are not readilyavailable. Therefore we begin our approa
h by trying to attain a basi
 fun
tional levelof intelligen
e allowing a robot the ability to sense the environment, learn, and adaptits a
tions to perform su

essfully under a set of 
ir
umstan
es. The frameworkdeveloped in this work was proposed as a 
ognitive model intended to provide therobot with an essential 
ognitive ability for learning and adaptation of skills. Ourframework 
an be thought of as one module level in the hierar
hy of a more 
omplexar
hite
ture, or as a �rst stepping stone upon whi
h to in
rementally build more
omplex 
ognitive pro
esses.



2.8. Summary of the Chapter 612.8 Summary of the ChapterThroughout this 
hapter a review of the developments and 
hallenges in humanoidroboti
s resear
h has been presented along with di�erent proposals for intelligentagent ar
hite
tures for roboti
 systems. Table 2.1 summarizes the major histori-
al developments in humanoid roboti
s resear
h. Se
tion 2.2 dis
ussed the issuesemerging for humanoid robot developments and for motor 
ontrol, per
eption, inter-a
tion and intelligent behaviour. Mu
h work remains to be done in order to improvethe 
apabilities of humanoid robots for lo
omotion, per
eption, intera
tion, 
ognitivebehaviour and 
ompeten
e at performing tasks. Humanoid robots must present in-telligent, natural, predi
table and reasonable behaviours. Di�erent approa
hes werereviewed in planner based, behaviour based, hybrid, and 
ognitive ar
hite
tures forintelligent robots. Se
tion 2.3 presents a review of approa
hes to robot planner-basedar
hite
tures. They follow the Sense-Plan-A
t 
y
le, intelligen
e resides on a 
en-tral planner that produ
es appropriate plans of a
tion for the robot reprodu
tion.Se
tion 2.4 presents a review of approa
hes to robot behaviour-based ar
hite
tures.They present dire
t 
oupling between per
eption and a
tion. Intelligen
e emerges asa result of an embodied agent intera
tion with the environment. Se
tion 2.5 presentsa review of approa
hes to robot hybrid deliberative/rea
tive ar
hite
tures. They at-tempt to use the advantageous aspe
ts of both the behaviour-based and the planner-based approa
hes. Se
tion 2.6 presents a review of approa
hes to robot 
ognitivear
hite
tures. Planning approa
hes are un�t to operate in 
hanging environments,as would be required of humanoid robots. Behaviour-based approa
hes are limitedin their appli
ability to low-level behaviours and they would not be suitable to dealwith the 
omplexities of behaviours present in humanoid robots. Hybrid approa
hes
ombine the strengths of deliberative and rea
tive approa
hes and 
an be readilyemployed as the system ar
hite
ture for several roboti
 platforms, but they tend tobe very spe
i�
 and appli
ation dependent; also, the la
k of good theoreti
al modelsmakes generalization and reprodu
tion of their results di�
ult for varying domains.Resear
h in 
ognitive ar
hite
tures 
onstitute a solid basis for building intelligentsystems, but even though some attempts in the �eld have been made for providing
ognitive pro
ess for humanoid robots, there are no fully developed, 
ognitive ar
hi-te
tures 
apable of endowing robots with the needed fun
tional intelligen
e readilyavailable. Cognitive approa
hes are 
entred on the me
hanism that allows for thegeneration of thought and the interior workings of 
ognition. This 
alls for an orga-nization of intelligen
e in terms of 
ognitive models. Table 2.2 summarizes the mostrelevant aspe
ts and short
omings of the intelligent ar
hite
ture approa
hes for de-veloping humanoid robots that have been reviewed throughout this 
hapter. Se
tion2.7 presents the proposed framework, followed in the rest of this work, of a 
ogni-tive model for learning and adaptation of skills to task 
onstraints. Our approa
hattempts to attain a basi
 fun
tional level of intelligen
e, allowing a robot the abilityto sense the environment and learn and adapt its a
tions. The framework provideshumanoid robots with systems that allow them to 
ontinuously learn new skills, rep-resent their skills' knowledge and adapt their existing skills to new 
ontexts, as wellas to robustly reprodu
e new behaviours in a dynami
al environment.
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3. LEARNING ROBOT SKILLS MODELSFROM DEMONSTRATIONS.3.1 Outline of the ChapterThis 
hapter presents the methodology followed in this work for learning modelsof robot skills. Robots working alongside humans means there will be 
ontinuously
hanging environments and a huge variability of tasks that the robot is expe
tedto perform: thus, the robot should have the ability to 
ontinuously learn new skillsand adapt the existing skills to new 
ontexts. An important part of the frameworkproposed in the previous 
hapter, and developed through this work, is the learning ofrobot skills. Figure 3.1 shows the framework proposed throughout this work for thelearning and adaptation of robot skills to 
omply with task 
onstraints, highlightingthe module for learning the robot skills dis
ussed in this 
hapter. Learning fromDemonstration (LfD), also known as Robot Programming by Demonstration (RPbD)or Imitation Learning, has appeared as a major trend for developing intuitive 
ontrolmethods. This 
hapter presents important 
on
epts in LfD and the most relevantdevelopments in demonstration learning approa
hes. It also des
ribes the learningpro
ess and algorithms used for learning and en
oding the models of the skills. Finally,the results of the tea
hing and learning pro
ess for various di�erent robot skills arepresented. The organization of this 
hapter is as follows:
• Se
tion 3.2, presents the basi
 notions, and a review of the �eld, of Learningfrom Demonstration (LfD).
• Se
tion 3.3, presents a review of methodologies for tea
hing and building thedemonstration datasets for learning. This in
lude kinaestheti
 tea
hing, visualdemonstrations, motion 
apturing systems to re
ord demonstrations and, gen-erating robot traje
tories with virtual reality or simulated environments.
• Se
tion 3.4, presents the framework employed through this work to learn robotskill motions from demonstrations. The approa
h is based on learning timeindependent models of the motion dynami
s estimated through a set of �rstorder non-linear multivariate dynami
al systems.
• Se
tion 3.5, presents a review of the methodologies used for the en
oding of themodels of the motion dynami
s for learning robot skills.
• Se
tion 3.6, presents a review of the methodologies used for the reprodu
tionof the learned motion dynami
s of robot skills.
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Fig. 3.1: Learning models of robot skills module, highlighted over the proposed 
og-nitive framework for learning and adaptation of robot skills in 
omplian
ewith task 
onstraints. To learn a robot skill, models of the motion dynami
sare built from various human demonstrations of the skill. Robot repli
atesa skill by reprodu
ing the model of the demonstrated skill motion.
• Se
tion 3.7, dis
usses approa
hes for using the learned robot skills as basi
primitives of movement.3.2 Learning from DemonstrationPreviously in se
tion 2.2, the 
hallenges of developing humanoid robots were dis-
ussed. When trying to develop the next generation humanoid robots, with the
apabilities to 
ollaborate and intera
t together with humans and, sharing the samespa
e, tools, and a
tivities with them, there are many important issues that ariseand whi
h motivate the �eld's resear
h dire
tions. Finding suitable solutions to the
hallenges in system design, appropriate materials, power supply, pro
essing 
apa
-ities, motor 
ontrol and sensory per
eption is a fundamental goal. However, even ifit would be possible to have a

ess to an ideal roboti
 system with every desirableproperty, the su

essful operation of a humanoid robot would not be possible withoutdeveloping proper 
ontrol me
hanisms. The 
ontrol algorithms traditionally availableare not nearly versatile, robust or �exible enough to a
hieve the level of 
omplexityof the biologi
al systems whi
h are to be emulated. Missing are the abilities to dealwith large movement repertoires, variable speeds, 
onstraints and un
ertainty in thereal-world environment in a fast, rea
tive manner [Peters et al., 2003℄. Most 
urrentroboti
 systems 
an only solve tasks after the task has been 
arefully analysed andadded to the robot program by a human [S
haal, 1999℄. This requires an impressive



3.2. Learning from Demonstration 65amount of work, resear
h and time, and it is very ine�
ient when it is needed todevelop a broad set of behaviours. The 
lassi
al roboti
s approa
h relies heavily onteleoperation or �xed �pre-
anned� behavior based 
ontrol with very little autonomousability to rea
t to the environment [Peters et al., 2003℄. There are many approa
hesthat rely on the teleoperation 
ontrol of humanoid robots [Hasunuma et al., 2006℄,[Pierro et al., 2009℄, [Glassmire et al., 2004℄, [Neo et al., 2007℄, [Stilman et al., 2008℄,[Evrard et al., 2009℄. A teleoperation system for the 
ontrol of a humanoid robot 
anpresent advantages, like versatility, provided by the human operator when dealingwith various tasks and environments. Yet several 
hallenges arise in humanoid robotteleoperation, from the 
ontrol of the many DOF of humanoid robots, satisfying bothsevere balan
e 
onstraints and the geometri
al and dynami
al di�eren
es between hu-manoid robots and humans, in addition to the regular issues presented in teleoperatedsystems [Chen et al., 2007℄, su
h as, limited FOV, degraded per
eption, time delay,user interfa
e, operator 
ognitive load, et
. As useful as teleoperation 
ontrol 
an befor 
ertain humanoid robot missions, to bene�t from the full potential of humanoidrobots 
ontrol ar
hite
tures 
annot rely only on teleoperation sin
e humanoid robotsare also expe
ted to perform their tasks in an autonomous way. In order to over
omethe need for teleoperation and manual �hard-
oding� of every behaviour, a learningapproa
h is required [S
haal, 1999℄.Robot learning 
overs a large �eld, en
ompassing learning to per
eive, 
ontrol,to plan and, make de
isions, et
. [S
haal and Atkeson, 2010℄. Ma
hine learning al-gorithms have been extensively developed in the last 
ouple of de
ades. Ma
hinelearning te
hniques present wide appli
ation at several levels of robot planning and
ontrol [Mün
h et al., 1994℄, o�ering solutions in 
omputer vision, obje
t re
ognition,grasp planning, robot motion, pattern re
ognition, language pro
essing, et
. Roboti
systems, of the 
hara
teristi
s of the humanoid robots we want to develop, need to beable to learn, and adapt to un
ertainty and unforeseen 
hanges in their dynami
 envi-ronments. Fo
us on this work will 
enter on topi
s of learning 
ontrol, in parti
ular ofrobot learning of motion traje
tories and skills. Learning 
ontrol refers to the pro
essof a
quiring a 
ontrol strategy, at the 
ore of this is the problem of learning a mappingbetween world states and a
tions. This mapping, or poli
y, enables a robot to sele
tan a
tion based upon its 
urrent world state [Argall et al., 2009℄. The goal for a robotlearner is to generalize from its experien
e [Bishop, 2006℄, to �nd appropriate 
ontrolpoli
ies to a

omplish a given movement task. The traditional approa
hes to robot
ontrol of modelling dynami
s and deriving mathemati
ally-based poli
ies is most of-ten a 
hallenging task and heavily dependent upon the a

ura
y of the world model.As a result, ma
hine learning te
hniques have been applied to poli
y development[Argall et al., 2009℄. Robot learning 
an be 
lassi�ed, from the viewpoint of ma
hinelearning, as supervised learning, reinfor
ement learning, learning modularizations orlearning feature representations that subserve learning [S
haal and Atkeson, 2010℄.Robot Programming by Demonstration (RPbD) [Billard et al., 2008℄, appeared asa promising route to automate the tedious manual programming of robots and asa way to redu
e the 
osts involved in the development and maintenan
e of robotsin a fa
tory. Moving from purely preprogrammed robots towards �exible interfa
esfor training robot tasks follows a three-fold motivation. RPbD or LfD is a powerful
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hanism for redu
ing the 
omplexity of sear
h spa
es for learning. It o�ers animpli
it and natural means of intera
ting and tea
hing a ma
hine. It also helps tounderstand the 
oupling me
hanism of per
eption and a
tion [Billard et al., 2008℄.A
quiring e�
ient motor learning, exploring the 
onne
tion between a
tion andper
eption and modular development of motor 
ontrol in the form of movement prim-itives, are three issues at the 
ore of Imitation Learning [S
haal, 1999℄. The ImitationLearning approa
hes fo
us on the development of algorithms that are generi
 in theirrepresentation of the skills and in the way they are generated. Implementing LfDmethods o�ers the possibility of making learning faster, in 
ontrast to tedious rein-for
ement learning methods or trial-and-error learning. LfD formulates user-friendlymethods by whi
h a human user 
an tea
h a robot how to a

omplish a given task,simply by demonstrating this task [Gribovskaya et al., 2010℄, and generalizing thedemonstrated movements a
ross a set of demonstrations. Due to the intuitive natureof the demonstrations, LfD algorithms have the potential of making robots a

essiblefor everyday users, not requiring extensive programming experien
e but rather theability to provide demonstrations of the 
hosen behaviours [Argall et al., 2009℄.A most important question here is what is it that should be learned? The majorgoal of learning 
ontrol is a
quiring a task-dependent 
ontrol poli
y π that maps a
ontinuous-valued state ve
tor x of a 
ontrolled system and its environment, to a
ontinuous-valued 
ontrol ve
tor u. The motor 
ontrol learning is thus 
entred on�nding the generally non-linear fun
tion π that is adequate for a desired behaviour[S
haal and Atkeson, 2010℄.As mentioned above, the ma
hine learning approa
hes for poli
y development
an be mainly divided between unsupervised learning, supervised learning and rein-for
ement learning. Unsupervised learning refers to the problem of �nding hiddenstru
tures in data. No reward or error signal exists to evaluate a potential solutionsin
e the examples given to the learner are unlabelled.Reinfor
ement learning in roboti
s o�ers one of the most general frameworks to-wards true autonomy and versatility [Peters et al., 2003℄. The reinfor
ement learningapproa
h should enable humanoid robots to autonomously learn motor skills from in-tera
tion with the environment, and given only a relatively unspe
i�
 feedba
k on thequality of 
ompleting the task. However, in pra
ti
e, applying reinfor
ement learningto humanoid robots poses several 
hallenges [Stulp et al., 2010℄. The state and a
tionspa
es are 
ontinuous, the learning problems are high-dimensional thanks to the largenumber of DOF in humanoid robots. Exploration in high-dimensional spa
es is 
ostlyand time 
onsuming, and it is di�
ult to a
quire an a

urate model of the robot andits intera
tion with the environment. The greedy poli
y improvement algorithms arelikely to fail to s
ale to the high dimensional systems as their large 
hanges in thepoli
y during learning makes stable algorithms, so far, infeasible. The poli
y gradientmethods are promising te
hniques in terms of s
aling to high dimensional 
ontinuous
ontrol systems, and have been applied in humanoid roboti
s for both walking and�ne manipulation [Peters et al., 2003℄.In Supervised Learning the agent is presented with labelled training data andlearns an approximation to the fun
tion that generated su
h data. LfD 
an be seenas a subset of Supervised Learning [Argall et al., 2009℄. In the s
ope of LfD, the
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Demonstrations Model of the skill ReproductionFig. 3.2: Generalization of a skill by extra
ting the statisti
al model a
ross multipleobservations. Adapted from [Billard et al., 2008℄training dataset is 
omposed of example exe
utions of the task by a demonstrationtea
her. As LfD it is understood the general 
ategory of algorithms in whi
h a poli
yis derived based on demonstrated data. A probabilisti
 transition fun
tion de�nes themapping between the world states S and a
tions A, S × A× S → [0, 1]. The learnerhas only a

ess to observed states Z, sin
e state S is not fully observable, throughthe mapping U : S → Z. A poli
y sele
ts from the set A of a
tions, 
ontaininglow-level motions to high-level behaviours, based on observations of the world state[Argall et al., 2009℄.To reprodu
e a skill in a new situation, the robot 
annot simply 
opy an observedbehaviour; it must have the 
apability to generalize [Calinon, 2009℄. A 
ommon ap-proa
h for generalizing a skill 
onsists of 
reating a model of the skill based on severaldemonstrations, performed in slightly di�erent 
onditions. The goal is to exploitthe variability inherent to the various demonstrations and to extra
t the essential
omponents of the task. Figure 3.2 illustrate this pro
ess.LfD 
overs methods by whi
h a robot learns new skills through human guidan
e.Common to all these approa
hes is the presen
e of a tea
her, providing examplesfor the exe
ution of a desired behaviour, and a learner, provided with a set of thesedemonstrations and deriving a poli
y from su
h examples 
apable of reprodu
ing thedemonstrated behaviour. Distin
tions among LfD methods 
an be made based ontheir 
hoi
e of demonstration approa
h: the 
hoi
e of demonstrator or demonstra-tion te
hnique, the 
hoi
e of state a
tion representation, either dis
rete or 
ontinuousrepresentation and the sele
tion of an algorithm for generating the poli
y. The deter-mination of these de
isions 
an greatly be in�uen
ed by fa
tors su
h as the general do-main, task 
omplexity and robot 
apabilities, and developers preferen
e. Within LfD,the learning problem is thus segmented into two phases: gathering the examples andderiving a poli
y from su
h examples [Argall et al., 2009℄. In LfD a popular methodemploys a probabilisti
 framework gathering information from 
ross-situational obser-vations of a skill with information extra
ted from di�erent so
ial 
ues observed duringthe intera
tion [Calinon and Billard, 2008℄. A key 
on
ept at the bottom of these ap-proa
hes is that of determining a metri
 of imitation performan
e. First it must bedetermined the metri
, weights of the fun
tion for the reprodu
tion of ea
h of the
omponents of the skill. Then it is possible to �nd an optimal 
ontroller for imitationby minimizing the metri
. Relevant problems to address in these approa
hes are, theproblem of extra
ting the relevant features of a given task, the problem of evaluating
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ed and the problem of �nding optimum 
ontrollersto generalize the a
quired knowledge of various 
ontexts [Calinon et al., 2007℄.The demonstrated behaviours 
an be used to learn the appropriate 
ontrol pol-i
y dire
tly by supervised learning. In these methods, 
alled �task-level imitation�[S
haal, 1999℄, a serious 
onstraint is imposed on the need for the state and a
tionof the tea
her to be observable and identi�able. Therefore, a 
oordinate frame basedon variables that 
an be per
eived would be needed to de�ne a movement primitive.Prior knowledge of how a task-level 
ommand 
an be 
onverted into an a
tuator-level
ommand is required. For this purpose, motor 
ontrol needs to be modular, assumingat least separate pro
esses for movement planning and exe
ution. A se
ond approa
hto learning novel behaviours is based on building poli
ies out of the demonstratedtraje
tories. This pro
ess results in data about the movement of the manipulatedobje
t in Cartesian 
oordinates, as well as the movement of the a
tuator in termsof joint angle 
oordinates. Knowledge of the task goal is manually provided in theform of an optimization 
riterion. Based on this knowledge, the robot's performan
eimproves by trial and error learning until the task is a

omplished [S
haal, 1999℄. Athird method employs model-based learning from the demonstrated behaviours tolearn a novel primitive; the dynami
s of the task are approximated in the form ofa predi
tive forward model. Given knowledge of the task goal, the task-level poli
yof the movement primitive 
an be 
omputed with reinfor
ement learning pro
eduresbased on the learned model [S
haal, 1999℄.Resear
h within LfD has seen the development of three 
ore approa
hes to pol-i
y derivation from demonstration data: a mapping fun
tion approa
h 
onsisting oflearning an approximation to the state-a
tion mapping; A system model approa
hbased on learning a model of the world dynami
s and deriving a poli
y from thisinformation. An alternately is planning approa
hes where a sequen
e of a
tions 
anbe produ
ed by a planner after learning a model of a
tion pre and post-
onditions[Argall et al., 2009℄. The mapping fun
tion approa
h to poli
y learning 
al
ulatesa fun
tion that approximates the state to a
tion mapping, f() : Z → A, for thedemonstrated behaviour. These types of algorithms aim to reprodu
e the underlyingtea
her poli
y and to generalize over the set of available training examples. The goalis to a
quire valid solutions for similar states that may not have been en
ounteredduring demonstration [Argall et al., 2009℄. The system model approa
h to LfD pol-i
y learning derives a poli
y π : Z → A using a state transition model, T (s′|s, a),of the world. The transition fun
tion, T (s′|s, a), is generally determined from thedemonstration data and any additional autonomous exploration the robot may do[Argall et al., 2009℄. In the planning framework, the poli
y is represented as a se-quen
e of a
tions that lead from the initial state to the �nal goal state. A
tions areoften de�ned in terms of the state that must be established before the a
tion 
an beperformed, pre-
onditions, and the state resulting from the a
tions' exe
ution, post-
onditions. Demonstration-based algorithms di�er in how the rules asso
iating preand post-
onditions with a
tions are learned, and whether additional information isprovided by the tea
her [Argall et al., 2009℄.The most important issues in the �eld of Imitation Learning are 
ategorized underthe broad spe
trum of four major questions, namely, the set of generi
 questions what



3.2. Learning from Demonstration 69to imitate, how to imitate, when to imitate and who to imitate [Billard et al., 2008℄.A �fth 
entral question on resear
h on Imitation Learning relates to how to evaluate asu

essful imitation attempt [Alissandrakis et al., 2002b℄. Intense resear
h has beenmade into solving these questions, fo
used mainly on te
hni
al approa
hes to answer-ing the what to imitate and how to imitate questions. What to imitate is related to thegeneral problem of `what to learn of a skill'. There are several aspe
ts of a behaviourthat 
ould be imitated. An agent must be able to extra
t the relevant features of agiven task from the `
ues' and 
onstraints that de�ne the `skill' to imitate. An agentis required to build the stru
ture of the knowledge transferred, 
hoosing between twodi�erent kinds of imitation, 
opying the organizational stru
ture of the behaviourversus 
opying the surfa
e form of the behaviour [Alissandrakis et al., 2002b℄. Howto imitate 
onsiders the problem of `how to en
ode a skill', the problem of evaluatinghow the task should be reprodu
ed and the problem of �nding the optimum 
on-troller with whi
h to generalize the a
quired knowledge [Calinon et al., 2007℄. Thelearning algorithm must provide means from whi
h to learn the en
oding of relevantknowledge of the `skill' to build models appropriated for reprodu
tion. Agents mustemploy the appropriate me
hanisms to learn and reprodu
e ne
essary imitating a
-tions [Alissandrakis et al., 2002b℄. The when to imitate and who to imitate questionsare strongly related to the so
ial intera
tion between the imitator and the imitated,these questions have been less explored. When to imitate question refers to the prob-lem of `when it is �t to reprodu
e a skill'. Agents need to learn to re
ognize fromso
ial and environmental `
ues' when a learned imitation `skill' is to be used. Theimitating agents have to segment the demonstrator behaviour and have to de
ide on asuitable time and pla
e for imitation, based on the appropriateness of previous or 
ur-rent observed behaviour in their 
urrent 
ontext [Alissandrakis et al., 2002b℄. Who toimitate 
overs the problem of `observing from whom to learn a skill'. An agent mustre
ognize from so
ial `
ues' and intera
tion imitation demonstrations provided fromother agents, and evaluate their usefulness as an appropriate behaviours to imitate.The agent must 
hoose its demonstrator in order to engage in imitation, produ
e animitated behaviour that is bene�
ial, and at the same time, not to imitate agentswhose tasks and needs are not relevant to the imitator [Alissandrakis et al., 2002b℄.The question of how to evaluate an imitation attempt refers to the need to �nd propermeasures to evaluate behavioural mat
hing [Alissandrakis et al., 2002b℄. Determin-ing a metri
 of imitation performan
e is very important. It must be determine themetri
, weights of the fun
tion for the reprodu
tion of ea
h of the 
omponents of the`skill' [Calinon and Billard, 2008℄. The above questions and their solutions aim atbeing generi
 in the sense of making no assumptions about the type of skills that maybe transmitted [Billard et al., 2008℄.On
e all the features and relevant knowledge of a given task have been extra
tedfrom a set of suitable tea
her's demonstrations, the most fundamental issues be
omeshow su
h information should be 
onverted into a
tions; this 
on
erns the How toimitate question above. For this purpose the 
on
ept of movement primitives, also
alled movement s
hemas, or units of a
tions, is pro
laimed. Movement primitives aresequen
es of a
tion that a

omplish a 
omplete goal-dire
ted behaviour [S
haal, 1999℄.A movement primitive 
an have di�erent forms of representation. Two major trends
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an be identi�ed for the generalization of these task representations: a traje
torylevel and a symboli
 level representation. A task at a traje
tory level is des
ribed bytemporally 
ontinuous signals representing di�erent 
on�guration properties 
hangingover time. A task at a symboli
 level is des
ribed by the sequential or hierar
hi
alorganization of a dis
rete set of primitives that are pre-determined or extra
ted withpre-de�ned rules [Calinon, 2009℄.RPbD or LfD 
ontribute to major advan
es in robot learning, and advan
e thedevelopment of robust 
ontrollers for servi
e, personal, and humanoid robots. LfD isan intuitive 
ommuni
ation medium for human tea
hers and enables the developmentof 
ontrol algorithms to non-roboti
s experts. For a 
omplete review on the �eld see[Billard et al., 2008℄. It also, o�ers solutions to 
ertain weaknesses in traditionalapproa
hes and 
omplements traditional poli
y learning te
hniques. LfD has beensu

essfully applied to many roboti
 appli
ations. The �eld has seen very a
tiveresear
h, as exempli�ed in the works of [Kober and Peters, 2010℄, [S
haal et al., 2007℄,[Ijspeert et al., 2009℄, [Gribovskaya et al., 2010℄, among others.Resear
h into RPbD or LfD has seen important developments in many areas, yetsome issues have re
eived limited attention, these issues in
lude, su�
ient availabilityof state features to adequately des
ribe the task and to allow its learning, the en
od-ing of temporary information and event memory into the demonstration sequen
e;also re
overy operations in the event of en
ountering failures in poli
y derivation orexe
ution, the ability to 
ontinuously learn from its experien
e, the appli
ation ofLfD in multi-robot settings, the development of standardized evaluation metri
s, et
.[Argall et al., 2009℄. Certain outstanding questions remain to be addressed, su
h as,how 
an appropriate movement representation be developed in an automated fash-ion? How 
an new primitives be learned, and old primitives be 
ombined to formhigher level movement primitives? How 
an sequen
ing and re
ognition of sequen
esof movement primitives be a

omplished? Are the me
hanisms for movement gener-ation also dire
tly employed for movement re
ognition? How 
an the demonstratedmovement intentions be re
ognized? And how 
an they be 
onverted to the imitator'sgoal? [S
haal, 1999℄.3.3 Providing Demonstrations of a SkillA LfD framework has many favourable features, as stated in the previous se
-tion; one su
h very attra
tive feature for the development of a demonstration ap-proa
h is that of an intuitive medium for 
ommuni
ation from humans who alreadyuse demonstration to tea
h other humans [Argall et al., 2009℄. Providing demonstra-tions to a humanoid robot agent o�ers a familiar and instin
tive way for non-expertusers to 
ommuni
ate and program the robot behaviours. The Imitation Learningapproa
h allows for a well-known me
hanism, regularly employed for tea
hing andlearning the performan
e of tasks among the general publi
, to be easily used tonaturally intera
t with a robot. LfD provides an impli
it means to fa
ilitate learn-ing for humanoid robots. Demonstrations also have the pra
ti
al feature of fo
usingthe dataset to areas of the state-spa
e a
tually en
ountered during task exe
ution



3.3. Providing Demonstrations of a Skill 71[Argall et al., 2009℄. The LfD or RPbD paradigm to learning 
ontrol has at its 
orethe goal of enabling robots to perform new task autonomously, fo
used on building ap-propriate robot 
ontrol poli
ies derived from observations of a human demonstrationperforman
e. Within LfD, the learning problem is thus segmented into two phases:gathering the demonstration examples and deriving a poli
y from su
h examples[Argall et al., 2009℄. In this se
tion, various te
hniques for exe
uting and re
ordingdemonstrations are dis
ussed.The �rst approa
hes to Imitation Learning, adopted for manipulator roboti
s,
hose to rely on symboli
 reasoning [Billard et al., 2008℄. Due to redu
ed 
ompu-tational power demonstrations 
onsisted of manually pushing the robot through amovement sequen
e [S
haal et al., 2003℄, divided into subgoals and into appropriateprimitive a
tions, 
ommonly 
hosen to be simple point-to-point movements. Thedemonstrated tasks were segmented into sequen
e of state-a
tion-state transitions,and from them 'if-then' rules were extra
ted, des
ribing the states and a
tions a

ord-ing to symboli
 relationships [Billard et al., 2008℄. The �eld moved gradually from
opying movements to generalizing over sets of demonstrations. [Mün
h et al., 1994℄suggested using ma
hine learning to re
ognize Elementary Operators, de�ning dis-
rete sets of basi
 motor skills, learning tasks by generalizing over a sequen
e ofdis
rete a
tions. However, this was only one part of the problem and learning 
on-tinuous traje
tories to 
ontrol a
tuators were also required [Billard et al., 2008℄. Asma
hine learning, roboti
 and sensor systems have experien
ed advan
es in theirrespe
tive �elds. Imitation Learning has been in�uen
ed by non-symboli
 learningtools, in
luding, arti�
ial neural networks, radial-basis fun
tion networks, fuzzy logi
,statisti
al learning, et
. [S
haal et al., 2003℄. More re
ent trends take inspirations onpro
esses of animal imitation, taking into a

ount eviden
e of neural-me
hanism forvisuo-motor imitation in primates, and developmental stages of imitation 
apa
itiesin 
hildren [Billard et al., 2008℄. In essen
e 
urrent works follow mostly a 
on
eptualapproa
h, very similar to that of early approa
hes, as re
ent progress has mainlya�e
ted only the interfa
es to support tea
hing. New elements in
lude the use of
omputer vision, data gloves, laser range �nder, kinaestheti
 tea
hing, marker-basedobservation systems, et
. [S
haal et al., 2003℄.An LfD dataset is 
omposed from the state-a
tion pairs re
orded during tea
herexe
ution of demonstrated behaviours. A majority of work on LfD makes use ofhumans demonstrations, while some te
hniques explore the use of roboti
 tea
hers,hand-written 
ontrol poli
ies and simulated patterns [Argall et al., 2009℄. An im-portant matter for a demonstration approa
h to be su

essful is that states anda
tions provided by the learning dataset be usable by the robot, by 
onstraining thedemonstrations modality the robot 
an understand and providing su�
ient exam-ples to a
hieve desired generality [Billard et al., 2008℄. Demonstrations are de�nedas re
orded traje
tories in the tea
her's state spa
e, with identi�able start and endpoints and pro
eeding through a �nite number of steps. For a well formed set ofdemonstrations the tea
her must 
onvene to the learner all ne
essary information ofthe task spa
e to fully generalize the demonstrated knowledge of a task. The de�-nition outlined above aimed at being general and makes no assumptions about thetype of traje
tories or task that are demonstrated, what and how the variables are
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orded, what platform is use during exe
ution, and what types of representationsare employed. The 
hoi
e of demonstrator and the demonstration te
hnique are twokey de
isions when gathering tea
her demonstrations [Argall et al., 2009℄. Choosinga demonstrator is additionally de
omposed into the 
ontroller of the demonstratorand the exe
uter of the demonstration. Choosing a demonstration te
hnique furtherrefers to strategies for providing the data to the learner and the sele
tion of algorithmsfor deriving a poli
y.The major fo
us in RPbD or LfD works is in the sele
tion and development ofalgorithms for poli
y derivation. Yet studying the learning pro
ess, the �owing of in-formation from tea
her to robot learner, is also important. In 
hoosing demonstrationte
hnique strategies for the learning pro
ess and for providing data for the learningme
hanism are sele
ted. Options in
lude bat
h learning, self-improvement and inter-a
tive approa
hes. For bat
h learning, the demonstrations are sampled beforehand,either be
ause 
olle
ting the data is di�
ult or pro
essing it is too time 
onsumingand it is more pra
ti
al to 
olle
t the data all at on
e. In bat
h learning the pol-i
y is learned only after all data has been gathered [Argall et al., 2009℄. Tea
hers'demonstrations must 
over the behaviour su�
iently to ensure adequate generaliza-tion. For self-improvement learning, demonstrated data is also 
olle
ted at the onsetof the learning approa
h; it is separated from bat
h learning in that self-improvementinvolves generating new samples from the learning of the original demonstrationswhi
h in turn are used to drive the improvement of the poli
y itself. For intera
tivelearning approa
hes, the learning pro
ess is also iterative, learning must be qui
kerand demonstration easier to a
quire 
ompared to bat
h learning approa
hes. In in-tera
tive learning, the poli
y 
an be updated in
rementally as learning data is madeavailable [Argall et al., 2009℄. Intera
tive learning allows tea
hers to provide addi-tional demonstration to target observed errors in the robot's reprodu
tion.Another important 
hoi
e is sele
ting the information to re
ord from the demon-stration examples. Re
orded sensory information must be parsed into knowledgeabout obje
ts and their spa
ial lo
ation in a 
oordinate system whether internal orexternal. Some information should be
ome available on the posture of the tea
herand/or positions of obje
ts, if any are involved, while moving [S
haal et al., 2003℄.Afterwards, this information needs to be 
onverted into a
tion. Common approa
hes
reate model of the skill based on sets of demonstrations performed in slightly dif-ferent 
onditions generalizing overt the inherent variability to extra
t the essential
omponents of the skill [Billard et al., 2008℄.The knowledge of the task, extra
ted from demonstrations of the states and a
tionsin the tea
her's dataset, must be relevant and usable to the learner for a su

essfulImitation Learning approa
h. In an ideal set-up, states and a
tions of the tea
herexe
ution would map dire
tly to the learner's embodiment. However, in pra
ti
e, adire
t mapping is generally not possible, as it is most likely to �nd that the learnerand the tea
her will di�er in their sensing and me
hani
al systems and 
apa
ities[Argall et al., 2009℄. In nature, even two humans or animals of the same spe
iesin spite of their morphologi
al similarities would still present dissimilar mappings astheir height, weight, mus
le build, stamina and so on, would di�er between them. Forhumanoid robots learning from a human tea
her, even though an attempt is made at
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ating its fun
tionalities, a dire
t mapping would not be possible as they don't a
tin the environment in the same manner. Even when dealing with a robot tea
her andlearner, in
luding robots of identi
al types, dissimilar mappings are likely to o

ur dueto di�eren
es in their respe
tive sensory-motor 
hara
teristi
s. The 
hallenges whi
harise from these di�eren
es are broadly referred to as the Corresponden
e Problem[Nehaniv et al., 1998℄.In order to mat
h reprodu
tion of an observed behaviour in a 
opying, imitationor mimi
ry approa
h, it is important that a suitable 
orresponden
e is established. Toa
hieve a behavioural mat
h a 
orresponden
e must expli
itly or impli
itly be present[Nehaniv et al., 1998℄. Di�erent 
orresponden
es 
ould be required depending on thetype of task to imitate, whether it is desired to mat
h individual a
tions or globalgoals, or how tea
her and learner sensory-motor 
hara
teristi
s di�er from ea
h other.The Corresponden
e Problem is 
ir
ums
ribed to determining partial 
orrespon-den
e between states and events for the imitator and those of the model to imitate, andto sear
h for an appropriate relational morphism ensuring a su�
ient degree of 
orre-sponden
e between them for imitation to be possible [Nehaniv and Dautenhahn, 2001℄.As outlined above, dealing with issues of 
orresponden
e is important sin
e exa
t
opying of behaviours, even when there is similar embodiment, is almost never possi-ble [Nehaniv et al., 1998℄. Solving these dis
repan
ies in sensory-motor 
apabilities ofagents is a problem related to the how to imitate question. It is important to note that
orresponden
e need not be a one-to-one mapping, it 
an take many forms; also su
-
essful imitation does not ne
essarily involve a �xed mapping 
orresponden
e, a par-tial mapping 
ould also be an useful 
orresponden
e [Nehaniv and Dautenhahn, 2001℄.Simple one-to-one 
orresponden
e 
annot exist between the joints of two agents witha di�erent number of DOF, as often would be the 
ase among robots. A robot may,however, still imitate a human su

essfully, e.g. in a waving task, without requiringthat it has the same number and type of joints as the human whose behaviour itemulates using a parti
ular 
orresponden
e [Nehaniv et al., 1998℄. Humans and hu-manoid robots, although intera
ting in the same environment and using the sameobje
ts, would still per
eive and a
t in the world in very di�erent ways due to theirdi�eren
e in stru
ture, form, DOF, sensors, and abilities. Corresponden
e, neverthe-less, 
an still be found regarding to two di�erent dimensions, a per
eptual equivalen
e,dealing with the di�eren
es in whi
h the agents 
an per
eive the world, and a physi
alequivalen
e dealing with the di�eren
es in whi
h the agents 
an perform the task inthe world.A

ording to [Nehaniv and Dautenhahn, 2001℄, for a behaviour to be 
alled imi-tation, a 
orresponden
e of per
eption, both extero
eptive and proprio
eptive, mustexist between model and follower. While 
orresponden
e in form, stru
ture, dynami
sof a
tions and behavioural repertoire are also very important aspe
ts, a 
orrespond-ing per
eption of a shared 
ontext between the model and imitator is a fundamen-tal requirement for imitation. This shared 
ontext 
an be �xed, whether designedby nature or arti�
ially engineered, a

idental, opportunisti
, or a
tively established[Nehaniv et al., 1998℄. With an insu�
ient per
eptual 
orresponden
e, an agent 
ouldstill be able to follow or mimi
 another agent's behaviour; however, the agent 
annotperform the behaviour alone; unless it has per
eptions 
orrelating to those of the
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ular behaviour 
an take pla
e.It is possible to distinguish with respe
t to how the events of an imitator `
orre-spond' to the distin
t types of imitation of the imitatee: a
tion-level imitation, wherethe imitator is set to 
arry out a
tions exa
tly as in the imitated system; where thepurpose of the behaviour lies in a
tion-mat
hing rather than fo
using on a parti
ularresulting state [Nehaniv and Dautenhahn, 2001℄; program-level imitation, where theimitator 
arries out an identi
al program 
on
eived as a stru
ture of hierar
hi
al sub-routines; it entails a
quiring a program of a
tion that makes use of a solution to the
orresponden
e problem. Program-level imitation fo
uses attention on 
omponents ofthe behavioral program rather than the stru
tural [Nehaniv and Dautenhahn, 2001℄;e�e
t-level imitation, where the imitator's 
on
ern is obtaining results similar to thoseof the imitatee, rather than with mat
hing spe
i�
 a
tions; for e�e
t-level imitation,trying to imitate, relies on dis
overing a�ordan
es to attain e�e
ts 
orresponding tothose attained by the agent being imitated [Nehaniv and Dautenhahn, 2001℄.No generi
 solution exists to solve 
orresponden
e problems so task spe
i�
 equiv-alen
es are formulated for ea
h 
ase. To �nd proper mappings between like individ-uals of the same kind or spe
ies 
an be natural and dire
t. Determining the map-pings between dissimilar bodies is a problem dependent on the observer point of view[Nehaniv and Dautenhahn, 2001℄. The judgement of the degree of su

ess or failureof an imitative behaviour is observer-dependent; the observer, either the demonstra-tor, the learner, or a possible third party, has a 
entral role at judging whetheror not an exhibited behaviour mat
hes that of a model [Nehaniv et al., 1998℄. Thesubje
tive notion of observer-attributed goals must be transformed to a well-de�nednotion of metri
s. By 
hoosing the metri
s, one is 
hoosing whi
h states of thedemonstrator are deemed to mat
h those of the imitator and how 
losely they mat
h[Nehaniv and Dautenhahn, 2001℄. A metri
 provides a quanti�able method to mea-sure the error of an attempted imitation, whi
h the imitator uses to evaluate its ownsu

ess [Alissandrakis et al., 2002a℄. Degrees of su

ess 
an be formalized by metri
sin states and a
tions and measures of 
orresponden
e with respe
t to a
hieving someresult.As a formal de�nition [Nehaniv et al., 1998℄, a 
orresponden
e between two au-tonomous agents is a relation of states Φ ⊆ X×Y and sequen
e of a
tionsΨ ⊆ Σ∗×∆∗satisfying:
∀x ∈ X and y ∈ Y, if(x, y) ∈ Φ and (σ, δ) ∈ Ψ, then (x, y, σ, δ) ∈ Φwhere the state of the systems are represented as X , and Y , and the a
tions-eventsare represented as Σ, and ∆. A 
orresponden
e or mapping to model (Y,∆) fromimitator (X,Σ) is a relational homomorphism: φ : (X,Σ) → (Y,∆). A sequen
eof a
tion-events for system (X,Σ) given by w ∈ Σ∗ is said to mat
h su

essfullya sequen
e z ∈ ∆∗ in another system (Y,∆) if w a
hieves the same e�e
ts as z[Nehaniv and Dautenhahn, 2001℄. The solutions to 
orresponden
e problems resultfrom su

essful attempts at imitation [Nehaniv et al., 1998℄.Di�erent methods 
ould be 
lassi�ed in a

ordan
e to the variables employed bylearning whi
h are assumed to be observable, are they kinemati
 or kineti
, are in-ternal or external 
oordinates used for the demonstrations, are task goal expli
it
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. [S
haal et al., 2003℄. Approa
hes for gathering demonstration data
an be 
ategorized in respe
t to 
orresponden
e of two mappings, an embodimentmapping, whi
h is 
on
erned with how the re
orded state-a
tions on the datasetmat
hes those whi
h the learner would exe
ute; and a re
ord mapping, whi
h relatesto how the states-a
tions of the tea
her are re
orded within the demonstration dataset[Argall et al., 2009℄. When exa
t states-a
tion experien
ed by the tea
her are dire
tlyre
orded in the demonstration dataset the identity I(Z,∆) 
onstitutes the re
ordmapping, where Z are the observable states, and ∆ are the a
tions. If not a re
ordmapping, gE(Z,∆) 6= I(Z,∆), is needed to en
ode the tea
her's demonstrationswithin the dataset. Analogously, when the states-a
tions are mapped dire
tly to thelearner for exe
ution the embodiment mapping is the identity I(Z,∆). In any otherway an embodiment, gR(Z,∆) 6= I(Z,∆), exists to map the learner's exe
ution of there
orded demonstrations. This mapping does not 
hange the 
ontents of the demon-strated dataset, only the referen
e frame whi
h represents it [Argall et al., 2009℄. Fur-ther 
ategorization of LfD approa
hes for data a
quisition 
an be made a

ording towhether re
ord and embodiment mappings are present. The presen
e of more map-pings in
reases the di�
ulty of re
ognizing and reprodu
ing the tea
her's behaviour.Yet, it also redu
es tea
her 
onstraint and helps improve generality of the demon-stration te
hnique [Argall et al., 2009℄. Approa
hes are �rst split into two 
ategoriesbased on the embodiment mapping and then further distinguished, within these 
at-egories, based on the re
ord mapping.The 
ase when there does not exist an embodiment mapping, that is gE(Z,∆) ≡
I(Z,∆), is denominated as demonstration. Here, the tea
her demonstrations of be-haviour are performed dire
tly by the learner platform or a representation thereof,and the embodiment mapping is not an issue. However, a non-dire
t re
ord mapping
an exist, thus dividing approa
hes for providing demonstration data as teleopera-tion and shadowing, [Argall et al., 2009℄. For teleoperation, the tea
her operates thelearner platform and the exe
ution is re
orded by the learner's own sensors. There
ord mapping is dire
t, gR(Z,∆) ≡ I(Z,∆). Among all the methods teleoperationis the most dire
t for transferring learning data, however, it is required that the opera-tion of the robot be manageable for the learners whi
h is not always possible, makingit a te
hnique not suitable for all systems [Argall et al., 2009℄. In shadowing, thelearner re
ords its exe
ution while trying to mimi
 or 
opy the tea
her demonstratedbehaviours. The re
ord mapping is not dire
t, gR(Z,∆) 6= I(Z,∆). The shadowingmethod requires an additional 
omponent to enable the learner to tra
k and shadowthe tea
her exe
ution [Argall et al., 2009℄.The 
ase where the embodiment mapping do exist, that is gE(Z,∆) 6= I(Z,∆),is denominated as imitation. Here, the tea
her demonstrations are performed on aplatform that is di�erent from the learner platform, therefore embodiment mappingis an issue to regard. Equally as in the 
ase of demonstration, the re
ord mapping 
anexist or be the identity, thus dividing approa
hes for providing imitation as sensorson tea
her and external observation [Argall et al., 2009℄. In sensors on tea
her, theplatform exe
utions are re
orded by sensors dire
tly on itself. The re
ord mapping isdire
t, gR(Z,∆) ≡ I(Z,∆). The sensors on tea
her method 
an provide more pre-
ise measurements of the example exe
ution, however, appli
ability of this te
hnique
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Fig. 3.3: Interse
tion of the re
ord and embodiment mappings. Adapted from[Argall et al., 2009℄. The demonstration te
hnique 
an be divide, a

ord-ing to its re
ord and embodiment mappings into four quadrants. (top-left)Teleoperation demonstration when both re
ord and embodiment mappingsare dire
t. (top-right) Sensors on tea
her imitation when there exist anon-dire
t re
ord mapping. (bottom-left) Shadowing demonstration whenthere exist a non-dire
t embodiment mapping. (bottom-right) Externalobservation when both re
ord and embodiment mappings are non-dire
t.
an be limited by the overhead asso
iated with the need to use spe
ialized sensors[Argall et al., 2009℄. For external observations, the data from the tea
her exe
utionsare re
orded by sensors externally lo
ated to the exe
uting platform, these sensorsmay or may not be lo
ated on the learner's platform. The re
ord mapping is notdire
t, gR(Z,∆) 6= I(Z,∆). The external observation method is less reliable as un-
ertainty in
reases from having to infer the tea
her states-a
tions from re
orded data[Argall et al., 2009℄.Many te
hniques have been employed throughout the �eld for providing and gath-ering the demonstration datasets; most popular among them are teleoperation, datagloves, hapti
 devi
es, kinaestheti
 tea
hing, motion 
apture systems, virtual sim-ulations environments, spee
h intera
tion and 
omputer vision [Billard et al., 2008℄.As outlined above, the role of the interfa
e employed at gathering the demonstra-tions plays a signi�
ant role. In this se
tion, four important te
hniques for providingdemonstrations to a humanoid robot, 
orresponding to the previous 
ategorization,are reviewed. Figure 3.3 summarizes the approa
hes' review for gathering and build-
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Fig. 3.4: Kinaestheti
 Tea
hing of a Skill: (left) A human tea
her operates theHOAP-3 robot arms through a demonstration of the skill. (right) TheHOAP-3 robot reprodu
es the re
orded demonstration of the skill.ing the demonstrations datasets, and how they interse
t with the 
onsidered re
ordand embodiment mapping of 
orresponden
e.Kinaestheti
 Tea
hingOne method for providing demonstrations of the motion to the robot is by meansof kinaestheti
 tea
hing. The kinaestheti
 tea
hing pro
ess [Calinon, 2009℄, 
onsistsof using the motor en
oders of the robot to re
ord information while the tea
her movesthe robot's arms. To re
ord the demonstrations the robot motors are set in a passivemode, a human demonstrator, standing beside the robot, moves simultaneously therobot's arms as it performs the motions.In kinaestheti
 tea
hing the robot is operated by the tea
her while re
ording fromits own sensors. The re
ord mapping is therefore dire
t, gR(Z,∆) ≡ I(Z,∆). Sin
ethe demonstration is performed on the a
tual robot learner, the embodiment mappingwill also be dire
t, gE(Z,∆) 6= I(Z,∆), just like the des
ribed 
ategory of teleopera-tion, as represented by the top left quadrant of Figure 3.3.In this work, kinaestheti
 tea
hing was employed to tea
h several demonstrationsto a humanoid robot by operating the robot arms in the performan
e of di�erentmotions. The kinemati
s of ea
h joint motion were re
orded at a rate of 1000Hzduring the demonstrations and were then re-sampled to a �xed number of points.The robot is provided with motor en
oders for every DOF, ex
ept for the hands andthe head a
tuators. The pro
ess is illustrated in Figure 3.4 for the tea
hing of a skillwith the humanoid robot HOAP-3.Providing demonstrations to the robot by means of kinaestheti
 tea
hing is ad-vantageous on several fronts. As dis
ussed above for teleoperation, it is the mostdire
t method, and sin
e both mappings are the identity there is not 
orresponden
eproblem. Also, it provides the human tea
her with knowledge of the robot platformlimitations when performing the demonstrations. However, the manageability of therobot operation is an issue. It would be di�
ult to provide 
omplex demonstrationsrequiring the human to move several limbs simultaneously. And it limits the human
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Fig. 3.5: Demonstrations in a Motion Capture Systems: (left) A human tea
herperforms a demonstration. (right) The generated skeleton of the humanre
orded demonstration.tea
her's ability of performing the demonstration naturally, as they would be doing itthemselves; spe
ially when the human and the robot have very di�erent embodiments.Motion Capture SystemsMotion Capture (MoCap) is the term that des
ribes the pro
ess of re
ording themotion of the human or animal body, where the re
ording pro
ess 
ould be in realor delayed time. MoCap involves the mapping of human motion onto the motionof a 
omputer 
hara
ter or Skeleton. This mapping 
an be dire
t, su
h as a humanarm motion 
ontrolling a 
hara
ter's arm motion, or indire
t, su
h as a human handand �nger patterns 
ontrolling a 
hara
ter's skin 
olor or emotional state. There aretwo main te
hnologies used in motion 
apture. Inertial Motion Capture te
hnology,were the systems are based on inertial measurement sensors. During the motion, thedata 
aptured from the inertial sensors is often transmitted wirelessly to a 
omputer.Opti
al systems, were opti
al sensors and one or more 
ameras are used to estimatethe 3D position and orientation of the human body segments during the motion. Forthe opti
al systems, markers are generally atta
hed to the human body, whi
h arelo
ated on the joint or the body part needed to be 
aptured. The number and thetype of these markers and the number of the 
ameras used in the system depend onthe 
omplexity of the motion to be 
aptured [Dyer et al., 2013℄.In tea
hing demonstration to the robot re
orded by a motion 
apture system, there
ording sensors are lo
ated dire
tly on the tea
her exe
uting the task. This meanstherefore, that there is no re
ord mapping, gR(Z,∆) ≡ I(Z,∆). Imitation, however,is dire
tly performed by the tea
her and not the robot, therefore the embodimentmapping is not dire
t, gE(Z,∆) 6= I(Z,∆), just as it is for the des
ribed 
ategory ofsensors on tea
her, as represented by the top right quadrant of Figure 3.3.Currently there are several di�erent options of equipment that 
an be used forMoCap systems, although they remain a little pri
ey. Alternatively, many libraries
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Fig. 3.6: Tea
hing Demonstrations in Simulated Environment: (left) A humantea
her provides demonstration to the virtual HOAP-3 robot. (right) TheHOAP-3 robot reprodu
es the re
orded demonstration of the skill.and databases of available 
apture motions, su
h as, the CMU Graphi
s Lab MotionCapture Database do exist. Future work for this thesis would require to also use theselibraries to build a vast repertoire of demonstrations to learn robot skills. Figure3.5 illustrates the pro
ess of motion 
apture from one of the motions in the CMUdatabase.Providing demonstrations to the robot by means of a MoCap system 
an be ad-vantageous, as dis
ussed above for sensors on tea
her, as it 
an provide more pre
isemeasurements of the example exe
ution. Also, the human tea
her 
an perform thedemonstrations naturally. However, this te
hnique requires the use of spe
ializedsensors, and sometimes the 
onditioning of a dedi
ated room just for these systems,making the system 
omplex and expensive and was thus not used in this work.Simulated EnvironmentAnother method for providing demonstrations of the motion to the robot is byemploying simulated environments. For instan
e, the demonstrations of the skill 
anbe provided by a human tea
her by means of a virtual simulator interfa
e. A humantea
her 
an provide demonstrations to a simulated robot in a virtual environment,either by a joysti
k, mouse or any other appropriated input devi
e.In tea
hing the robot under a simulated environment the demonstrations arere
orded by the simulator's virtual interfa
e, meaning that a re
ord mapping exists,and gR(Z,∆) 6= I(Z,∆). The demonstrations, however, are performed on a simulatedrobot learner, the embodiment mapping will therefore be dire
t, gE(Z,∆) ≡ I(Z,∆),just like the des
ribed 
ategory of shadowing, as represented by the bottom left quad-rant of Figure 3.3.In this work the Open Roboti
s Automation Virtual Environment, (OpenRAVE)[Diankov and Ku�ner, 2008℄, was used to develop a simulated environment to 
ontrola humanoid robot HOAP-3. A 3D model of the real HOAP-3 robot is loaded into the
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Fig. 3.7: Visual Demonstrations Tea
hing of a Skill: (left) A human tea
her per-forms a demonstration. (right) The generated skeleton of the humanre
orded demonstration.OpenRAVE environment. The simulated HOAP-3 is 
ontrolled by a human operatorwhi
h provides the virtual robot with demonstrations of the task. The pro
ess isillustrated in Figure 3.6 for the tea
hing of a skill to a humanoid robot HOAP-3simulated in OpenRAVE.Providing demonstrations to the robot with a simulated environment 
an be ad-vantageous in that it 
an allow the human tea
her better 
ontrol over the learner andthe demonstration environment. Also, it 
an be safer to intera
t with a simulatedversion of the robot and not with the real robot platform. However, as dis
ussedabove for shadowing, it requires an additional 
omponent to enable the learner totra
k and shadow the tea
her exe
ution. Also, the re
ord mapping is not dire
t andthe 
orresponden
e problem must be dealt with.Visual DemonstrationA robot platform provided with its own set of 
ameras and vision sensors 
an alsore
ord the tea
her demonstrations by itself. The human tea
her would simple performthe demonstrations of the motion in front of the robot vision system. Computer visionalgorithms 
an be employed to build a system 
apable of tra
king human motions, asit performs the demonstrations, with the robot 
ameras.In tea
hing the robot by visual demonstrations of the skill, the imitation relies ondata re
orded by sensors lo
ated externally to the exe
uting platform, meaning thata re
ord mapping exists, and gR(Z,∆) 6= I(Z,∆). The demonstrations, however,are performed by the human tea
her and the embodiment mapping would not beidenti
al, gE(Z,∆) 6= I(Z,∆), just like the des
ribed 
ategory of external observation,as represented by the bottom right quadrant of Figure 3.3.In this work, visual demonstrations are provided to the robot learner using thestereo robot 
ameras equipped within the robot or via a Mi
rosoft Kine
t sensor[Mi
rosoft, 2013℄, and the appropriate 
omputer vision software modules implementedto tra
k a

ordingly the motions of the human tea
her performing the desired skills.The pro
ess is illustrated in Figure 3.7 for the tea
hing of the skill with visual demon-
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rosoft Kine
t sensor.Providing demonstrations to the robot by visual demonstrations is advantageousin that it is a simpler and 
heaper method than a MoCap system. Also, demonstratingthe skills visually to a robot re
ording from its own sensors provides a more naturaland intuitive way for a human tea
her to intera
t with a robot as it 
ould be able toperform as it would typi
ally do if intera
ting with another human partner. However,as dis
ussed above for external observation, it is less reliable as un
ertainty in
reasesfrom having to infer the tea
her states-a
tions from re
orded data. And it for
es usto deal with both re
ord and embodiment 
orresponden
e problems.Ea
h of these interfa
es presents positive and negative aspe
ts, for instan
e, in the
ontext of tea
hing humanoid robots, imitation approa
hes relying on motion 
apturesystems or visual demonstrations are parti
ularly suitable to human tea
hers sin
ethey would be able to provide the demonstrations naturally, performing as it would inregular situations of human intera
tion, while a teleoperation or kinaestheti
 approa
hwould prove more di�
ult to the tea
her, sin
e 
ontrolling all the DOF of the learner
ould be a 
omplex task. However, a kinaestheti
 approa
h also provides its ownadvantages by allowing the demonstrator more dire
t 
ontrol of the learner platformreprodu
tion. Exploring the way these interfa
es 
ould be employed together toexploit 
omplementary information and short-
ir
uiting its respe
tive disadvantages,would be an interesting topi
.Apart from the tea
hing interfa
e employed, within the 
ontext of gatheringtea
her demonstrations several issues and limitations should also be addressed. Su
has the manageability of the large streams of data 
omprising the dataset, whi
h 
ouldbe typi
ally at rates from 60 to 1,000 data points per se
ond [S
haal and Atkeson, 2010℄,whi
h must be used for 
ontinuous learning without degradation over time. Availabil-ity of the training data, is an important limitation, for most general 
ases; the tea
herwould be in
apable of providing a demonstration for every possible state of the task,dealing with under demonstrated datasets raises many questions that the learningsystems need to address, most 
ommon approa
hes would attempt at generalizingfrom the existing demonstrations or re-engaging the tea
her to provide additionalinformation [Argall et al., 2009℄. One major 
omplexity 
omes from the high dimen-sionality of the learning data, in parti
ular for more 
omplex robot systems su
h ashumanoid robots. Ideally learning should happen in real time; this requires 
om-putationally tra
tability, e�
iently data management, robustness towards shiftinginput distributions and 
apa
ity for dis
overing relevant features, while automati-
ally ex
luding irrelevant or redundant inputs, from hundreds or thousands of inputdimensions [S
haal and Atkeson, 2010℄.The performan
e of the learner 
an also be limited by poor quality of the dataprovided by the demonstrations. A tea
her demonstration may be ambiguous, unsu
-
essful or suboptimal in 
ertain areas of the state spa
e [Argall et al., 2009℄. Tea
herfeedba
k must, beyond evaluating performan
e, also provide 
orre
tion of the exe-
uted behaviour. The gathering demonstration pro
ess is greatly in�uen
ed by theevolution of the robot intera
tion with the human. Several insights from the �eld ofHuman-Robot Intera
tion (HRI) are explored in order to make the transfer of skillmore e�
ient [Billard et al., 2008℄. The role of the tea
her is one of the most im-
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omponents of attention for an e�
ient transfer of skill, where an a
tiveparti
ipation of the tea
her, not only for demonstrating the skill but also to re�ne thea
quired model, allows the learner to adapt the skill for parti
ular body 
apa
ities[Calinon and Billard, 2008℄.3.4 Learning a Robot SkillAn aim of this work is to learn models of robot skills for humanoid robots; thelearned robot skills should latter be used to build a knowledge base of robot skills. Totea
h and learn the robot skills a LfD framework is implemented. The motivations foradopting a LfD approa
h have been outlined in the previous se
tions; it provides intu-itive and user-friendly methods to tea
h tasks to a robot by demonstrating the skills,and they don't require the user to have expert programming skills. It also, redu
esthe 
ost of developing automated planning and manual programming of robot 
ontrol,and speeds up the learning pro
ess, as opposed to reinfor
ement learning methods,redu
ing 
omplexity of sear
h spa
es, giving prior knowledge of task performan
e.The LfD approa
hes fo
uses on the development of algorithms that are generi
in their representation of the skills and in the way they are generated. One 
ommonapproa
h 
reates models of the skill based on sets of demonstrations performed inslightly di�erent 
onditions, generalizing about the inherent variability to extra
t theessential 
omponents of the skill [Calinon, 2009℄. Current approa
hes to generalizinga skill 
an be broadly divided into two trends: a symboli
 en
oding, providing a high-level representation of the skill, in whi
h the demonstrated task is de
omposed into asequen
e of state-a
tion-state transitions; and traje
tory en
oding, providing a low-representation for the skill, taking the form of non-linear mapping between sensoryand motor information. The most promising approa
hes are those that en
apsulatethe dynami
s of the movement into the en
oding [Billard et al., 2008℄. Generaliza-tion is important sin
e it is not possible to demonstrate all the motions the robot isexpe
ted to perform and the learned motions must be appli
able to 
ontexts not seenduring training. Working in dynami
ally 
hanging environments, it is ne
essary toadjust the desired traje
tories appropriately, or to generate new ones by generalizingfrom previously learned knowledge [S
haal et al., 2007℄. Statisti
al ma
hine learn-ing approa
hes are a popular me
hanism for en
oding 
hanging 
orrelations a
rossvariables and observed variations from multiple demonstrations of the movement.Generi
 approa
hes must allow the robot to automati
ally extra
t relevant featuresof the task and sear
h for a 
ontroller to optimize their reprodu
tion.Employing statisti
al learning te
hniques is a popular trend for dealing with thehigh variability inherent to the demonstrations. Traditional means were based onspline �tting te
hniques to deal with the un
ertainty 
ontained in several motiondemonstrations [Ude, 1993℄, [Aleotti and Caselli, 2006℄. Non-linear regression te
h-niques were proposed as a statisti
al alternative to spline-based representations. Anumber of authors exploited the robustness of Hidden Markov Models (HMMs) foren
oding temporal and spatial variations and modelling various types of motion[Tso and Liu, 1996℄, [Yang et al., 1997℄. Popular approa
hes used Gaussian Mix-
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ode a set of traje
tories, and Gaussian Mixture Regression(GMR) to retrieve them [Calinon et al., 2007℄, [Calinon and Billard, 2008℄. The workof [Chatzis et al., 2012℄ proposed an extension of GMR-based learning by demonstra-tion models to in
orporate 
on
epts from the �eld of quantum me
hani
s. Di�erentapproa
hes [S
haal and Atkeson, 1998℄, used Re
eptive Field Weighted Regression(RFWR) to learn pie
ewise linear models with non-parametri
 regression te
hniques.Autonomous dynami
al systems have also been proposed as an alternative approa
h,representing movements as mixtures of non-linear di�erential equations with well-de�ned attra
tor dynami
s [Ijspeert et al., 2001℄.E�orts in Imitation Learning fo
us on three important issues: e�
ient learningof motor 
ontrol; organizing relation of per
eption and a
tion units; and a
hievingmodular motor 
ontrol in the form of movement primitives [S
haal, 1999℄. Learningmotor 
ontrol requires mapping world states and a
tions, a given motor movement
an generally be formalized as a poli
y in terms of the expression,u = π(x, α) (3.1)whi
h maps the state ve
tor, x, to a 
ontrol ve
tor of the system, u. The ve
-tor, α, 
ontains task spe
i�
 and adjustable parameters shaping the poli
y. Themajor goal of learning 
ontrol being 
entred around �nding a generally non-linearfun
tion π, the motor 
ontrol poli
y, adequate to reprodu
e a desired behaviour[S
haal and Atkeson, 2010℄. Imitation Learning 
overs the algorithms by whi
h arobot learns a poli
y based on demonstrated data. As mentioned in previous se
tions,the learning problem is segmented between gathering the demonstrations, in
ludingthe 
hoi
e of a demonstration te
hnique, and deriving a poli
y from the demonstra-tions, in
luding the sele
tion of an algorithm for generating this poli
y. Signi�
antproblems to address in these approa
hes are the problem of extra
ting the relevantfeatures of a given task, the problem of evaluating how the task should be reprodu
edand the problem of �nding optimum 
ontrollers to generalize the a
quired knowledgeof various 
ontexts [Calinon et al., 2007℄.The Robot Skills Models learned in this 
hapter would form a set of basi
 primi-tives of a
tion from whi
h a skills knowledge base is built for generating, adapting,and reprodu
ing more 
omplex tasks in the right 
ontext. Suitable models of therobot skills must promote the simple learning and representation of desired traje
-tories. Robot skills ought to en
lose all the general knowledge of the task to allowgeneralization of the skill for reprodu
tion and to form full goal-dire
ted motions anda set of basi
 units of a
tion. Robot skills should also present 
ertain properties su
has autonomous behaviour without expli
it time dependen
y and adaptation of theirparameters, �exible learning, basi
 stability, 
oupling phenomena of per
eption anda
tion, 
ompa
t representation and ease of 
ategorization of movement traje
tories,reusable for similar and related tasks, modi�able to new tasks and 
ontexts not seenduring demonstrations; robustness against both temporal and spatial disturban
esof movement in dynami
 environments and allowing learning dis
rete and rhythmi
movements.Adopting non-linear dynami
 systems theory has be
ome an in
reasingly a

epted
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ti
e in several bran
hes of s
ien
e, with appli
ations to physi
s, me
hani
s, 
hem-istry, ele
tromagnetism, biology, engineering, and so on. [Strogatz, 1994℄. The �eldof neural 
ontrol of movement has long suggested to model movement phenomenawith dynami
al systems [Kelso, 1995℄. Similarly, ideas of dynami
al systems theoryhave been introdu
ed for developmental psy
hologi
al theories of human develop-ment [Thelen and Smith, 2007℄. In the �eld of 
ognitive s
ien
es, dynami
al systemstheory has also been proposed as a better model for understanding the pro
ess of hu-man 
ognition [van Gelder, 1995℄, [Beer, 2000℄, [S
höner, 2008℄, as brie�y dis
ussedin Chapter 2. In robot 
ontrol theory many related approa
hes, su
h as potential�elds, tried to 
reate �exible attra
tor lands
apes a

ording to whi
h any move-ment system must move [Okada et al., ℄, [Tsuji et al., Nov℄. En
apsulating the dy-nami
s of the movement into a dynami
al system en
oding is a promising approa
hto learning movement traje
tories [Billard et al., 2008℄. A Dynami
al Systems (DS)approa
h to skill learning 
an o�er a fast, simple and powerful formulation for rep-resenting and generating movement plans, learned from demonstrations. The DSframework allows to 
omply with the attra
tor dynami
s of the desired behaviour,modulating it with a set of non-linear dynami
 systems that form an autonomous
ontrol poli
y for motor 
ontrol. Statisti
al learning te
hniques 
an be used to ar-bitrarily shape the attra
tor lands
ape of the 
ontrol poli
y for en
oding within thedesired traje
tory, moving from an initial state to an end state driven by the at-tra
tor dynami
s. DS provide e�
ient and 
lean means for en
oding a skill andful�lling most of the desirable properties stated above. DS are intrinsi
ally robustand 
an adapt their traje
tories instantly in the fa
e of spatio-temporal perturba-tions [Khansari-Zadeh and Billard, 2010a℄. The DS do not expli
itly depend on timeindexing and provide 
losed loop 
ontrol and are able to model arbitrary non-lineardynami
s [Gribovskaya et al., 2010℄. The DS 
an also be easily modulated to gener-ate new traje
tories that have similar dynami
s, performing in areas that where not
overed during demonstrations [Khansari-Zadeh and Billard, 2011℄. Use of DS withstatisti
al approa
hes permits the development of a representation of movements,en
apsulating the relationships between variables and variations of the task into thedynami
al systems' parameters [Calinon et al., 2012℄. The DS approa
h 
ould also beused to exploit its representational properties for movement generalization, re
ogni-tion and 
lassi�
ation [Pastor et al., 2009℄. DS 
an 
reate a ri
h variety of non-lineardynami
 models �tted for point attra
tor and limit 
y
li
 systems allowing en
odingof both dis
rete and rhythmi
 movements [Ijspeert et al., 2009℄.The dynami
 system 
an be generally expressed as a di�erential equation,
ẋ = f(x, θ), (3.2)this equation is mostly identi
al to Equation 3.1, ex
ept for the left-hand term fdenoting a 
hange of state, instead of a motor 
ommand π. The DS is 
on
eiveas a 'kinemati
 poli
y' whi
h generates target values, in kinemati
 varibles, e.g.,position, velo
ity and a

eleration [S
haal et al., 2007℄; appropriate 
ontrollers areneeded to subsequently 
onvert them to motor 
ommands. Expli
it time dependen
yis removed from the formulation of the DS su
h that the 
ontrol poli
y be
omes anautonomous dynami
 system; this is advantageous as maintaining timing 
ounters
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omplexity to 
ontrol; additionally supportfor su
h 
lo
king signals in biologi
al systems is disputed [S
haal et al., 2007℄. Au-tonomous non-linear dynami
al systems are a powerful me
hanisms to modulate the
ontrol poli
ies by learning the model of the skill by building a stable estimate f̂ of
f based on the set of demonstrations. Ensuring the stability of f̂ is a key require-ment to provide a useful 
ontrol poli
y, sin
e non-linear DS are prone to instabilities.Ne
essary e�orts are 
ondu
ted into guaranteeing global asymptoti
 stability at thetarget [Khansari-Zadeh and Billard, 2011℄.[Ijspeert et al., 2001℄ was the �rst work to emphasize this approa
h, by designinga motor representation based on dynami
al systems in order to en
ode movementsand for later replaying them in various 
onditions. The approa
h 
on
eived the mo-tions as movement primitives and named it Dynami
 Movement Primitives (DMP)[Ijspeert et al., 2003℄. The DMP 
an be used as a 
ompa
t representation of high-dimensional planning poli
ies. The approa
h starts with a simple dynami
al systemand transforms it, by means of an autonomous for
ing term, into a non-linear systemwith pres
ribed attra
tor dynami
s. Non-parametri
 regression te
hniques are used toshape the attra
tor lands
apes to the demonstrated traje
tories [Ijspeert et al., 2009℄.DMP 
an be understood as a two dynami
al system with a one-way 
onne
tion su
hthat one system drives the other one, a 
anoni
al system h whi
h drives a transformor output system g for every 
onsidered degree of freedom. The DMP 
onsists of asystem of di�erential equations given by,

τ ż = h(z, θ),

τ ẋ = g(x, f, θ),whi
h determine the variables of internal fo
us x. θ is a pla
e holder for all pa-rameters of the system, like goals, time 
onstants, et
. z denotes the state of the
anoni
al system, and is a substitute for time, and f is a non-linear for
ing fun
-tion [S
haal et al., 2007℄. The output of the system are desired positions, velo
itiesand a

elerations. A suitable 
ontroller is needed to 
onvert them into motor 
om-mands. Lo
ally Weighted Regression (LWR) was the initial method proposed to learnthe system's parameters [Ijspeert et al., 2002℄. [Hers
h et al., De
℄ extended the ap-proa
h to learning traje
tories in multidimensional spa
e, Gaussian models are usedto en
oded the traje
tories modulating the dynami
al system. [Calinon et al., 2012℄extended the DMP model by formulating the estimation of the parameters of the DSas a Gaussian mixture regression problem with proje
tion in di�erent 
oordinate sys-tems. A DS-GMR model was proposed opening roads for developments, 
ombiningthe versatility of dynami
al systems and the robustness of statisti
al approa
hes.The original DMP approa
h operated in a single dimension using a pre-de�neddynami
al system as a motion primitive, where the traje
tory of every single DOFwas modulated by its own non-linear fun
tion and transformation system separately.[Gribovskaya and Billard, 2009℄ investigated a method whereby the Gaussian MixtureModels (GMM) 
ould dire
tly embed the multi-variate dynami
s of a motion. Theirwork presented a generi
 framework that 
ombined DS movement 
ontrol with RPbDin order to tea
h a robot. The framework requires two systems, a learning system
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essing the data from the re
orded demonstrations of the task for extra
ting 
oor-dination 
onstraints and en
oding the traje
tory, and a motor system reprodu
ing thedynami
s of the motion while satisfying the 
onstraints learned in the previous system[Gribovskaya and Billard, 2008℄. An iterative pro
edure was employed to learn a sta-tisti
al estimate of an arbitrary multivariate autonomous dynami
al system, throughthe en
oding of the demonstrated data with Gaussian Mixtures. The state of theroboti
 system ξ is assumed to be governable by an autonomous dynami
al system.The motion model is driven by a �rst order autonomous ordinary di�erential equation,with a single equilibrium point,
ξ̇ = f(ξ),

˙̄ξ = f(ξ̄) = 0the problem 
onsists of 
onstru
ting an estimate f̂ of f from the set of demonstratedtraje
tories, the Gaussian Mixture Models (GMM) are used to de�ne the f̂ follow-ing a statisti
al approa
h [Gribovskaya and Billard, 2009℄. The GMM de�ne a jointprobability distribution fun
tion over a training set of demonstrated traje
tories as amixture of a �nite set of Gaussian distributions. In order to generate the new traje
-tories, one 
an sample from the probability distribution fun
tion of the learned GMM,this pro
ess is named Gaussian Mixture Models (GMM). The proposed framework hasthree advantages, i) it allowed generalizing the motion to unseen 
ontext; ii) providesrobustness to spatio-temporal perturbations of the motion; iii) di�erent types of dy-nami
s 
an be embedded [Gribovskaya et al., 2010℄. This framework allowed to learnthe non-linear multivariate dynami
s for 
ases in whi
h this 
orrelation between vari-ables is important, unlike other works whi
h generally dis
ard information pertainingto 
orrelation a
ross the joints. Storing the 
orrelations among the joints' variables
an be 
ostly; yet it is also advantageous in that the 
orrelations 
ontain informationon features 
hara
teristi
 of the motion.The non-linearDS are sus
eptible to instabilities. An important issue for these ap-proa
hes is to 
onsiderer the stability of the generated 
ontrol poli
ies. Guaranteeingthe estimates f̂ results in an asymptoti
ally stable traje
tory whi
h is, therefore, a keyrequirement in order to provide useful 
ontrol poli
ies. The aforementioned methodis not guaranteed to result in a stable estimate of the motion. A learning pro
edure
alled Binary Merging (BM) was introdu
ed by [Khansari-Zadeh and Billard, 2010b℄.It ta
kles the problem of estimating, from the re
orded demonstrations, the unknownnon-linear DS, while ensuring lo
al stability at the target based on the providedstability 
onditions. The BM approa
h 
an build the lo
ally stable estimate f̂ byminimizing iteratively the number of Gaussian fun
tions required for a
hieving bothasymptoti
 stability at the target and high a

ura
y in estimating the dynami
s ofmotion. The estimated DS generates traje
tories that a

urately follow the motiondynami
s based on the metri
 of a

ura
y the user de�nes. However, the method issensitive to demonstrations and only e�e
tive when demonstrations are very similar.[Khansari-Zadeh and Billard, 2011℄ proposed a learning method, 
alled Stable Es-timator of Dynami
al Systems (SEDS), to learn the parameters of the DS that ensureall motions to 
losely follow the demonstration dynami
s. The approa
h follows sim-
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fFig. 3.8: Control �ow of LfD framework. ξ, q 
orrespond respe
tively to the statevariables and robot joint angles des
ribing the motion. The learning blo
kinfer the model parameters θ from the set of demonstrations {ξ, ξ̇}D.

ilarly as in [Gribovskaya et al., 2010℄ and formulates the en
oding as a 
ontrol lawthat is driven by a �rst-order autonomous non-linear ODE with Gaussian Mixtures.Their work formulates the problem of 
omputing the estimate f̂ and the optimal val-ues of θ by solving an optimization problem. Learning the parameters of the GMMpro
eeds as a 
onstraint optimization problem under stri
t stability 
onstraints; thisensures that the model satis�es the global asymptoti
 stability of the DS at thetarget [Khansari-Zadeh and Billard, 2010a℄. For the optimization obje
tive fun
tion,two di�erent 
andidates are used. One fun
tion based in the log-likelihood, as a meansof 
onstru
ting the model. And a fun
tion based on the mean square error (MSE),as a means of quantifying the a

ura
y of estimations that are based on demonstra-tions. The approa
h provides a sound ground for the estimation of non-linear DSwhi
h is not heuristi
 driven and, therefore, has the potential for mu
h larger sets ofappli
ations. Also, by presenting the properties of being time-invariant and globallyasymptoti
ally stable at the target, the DS estimated with SEDS are able to respondimmediately and appropriately to perturbations that 
ould be en
ountered duringreprodu
tion of the motion.In this work, the end-e�e
tor traje
tories, ξ, in Cartesian spa
e, of a skill motionwill be modelled in terms of a dynami
 systems approa
h, as in [S
haal et al., 2007℄for an autonomous dynami
al system en
oding of the motion. The model of ourmotions is learned by estimating the non-linear fun
tion f . The frameworks presentedin [Gribovskaya et al., 2010℄ and [Khansari-Zadeh and Billard, 2011℄ are followed tolearn the motions as multivariate DS within a LfD statisti
al approa
h. A timeindependent model is estimated through a set of �rst order non-linear multivariatedynami
al systems. Figure 3.8 presents the 
ontrol �ow of the learning framework. ξTand ξR are the target and real robot state, whi
h 
ould represent position, velo
ities,for
es, et
. The DS provides the desired outputs ξ, ξ̇. qi, q̇i and qf 
orresponds to theinitial and �nal positions and velo
ities of the robot joints respe
tively. The learningblo
k infers the model parameters θ from the set of demonstrations {ξ, ξ̇}D.
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oding of a Robot SkillAs stated in the previous se
tion, to learn, and latter to reprodu
e, the robotskills, a 
omputational model of the motion is built in the framework of dynami
system approa
hes. The motion dynami
s are estimated through a set of �rst ordernon-linear dynami
al system equations. DS approa
h was proposed as alternativeto traditional approa
hes for motor representation, like spline de
omposition and re-gression te
hniques. The DS framework provides an e�e
tive means to en
ode traje
-tories through time-independent fun
tions that de�ne the temporal evolution of themotions, by representing movements as mixtures of non-linear di�erential equationswith well-de�ned attra
tor dynami
s. A DS model of the robot skill is built, en
od-ing the relevant information of the demonstrated skill for reprodu
ing the learneddynami
s of the motion.3.5.1 Problem FormalizationFirst let us assume that the state of the robot system 
an be unambiguouslydes
ribed using a state variable de�ned as ξ. And let the re
orded demonstrations bethe set D of N-dimensional demonstrate data points {ξi, ξ̇i}Di=1, instan
es of a globalmotion. Further assume that the motion is governed by a �rst order autonomousordinary di�erential equation (ODE):̇
ξD = f(ξD), (3.3)Here, ξD ∈ Rn, and its time derivative ξ̇D ∈ Rn are ve
tors that des
ribe the robotmotion. From Eq. 3.3 it 
an be seen that it follows the same form as in Eq. 3.2. To
ompute the evolution of the motion, giving an initial state ξ0 ∈ Rn, it is possible tointegrate Eq. 3.2 through time,

ξ(t) =

∫ t

0

f(ξ, θ)dt (3.4)the analyti
al 
omputation of the above integral are usually non-trivial, espe
iallyfor 
omplex multi-dimensional DS.Let's also 
onsider that a set of parameters, θ, 
an des
ribe the fun
tion f(ξ), asin Eq. 3.2, optimal values for the parameters θ 
an be obtained employing di�erentstatisti
al approa
hes. The learning problem is redu
e to building a stable estimate f̂of f , and determining the parameter θ, based on the set of demonstrations, {ξi, ξ̇i}Di=0.The fun
tion f , f : Rn → Rn, is 
onsidered to be a non-linear 
ontinuous and
ontinuously di�erentiable fun
tion with a single equilibrium point. Without loss ofgenerality, the attra
tor, ξ̄, 
an be transferred to the origin, ξ̄ = 0, so that f(ξ̄) =
f(0) = 0 and by extension f̂(ξ̄) = f̂(0) = 0.

ξ̇ = f(ξ),

˙̄ξ = f(ξ̄) = 0
(3.5)



3.5. En
oding of a Robot Skill 89The motion of the system is uniquely determined by its state ξ. Choosing theappropriate state variables has an important impa
t on the dynami
s to be learned.Here, motions are to be represented in kinemati
 
oordinates, the desired outputs areposition, velo
ities and a

elerations, whi
h 
ould be in in joint spa
e or task spa
e.It is assumed that there are appropriate 
ontrollers that 
onvert kinemati
 variablesinto motor 
ommands.Non-linear Regression Te
hniquesRegression is a problem in statisti
al analysis for estimating the relationshipsamong variables. The non-linear regression te
hniques fo
us on building a 
ontinuousmapping fun
tion f : Rn → Rm, the fun
tion f is a non-linear 
ombination of themodel parameters, building f is based on determining the set of parameters θ duringtraining based on the set, D, of training data points, {ξiI , ξiO}Di=1, with ξiI ∈ Rn and
ξiO ∈ Rm 
orresponding to the input and output variables respe
tively. The value ξO
an be predi
ted from the input ξI with the estimate of f ,

ξ̂O = f(ξ∗I , θ) (3.6)noti
e the similarities of this statement with the previous formalization of the DSlearning problem.There are numerous regression te
hniques to build the estimate of f , the statisti-
al methods 
an be broadly divided into parametri
 and non-parametri
 approa
hes.The non-parametri
 methods are advantageous in that they make little assumptionsabout the form of the underlying distribution, they are also well suited to a

uratelyperform data �tting in low-dimensional spa
es. However, they su�er from the 
urseof dimensionality. The parametri
 methods are better suited to model multivariatedatasets, and deal with problems of regression on multi-dimensional data. How-ever, to 
hoose the underlying parameters e�e
tively they rely on heuristi
al methods[Hastie et al., 2009℄. Existing approa
hes to statisti
al estimating of f mostly re-lied on either Gaussian Pro
ess Regression (GPR) [Rasmussen and Williams, 2006℄,[S
hneider and Ertel, 2010℄, Gaussian Mixture Regression (GMR) [Hers
h et al., 2008℄,[Calinon et al., 2010℄, or Lo
ally Weighted Regression, Lo
ally Weighted Proje
tion Re-gression (LWPR) [Vijayakumar and S
haal, ℄, [Grollman and Jenkins, 2008℄.Gaussian Pro
essGaussian Pro
ess Regression (GPR) provides an estimate of the fun
tion f byassuming it as a Gaussian pro
ess, in whi
h any set of samples has a joint Gaussiandistribution. A set of training data points with uni-dimensional fun
tion values ξI =
ξiI

D

i=1, and ξO = ξiO
D

i=1, representing respe
tively the input and output variables. By
onditioning the multivariate Gaussian distribution on the training data, for any point
ξ∗I , the GPR is obtained,

f(ξ∗I ) | ξI , ξO ∼ N (µ(ξ∗I ),Σ(ξ
∗

I )) (3.7)
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e Σ(ξ∗I ) are given by
µ(ξ∗I ) = K(ξ∗I , ξI)(K(ξI , ξI) + σnI)

−1)ξO

Σ(ξ∗I ) = K(ξ∗I , ξ
∗

I )−K(ξ∗I , ξI)(K(ξI , ξI))
−1K(ξI , ξ

∗

I )withK, symmetri
 matri
es representing the evaluation of the GP 
ovarian
e fun
tiona
ross the spe
i�ed variables.The formulation of GPR is only appli
able to multi-input single-output datasets,for datasets with multiple outputs it is ne
essary to train a separate GPR model forevery output dimension. The GPR method builds an a

urate estimate of non-linearfun
tions, however, it is ill-suited for appli
ations requiring fast 
omputation. the
omputational 
osts of GPR s
ale 
ubi
ally with the number of training examples.Gaussian MixtureGaussian Mixture Regression (GMR) is a non-linear regression te
hnique whi
hoperates on the joint probability P(ξI ; ξO). The joint probability is formed by super-position of linear Gaussian fun
tions,
P(ξI ; ξO) =

∑

πN (ξI ; ξO | µ,Σ) (3.8)where π, µ and Σ are respe
tively the prior, mean and 
ovarian
e matrix of theGaussian fun
tion N .Given the joint distribution P(ξI ; ξO) and input point ξ∗I , the GMR pro
ess followsthe output from the posterior mean estimate of the 
onditional distribution,
ξ̂O = f(ξ∗I ; θ) = E[P(ξ̂O | ξ∗I ; θ)] (3.9)with θ = [π, µ,Σ] the parameters of the Gaussian fun
tions.A more expansive des
ription of the GMR pro
ess would be given later in thisse
tion. The GMR method provides an alternative to modelling non-linear traje
to-ries. It usually requires fewer parameters in 
omparison to other methods, yet it isless a

urate. One 
riti
al 
on
ern with GMR based approa
hes is that they requireheuristi
 methods to determine an optimal number of Gaussian kernels, also, the �nalresults are sensitive to initialization.Lo
ally Weighted Proje
tionLo
ally Weighted Proje
tion Regression (LWPR) is an in
remental regression te
h-nique whi
h provides an estimate of f in terms of the output from a set of lo
al regions,de�ned with a Gaussian fun
tion,

w(ξ) = e−(ξ−µ)⊤W (ξ−µ) (3.10)where µ are the 
entres andW is a positive semi-de�nite distan
e metri
, determiningthe in�uen
e of the region. The output predi
tion is 
omputed as the non-linearweighted sum of the output of all regions,
ξ̂O = f(ξ∗I ) =

1
∑

w(ξ∗I )

∑

w(ξ∗I )r(ξ
∗

I ) (3.11)



3.5. En
oding of a Robot Skill 91The LWPR method o�ers in 
omparison 
ost-e�
ien
y for non-linear fun
tionapproximation. LWPR des
ribes the system through a �nite 
ombination of Gaus-sian fun
tions. The parameters are estimated in one-shot learning through linearregression. However, the approa
h is very sensitive to the 
hoi
e of parameters atinitialization and relies on manual tuning to a
hieve high a

ura
y.Regardless of the advantages or weakness of these approa
hes, they 
annot beused as is to estimate the DS of Eq. 3.5 sin
e they do not take into a

ount thestability of the dynami
al system they model [Khansari-Zadeh and Billard, 2010b℄.Dynami
 Motor PrimitivesThe Dynami
 Motor Primitives (DMP) method [Ijspeert et al., 2009℄, was pro-posed to learn the attra
tor dynami
s of the motion and to deal with the instabilityissues. The DMP 
an be used to generate one dimensional movements with a basi
point attra
tor system instantiated by the se
ond order dynami
s as,
τ ż = αz(βz(g − y)− z) + f

τ ẏ = z
(3.12)with g the goal state, αz, βz time 
onstants, τ a temporal s
aling fa
tor, and y, ẏ
orrespond to a desired position and velo
ity.For appropriate parameter setting and with f = 0 Eq. 3.12 form a globallystable linear dynami
 system with g as an unique attra
tor [S
haal et al., 2007℄. Thefun
tion f is a non-linear fun
tion whi
h 
an be learned to allow the generation ofarbitrary 
omplex traje
tories. The non-linear fun
tion f 
an be de�ned in the formof,

f(x, g, y0) =

N
∑

i=1

ψiwix

N
∑

i=1

ψi

(g − y0) (3.13)where ψi = exp (−hi(x− ci)
2) are Gaussian basis fun
tion with 
enter ci and with

hi, and wi are learnable adjustable weight that shapes the traje
tory. The fun
tion
f does not dire
tly depend on time, but on a phase variable, x,

τ ẋ = −αxx (3.14)with αx a pre-de�ned 
onstant. The DMP 
an be understood as two dynami
alsystem with a one-way 
onne
tion su
h that one system drives the other, with the
anoni
al system in Eq. 3.14 driving the output system in Eq. 3.12.For learning the parameters, a non-parametri
 regression te
hnique from lo
allyweighted learning 
an be used to generate the fun
tion approximator [Ijspeert et al., 2009℄.This method allows us to determine automati
ally the ne
essary number of basis fun
-tions N , their 
entres ci, and widths hi. For every basis fun
tion ψi, whi
h de�nes asmall region in input spa
e x, any point that falls into this region is used to performa linear regression, whi
h 
an be formalized as weighted regression. The method 
re-ates a pie
ewise linear approximation of f , in whi
h ea
h linear fun
tion pie
e belongs



92 3. Learning Robot Skills Models from Demonstrations.to one of the basis fun
tions. Other fun
tion approximators 
an also be used, likeradial basis fun
tion networks, mixture models, Gaussian Pro
ess regression, et
., forexample [Calinon et al., 2012℄.The DMP approa
h however presents two drawba
ks; the phase variable employedto modulate the dynami
s makes the system time dependent and sensitive to temporalperturbations. Also, a DS is learned separately for ea
h dimension, and a heuristi
is needed to syn
hronize for modelling multi-dimensional systems, this negle
ts the
ombined e�e
t of all the dimensions in the motion.3.5.2 Multivariate Gaussian MixturesTo learn the multi-variate dynami
s of a motion traje
tory, here, an approa
hfrom [Gribovskaya and Billard, 2009℄ has been followed, as outlined in se
tion 3.4.In their work an iterative pro
edure was employed to learn a statisti
al estimate ofan arbitrary multivariate autonomous dynami
al system, Gaussian Mixture Models(GMM) are used to dire
tly embed the multi-variate dynami
s of a motion throughthe en
oding of the demonstrated data.The state of the roboti
 system ξ is assumed to be governable by an autonomousdynami
al system, with a single equilibrium point, as per Eq. 3.5. And the set ofN-dimensional demonstrated data points be represented as {ξi, ξ̇i}Di=1, as des
ribed inthe problem formalization in 3.5.1. A probabilisti
 framework is employed to buildan estimate f̂ , of the non-linear state transition map f , based on the set of demon-strations. The dynami
s of the motion are learned thus, by modelling the estimate f̂via a �nite mixture of Gaussian fun
tions, f is de�ned as a non-linear 
ombinationof a �nite set of Gaussian kernels using the GMM [Gribovskaya et al., 2010℄.Gaussian Mixture ModelsEmploying mixture models is a popular approa
h for the statisti
al modelling ofa wide variety of random phenomena. Mixture distributions provide a 
onvenientframework to model unknown distributional shapes, for density approximation of
ontinuous or binary data [M
la
hlan and Peel, 2000℄. A mixture model of K 
om-ponents is de�ned by a probability density fun
tion,
p(ξ) =

K
∑

k=1

p(k)p(ξ | k) (3.15)where ξ is a data point, p(k) is the prior probability and p(ξ | k) is the 
onditionalprobability.Given our set of demonstrated data points, {ξi, ξ̇i}Di=1, ea
h re
orded point in thetraje
tories is asso
iated with a probability density fun
tion. The GMM de�ne ajoint probability distribution p(ξi, ξ̇i) of the training set of demonstrated traje
toriesas a mixture of the K Gaussian multivariate distributions N k, with πk, µk, and
Σk, respe
tively the prior, mean and 
ovarian
e matrix, parameters of the Gaussian
omponent k.



3.5. En
oding of a Robot Skill 93The parameters in Eq. 3.15 be
ome,
p(k) = πk

p(ξ | k) = N (ξ;µk,Σk)
(3.16)The joint probability distribution, p(ξ, ξ̇), for the GMM is given by,

p(ξ, ξ̇; θ) =
1

K

K
∑

k=1

πkN k(ξ, ξ̇;µk,Σk)with µk = {µk
ξ ;µ

k

ξ̇
} and Σk =

[

Σk
ξ Σk

ξξ̇

Σk

ξ̇ξ
Σk

ξ̇

] (3.17)where the probability density fun
tion of ea
h Gaussian, N k(ξi, ξ̇i;µk,Σk), in themodel is then given by:
N k(ξ, ξ̇;µk,Σk) =

1
√

(2π)2n|Σk|
e

−1

2
(([ξ,ξ̇]−µk)T (Σk)−1([ξ,ξ̇]−µk)) ∀k ∈ 1 . . .K (3.18)The mixture of Gaussian fun
tions would estimate the non-linear fun
tion f , thusthe unknown parameters of f , θ, be
omes the prior, πk, the mean, µk, and the
ovarian
e matrix, Σk, of the K Gaussian fun
tions, su
h that θk = (πk, µk,Σk),de�ned as in Eq. 3.17.The mixture modelling method builds a 
oarse representation of the data densitythrough a �xed number of mixture 
omponents. By 
onsidering an adequate numberof Gaussian fun
tions, and adjusting their means and 
ovarian
es matrix parameters,almost any 
ontinuous density 
an be approximate to arbitrary a

ura
y. Finding theoptimal number of 
omponents is not trivial and various methods 
an be found, su
has, the Bayesian Information Criterion (BIC) [S
hwarz, 1978℄, or the Devian
e Infor-mation Criterion (DIC) [Spiegelhalter et al., 2002℄. The parameters θ = (π, µ,Σ) offun
tion f , governed the form of the Gaussian mixture distribution. To learn the pa-rameters a Maximum Likelihood Estimation of the mixture parameters is performed.EM pro
eeds by maximizing the likelihood that the 
omplete model represents thetraining data well.

L(ξ,Θ) =
N
∑

n=1

ln(p(ξn | Θ)) (3.19)First, the model is initialized using the k-means 
lustering algorithm starting froma uniform mesh and it is then re�ned iteratively through Expe
tation-Maximization(EM) [Dempster et al., 1977℄, to �nd the maximum likelihood fun
tion of equation3.17, from Eq. 3.19 as,
Lp(ξ, ξ̇) =

N
∑

n=1

ln

{

K
∑

k=1

πkN ((ξn, ξ̇n) | µk,Σk)

} (3.20)



94 3. Learning Robot Skills Models from Demonstrations.The parameters θk = (πk, µk,Σk) of the GMM are then estimated iteratively until
onvergen
e, trough alternating between an expe
tation (E ) step and a maximization(M ) step. The E-step 
reates a fun
tion for the expe
tations of the log-likelihood,using 
urrent estimate for the parameters. The M-step 
omputes the parameters,maximizing the expe
ted log-likelihood of the E-step, these estimates of the parameterare used for determining the next E-step. The iterations stop when the in
rease ofthe log-likelihood be
omes smaller than a threshold, Lt+1

Lt
< threshold, with thelog-likelihood, L, de�ned as in Eq. 3.19 and 3.20.E-step:

p
k,n

(t+1) =
πk
(t)N ((ξn, ξ̇n) | µk

(t),Σ
k
(t))

∑

K

k=1 π
k
(t)N ((ξn, ξ̇n) | µk

(t),Σ
k
(t))

Ek
(t+1) =

N
∑

n=1

p
k,n

(t+1) (3.21)M-step:
πk
(t+1) =

Ek
(t+1)

N

µk
(t+1) =

∑

N

n=1 p
k,n

(t+1)(ξ
n, ξ̇n)

Ek
(t+1)

Σk
(t+1) =

∑

N

n=1 p
k,n

(t+1)((ξ
n, ξ̇n)− µk

(t+1))((ξ
n, ξ̇n)− µk

(t+1))
⊤

Ek
(t+1)A more in deep theoreti
al analysis of the Gaussian Mixture Models (GMM) 
anbe found on [Dasgupta and S
hulman, 2000℄, [Calinon, 2009℄. Figure 3.9 illustratesthe learning pro
ess and en
oding of a training data set into a model of mixtures ofGaussian fun
tions. First, several demonstrations of a traje
tory are re
orded to buildthe D dataset. A model of the traje
tories is built en
oding the given demonstrationswith K Gaussian distributions, de�ned by the µ and Σ parameters. To generate anew traje
tory from the GMM, one then 
an sample from the probability distributionfun
tion p(ξ, ξ̇), this pro
ess is 
alled Gaussian Mixture Regression (GMR).Gaussian Mixture RegressionGaussian Mixture Regression (GMR) is used for retrieving a generalized traje
torymade up of a set of traje
tories used to train the model, where the generalized tra-je
tory is not part of the dataset but instead en
apsulates all of its essential features[Calinon, 2009℄.
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Fig. 3.9: Illustration of the learning pro
ess with GMM-GMR. (top) Re
orded train-ing data of the demonstrated traje
tories. (
enter) The learned GMMmodel represented by ellipses 
entre at µi, magnitude and dire
tion of theellipses are given by the eigenve
tors and eigenvalues of Σi. (bottom) Re-produ
tion of several traje
tories trough GMR.



96 3. Learning Robot Skills Models from Demonstrations.The GMM 
omputes a joint probability density fun
tion for the input and theoutput so that the probability of the output 
onditioned on the input are a Mixtureof Gaussian. So it is possible after training, to re
over the expe
ted output variable
ˆ̇
ξ, given the observed input in ξ.Given the joint probability distribution, p(ξ, ξ̇), from Eq. 3.17 and a input querypoint ξ∗, the GMR pro
ess takes the 
onditional mean estimate of p(ξ̇ | ξ∗), theestimate of our fun
tion ˆ̇

ξ = f̂(ξ∗) 
an be expressed by,
ˆ̇
ξ =

K
∑

k=1

hk(ξ∗)(Σk

ξ̇ξ
(Σk

ξ )
−1(ξ∗ − µk

ξ) + µk

ξ̇
) (3.22)where, hk(ξ) =

p(ξ;µk
ξ ,Σ

k
ξ )

∑K

k=1 p(ξ;µ
k
ξ ,Σ

k
ξ)with hk(ξ) > 0 and K

∑

k=1

hk(ξ) = 1A review of theoreti
al 
onsiderations of the GMR 
an be found in [Sung, 2004℄,[Cohn et al., 1996℄. The GMM en
oding of the demonstrations and GMR reprodu
-tion of the learned motions pro
ess is illustrated in Figure 3.9. The model of thetraje
tories are learned from several demonstrations and then en
oded as a mixtureof Gaussian distributions. To reprodu
e the traje
tories one sample from the prob-ability distribution of the GMM trough the Gaussian Mixture Regression pro
ess.The GMR approximates the dynami
al systems through a non-linear weighted sumof lo
al linear models. The pro
ess for en
oding the dynami
s of a motion throughGaussian Mixture Models, and Gaussian Mixture Regression, is illustrated in Figure3.10.The notation of Eq. 3.22 
an be simpli�ed through a 
hange of variable where,














A
k = Σk

ξ̇ξ
(Σk

ξ )
−1

b
k = µk

ξ̇
−A

kµk
ξ

hk(ξ) =
p(ξ;µk

ξ
,Σk

ξ
)

∑K
k=1

p(ξ;µk
ξ
,Σk

ξ
)

(3.23)Substituting Eq. 3.23 into Eq. 3.22 produ
es an expression of the GMR as anon-linear sum of linear dynami
al systems,
ξ̇ = f̂(ξ) =

K
∑

k=1

hk(ξ)(Akξ + b
k) (3.24)Rewriting Eq. 3.22 in this way is useful to study the in�uen
e of ea
h Gaussianand the stability of the estimate f̂ . Stability of the system is governed by the GMRparameters, the matri
es A

k, bk and weighting term hk, whi
h are learned duringtraining. Figure 3.10 represents the in�uen
e of the GMR parameters in the �nal



3.5. En
oding of a Robot Skill 97

−600 −500 −400 −300 −200 −100 0 100
−2000

−1500

−1000

−500

0

500

1000

1500

ξ O
=

f̂
(ξ

I
)

ξI

0

0.2

0.4

0.6

0.8

1

h
K

(ξ
)

Aξ + b

Aξ + b

Aξ + b

h(ξ) h(ξ) h(ξ)

f̂(ξ) =
∑

3

k=1
hk(ξ)(Akξ + bk)

Fig. 3.10: Illustration of the GMR inferen
e pro
ess for reprodu
ing learned traje
-tories. (top) The non-linear weights hk(ξ), as de�ned by Eq. 3.23, give arelative measure of the importan
e of ea
h Gaussian 
ontribution to theestimate f̂ at point ξ. (bottom) The estimate f̂ is expressed as a non-linear sum of DS, as per Eq. 3.24. The linear dynami
s of every A
kξ+b

k
orrespond to a line equation with slope Ak that runs through the 
entre
µk. Given an observed input ξI , the value of ξO is estimated from f̂ .reprodu
tion. Ea
h linear dynami
s 
orresponds to a line that passes through the
entres µk with slope A

k. The non-linear weighting term, hk, in Eq. 3.24 gives ameasure of the relative in�uen
e of ea
h Gaussian lo
ally. Due to the in�uen
e ofthe non-linear weighting term, hk, the estimate fun
tion f̂(ξ) is also non-linear andpresents enough �exibility as to model a wide variety of motions. However, it 
annotbe guaranteed that the system will be asymptoti
ally stable, and the resulting non-linear model f(ξ) 
an 
ontain spurious attra
tors or limit 
y
les even for simple 2Dmodels [Khansari-Zadeh and Billard, 2011℄.[Gribovskaya et al., 2010℄ proposes a modi�
ation of the GMM pro
edure to buildthe mixture resulting in an estimate, lo
ally stable around the target (GMM-DS ). Itis assumed that in the neighbourhood of the origin, the system is governed solely bythe last K Gaussian. In order to guarantee the 
onvergen
e to the target additionalsyntheti
 data is generated within a small neighbourhood around the origin. In addi-tion, the 
enter of the last Gaussian is set at the target and it is not updated duringtraining. The system would be asymptoti
ally stable by ensuring that the eigenval-ues of AK, from Eq. 3.24, are all stri
tly negative. The stability is estimated lo
allywithin a subregion C, inside the robot's workspa
e. The fun
tion is approximated in
C , referred to as the region of appli
ability of the learned dynami
s, su
h that,

f̂ : C → C

f̂(ξ) ≅ f(ξ), ∀ξ ∈ C
(3.25)



98 3. Learning Robot Skills Models from Demonstrations.Algorithm: Multivariate Dynami
 Systems GMM [Gribovskaya et al., 2010℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize stability subregion C.2. Compute syntheti
 data at the target attra
tor ξ̄, to guarantee 
onvergen
e.3. Choose initial number of Gaussian 
omponents K.4. LOOP Until stability veri�
ation is satis�ed.5. Initialize the GMM parameters with k-means 
lustering.6. Train the joint probability distribution p(ξi, ξ̇i) ∼ N (ξ; θ)with Expe
tation Maximization.7. Verify lo
al stability at the origin.8. IF not asymptoti
ally stable at the origin.9. THEN in
rease the number of Gaussian 
omponents.10. END.11. ENDOutput: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.1: En
oding Multivariate Dynami
s with GMM-GMR.Initialization of C is data-driven and its size is de�ned by the amplitude of thetraining dataset. After training, initial guesses regarding C are re-estimated, followinga numeri
al pro
edure, to empiri
ally verify that C is a region of attra
tion and thatall the traje
tories 
onverge toward the origin; it does not in
lude any other attra
tors.This approa
h presented the drawba
k that it 
annot ensured to �nd even a lo
allystable estimate and it gave no expli
it 
onstraint on the form of the Gaussian fun
tionsto ensure stability [Khansari-Zadeh and Billard, 2011℄.Table 3.1 summarizes the pro
edure to model the motion dynami
s through Mul-tivariate Gaussian Mixtures, employing GMM and GMR as proposed in the work by[Gribovskaya et al., 2010℄.3.5.3 Binary Merging[Khansari-Zadeh and Billard, 2010b℄ proposed a method, as outlined in se
tion3.4, to ta
kle the problem of estimating the non-linear DS while ensuring lo
al sta-bility at the target. Their work provides a set of stability 
onditions that 
an beused to ensure lo
al asymptoti
 stability of f when it is formulated with a mixtureof Gaussian fun
tions.Ensuring that the estimate f̂ of the non-linear dynami
al system results in tra-je
tories that asymptoti
ally 
onverge on the attra
tor, is a key requirement. Here,
f̂ is a stable estimate of f ∈ Rn if it has a single attra
tor ξ̄ : f(ξ̄) = 0 and every
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oding of a Robot Skill 99traje
tory generated by f asymptoti
ally 
onverges to ξ̄,
lim
t→∞

f̂(ξt) = ξ̄ ∀ξt ∈ R
n (3.26)[Khansari-Zadeh and Billard, 2010b℄ de�ned a region D ⊂ Rn whi
h 
overs en-tirely the part of the state spa
e spanned by the demonstrations, in
luding the origin,where the motion 
an be a

urately estimated with f̂ ,

D = { ξ ∈ R
n : p(ξ) ≥ δk }

δk = αmin(p(ξi)) : k = 1 . . .K, i = 1 . . .D
(3.27)where p(ξ) is the probability of ξ as estimated from Eq. 3.17, and α : 0 < α ≤ 1 isa 
onstant. The de�nition of δ ensures that all data points are in
luded in D. Theregion D is then partitioned into K pairwise, disjointed 
ontinuous subregions, Ωk,via the hyperplanes Φk,

Φk : (ξ − µk
ξ )⊤ · vk = 0 (3.28)with vk being the eigenve
tor pointing towards the dire
tion of motion. Φk is thehyperplane through µk

ξ and normal to vk. Ea
h subregion, Ωk, is a part of D that isde�ned by,
Ωk = Ω̂k

⋂

D ∀k ∈ 1 . . .K (3.29)For ea
h subregion Ωk ⊂ D, k = 2 . . .K, the estimate given by Eq. 3.24 is trun-
ated so that the dynami
s are driven solely by the two dominant Gaussian fun
tions
N k and N k−1. The estimate for points in partition Ω1 are set by 
onstru
tion to onlybe in�uen
ed by the dominant Gaussian N 1. Thus be
oming,

ξ̇ = f(ξ) =











A
1ξ + b

1 ∀ξ ∈ Ω1

hk−1(ξ)(Ak−1ξ + b
k−1)+

hk(ξ)(Akξ + b
k)

∀ξ ∈ Ωk, k ∈ 2 . . .K
(3.30)The origin, the attra
tor, of Eq. 3.30 is asymptoti
ally stable if the parameter of f ,

µk and Σk, are 
onstru
ted su
h that,


















µK

ξ = ξ̄ = 0

µK

ξ̇
= −

p(0 | K− 1)

p(0 | K)
(µK−1

ξ̇
− ΣK−1

ξ̇ξ
(ΣK−1

ξ )−1µK−1
ξ )

ΣK

ξ̇ξ
(ΣK

ξ )
−1 + (ΣK

ξ )
−1(ΣK

ξ̇ξ
)⊤ ≺ 0

(3.31a)


















(ξ − µ1
ξ)

⊤(Σ1
ξ)

−1ξ̇ < 0 ∀ξ ∈ Ω1

(ξ − µk−1
ξ )⊤(Σk−1

ξ )−1ξ̇ > (ξ − µk
ξ)

⊤(Σk
ξ )

−1ξ̇











∀ξ ∈ Ωk

∀ξ 6= 0

k = 2 . . .K

(3.31b)
(vk)⊤ξ̇ > 0 ∀ξ ∈ Φk, ∀k ∈ 1 . . .K− 1 (3.31
)

D is an invariant set (3.31d)



100 3. Learning Robot Skills Models from Demonstrations.Putting together the 
onditions in Eq. 3.31 the system be
omes lo
ally asymptoti-
ally stable at the origin in the region de�ned by D [Khansari-Zadeh and Billard, 2010b℄.It is ne
essary for the estimate to be not only stable, a

ording to the stated de�nition,but also should follow 
losely the dynami
s of the demonstration. This is evaluatedthrough a measure of a

ura
y ē with whi
h f̂ approximates the demonstration dy-nami
s. This is quanti�ed by measuring the dis
repan
y between the dire
tion andamplitude of the estimated and observed velo
ity ve
tors for all the training points[Khansari-Zadeh and Billard, 2010b℄.
ē =

1

D

D
∑

i=1





1

T i

T i
∑

t=0

r

(

1−
(ξ̇t,i)⊤f(ξt,i)

‖ ξ̇t,i ‖‖ f(ξt,i) ‖ ǫ

)2

+ . . .

q

(

(ξ̇t,i − f(ξt,i))⊤(ξ̇t,i − f(ξt,i))

‖ ξ̇t,i ‖‖ ξ̇t,i) ‖ ǫ

))0.5
(3.32)where r and q are positive s
alars that weight the relative in�uen
e of ea
h fa
tor, and

ǫ is a very small positive s
alar. An estimate of the dynami
s is 
onsidered a

urateif ē ≤ emax, with emax a given a maximal a

eptable error.The Binary Merging (BM) learning approa
h pro
eeds in two steps to build thestable estimate of f . A �rst step that initializes the model with a maximum numberof possible Gaussian fun
tions. And a se
ond step that tries to redu
e the number ofGaussian fun
tions to a minimum, satisfying the stability 
riteria while also keepingthe error of the estimates below maximal error emax.The initialization step, �rst with a sample alignment the demonstration traje
to-ries are aligned. The time stamps that result from the sample alignment are used toinitialize the Gaussian mixture. The parameters, θk = (πk, µk,Σk), 
orresponding toea
h Gaussian fun
tion are then 
omputed as,
θk =















πk =
1

K

µk = mean(Ξk)

Σk = cov(Ξk + σ0
I

(3.33a)
θK =



























πK =
1

K

µK = 
omputed following Eq. 3.31
ΣK = σ0

[

I −I

−I I

] (3.33b)where Ξk = {ξk,i, ξ̇k,i}Di=1 denotes a subset of the demonstrations that belong tothe k Gaussian fun
tion, σ0 is a small positive s
alar to avoid numeri
al instability,and I is an identity matrix of the proper size.The iteration step pro
eeds as follows, a pair of adja
ent Gaussian fun
tions,
{N k,N k+1} are pi
ked randomly and merged into a single Gaussian by 
omputing



3.5. En
oding of a Robot Skill 101Algorithm: Binary Merging BM [Khansari-Zadeh and Billard, 2010b℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize parameters. (r, q, emax).2. Transfer the target attra
tor ξ̄ to the origin.3. Sample align demonstrations to length T .4. De�ne time indi
es tk = k, ∀k ∈ 1 · · · T .5. Initialize the GMM, with the time indi
es tk = k for K = T .6. LOOP while K > 1 and further merging is possible.7. Ba
kup the previous model GMM NK.8. Sele
t randomly an index k ∈ 1 · · ·K− 1.9. Compute the parameters, θk, for a new Gaussian Nm = {N k : N k+1}.10. IF Conditions of stability, 3.31, and a

ura
y, 3.32 are satis�ed.11. THEN repla
e N k with Nm, remove N k+1.Corre
t numbering of Gaussian and time indi
es, K = K− 1.12. ELSE dis
ard Nm.13. END14. ENDOutput: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.2: En
oding the estimate of the DS with Binary Merging
the new µk and Σk asso
iated to the Gaussian. The stability and a

ura
y 
onditionsfrom Eq. 3.31 and Eq. 3.32 are veri�ed for the updated model. If the 
onditions aresatis�ed the two sele
ted Gaussian fun
tions are repla
ed by the merged Gaussian,and the new model is now 
omposed of K − 1 Gaussian fun
tions. The algorithmterminates when there is no possible pair of Gaussian fun
tions that 
an be mergedwithout violating the maximum a

epted error or be
oming unstable. Table 3.2summarizes the pro
edure to model the motion dynami
s through Binary Merging,as proposed by [Khansari-Zadeh and Billard, 2010b℄.There are some short
omings when using BM, it has a limited region of appli
a-bility, sin
e the stability domain D usually 
orresponds to a narrow region aroundthe demonstrations. Additionally, it relies on determining numeri
ally the stabilityregion, whi
h 
ould be
ome 
omputation 
ostly and intra
table in higher dimensions[Khansari-Zadeh and Billard, 2011℄.



102 3. Learning Robot Skills Models from Demonstrations.3.5.4 Stable Estimator of Dynami
al Systems[Khansari-Zadeh and Billard, 2010a℄ proposed a learning method, 
alled StableEstimator of Dynami
al Systems (SEDS), to learn the parameters of the DS that en-sure all motions 
losely follow the demonstration dynami
s and for the global asymp-toti
 stability at the target of the estimate f̂ of the non-linear autonomous DS. Theirwork provided a set of stability 
onditions to ensure the global asymptoti
 stabilityof f at the target. However, as opposed to BM, the e�e
t of all Gaussian fun
tionsare taken into a

ount, without any need to trun
ate the estimate to solely using theadja
ent Gaussian fun
tions.In order to build a globally asymptoti
ally stable DS, it is needed to set theparameters, θ, of the estimate of f , su
h that, by starting the motion from any pointin the state spa
e the energy of the system de
reases until it rea
hes the target.Assuming that the state traje
tory evolves a

ording to Eq. 3.24, the non-linearfun
tion ξ̇ = f̂(ξ) 
an be made globally asymptoti
ally stable at the target ξ̄ ∈ Rnby ensuring the following stability 
onditions,
{

b
k = −A

kξ̄

A
k + (Ak)⊤ ≺ 0

∀k = 1 . . .K (3.34)where A
k and b

k are de�ned a

ording to Eq. 3.23, and ≺ 0 refers to the negativede�niteness of a matrix, details 
an be found on [Khansari-Zadeh and Billard, 2011℄.Conditions from Eq. 3.34 impose the 
onstraint so that the energy dissipation onea
h Gaussian be
omes negative everywhere ex
ept at the target, where it be
omeszero.Established su�
ient 
onditions whereby f(ξ) 
an be globally asymptoti
ally sta-ble at the target remain to determine a pro
edure for 
omputing the unknown param-eters, θk = (πk, µk,Σk), of Eq. 3.22 satisfying the stability 
onditions. Learning theparameters of the GMM pro
eeds as a 
onstraint optimization problem, the SEDSlearning algorithm 
omputes optimal values for θ under stri
t stability 
onstraints,ensuring that the model satisfy global asymptoti
 stability of the DS at the target[Khansari-Zadeh and Billard, 2010a℄. For the optimization obje
tive fun
tion two dif-ferent 
andidates are used. One fun
tion based in the log-likelihood, as a means of
onstru
ting the model; and a fun
tion based on the mean square error (MSE), as ameans of quantifying the a

ura
y of estimations that are based on demonstrations.The optimization problem is subje
t to the following 
onstraints,
b
k = −A

kξ̄ ∀k = 1 . . .K (3.35a)
A

k + (Ak)⊤ ≺ 0 ∀k = 1 . . .K (3.35b)
Σk ≻ 0 ∀k = 1 . . .K (3.35
)

0 ≤ πk ≤ 1 ∀k = 1 . . .K (3.35d)
K
∑

k=1

πk = 1 (3.35e)



3.5. En
oding of a Robot Skill 103Algorithm: Stable Estimator of Dynami
al Systems SEDS[Khansari-Zadeh and Billard, 2011℄Input: Demonstrations dataset {ξi, ξ̇i}Di=1.1. Initialize optimization parameters.2. Transfer the target attra
tor ξ̄ to the origin.3. Choose initial number of Gaussian 
omponents K.4. Find initial estimate for the Gaussian parameters θ́k = (π́k, µ́k, Σ́k), k ∈ 1 · · ·K,running Expe
tation Maximization.5. De�ne optimize parameters as πk = π́k and µk
ξ = µ́k

ξ .6. Convert the 
ovarian
e matrix su
h that it satis�ed the stability and optimization
onstrains as given by Eq. 3.35.7. Compute µk

ξ̇
solving the optimization problem 
onstraints given by Eq. 3.35.8. Solve 
onstraint optimization problem for J(θ) as given by the obje
tive fun
tion of:Eq. 3.36 for the Likelihood.Eq. 3.37 for the MSE.9. IF optimization 
onstraints 
he
k satis�ed.10. THEM return.Output: f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}Tab. 3.3: En
oding the estimate of the DS with SEDSThe �rst two 
onstraints of Eq. 3.35 are the stability 
onditions from Eq. 3.34. Andthe last three 
onstraints are imposed by the nature of the GMM, from Eq. 3.17,ensuring Σk being positive de�nite matri
es, and the πk prior probabilities beingpositive s
alars, smaller than or equal to one and their sum equal to one.The SEDS-Likelihood method, using the log-likelihood as a means to quantify thea

ura
y of estimations, 
omputes the optimal values of θ by solving,
min
θ
J(θ) = −

1

T

D
∑

i=1

T i
∑

t=o

ln p((ξt,i; ξ̇t,i) | θ) (3.36)where p((ξt,i; ξ̇t,i) | θ) is given by Eq. 3.17 and T =
∑D

i=1T
i are the total numberof points in the demonstration dataset. For sele
ting an optimal number of Gaussianfun
tions K for this method, Bayesian Information Criterion (BIC) was used todetermine a trade-o� between the optimization of the model's likelihood and thetotal number of parameters needed to en
ode the data,

BIC = T J(θ) +
np

2
ln(T )in whi
h J(θ) is the normalized log-likelihood of the model in Eq. 3.36 and np is thetotal number of free parameters.



104 3. Learning Robot Skills Models from Demonstrations.In SEDS-MSE method, whi
h uses the mean square error as a means to quantifythe a

ura
y of estimations, the optimal values of θ are 
omputed by solving,
min
θ
J(θ) = −

1

2T

D
∑

i=1

T i
∑

t=o

(f(ξt,n)− ξ̇t,n)⊤(f(ξt,n)− ξ̇t,n) (3.37)where f(ξt,n) is 
al
ulated dire
tly from Eq. 3.22 and T is, as above, the totalnumber of points in the demonstration dataset. In order to obtain an optimalnumber of Gaussian fun
tion K for this method, the demonstrations are split intotraining and test datasets. The optimal number of Gaussian fun
tions 
orrespondsto the minimum value of K that provides an a

urate estimate on both datasets[Khansari-Zadeh and Billard, 2011℄.Table 3.3 summarizes the pro
edure to model the motion dynami
s through StableEstimator of Dynami
al Systems, as proposed by [Khansari-Zadeh and Billard, 2011℄.The resulting models from optimizing with both SEDS-Likelihood and SEDS-MSEmethods bene�t from the inherent 
hara
teristi
s of autonomous DS. However, ea
hobje
tive fun
tion has its own advantages and disadvantages. Employing the SEDS-log-likelihood 
an be advantageous in that it is more a

urate and smoother thanSEDS-MSE. Furthermore, the SEDS-MSE 
ost fun
tion is slightly more time 
on-suming sin
e it requires 
omputing GMR at ea
h iteration. However, the SEDS-MSEobje
tive fun
tion requires fewer parameters than the SEDS-log-likelihood, whi
h maymake the algorithm faster in higher dimensions or when a higher number of 
ompo-nents are used [Khansari-Zadeh and Billard, 2011℄.From the GMM-GMR approa
h the learning parameters requirements for esti-mation would be K(1 + 3n + 2n2), for π, µ, and Σ of size 1, 2n, and n(2n + 1)respe
tively, with n the dimensionality of the demonstrations dataset. However, forSEDS-Likelihood the total number of parameters 
an be redu
ed sin
e Eq. 3.35 pro-vides expli
it formulation to 
ompute µξ̇ from the other parameters. The number offree parameters to 
onstru
t the model with SEDS-Likelihood is K(1 + 2n(n + 1)).For SEDS-MSE the term Σξ̇ is not used, the total number of parameters SEDS-MSEen
oding redu
es to K(1 +
3

2
n(n + 1)). For both approa
hes, the number of param-eters grows linearly with the number of Gaussian fun
tions and quadrati
ally withthe dimension. In 
omparison, the number of parameters in SEDS would be smallerthan those needed for the other methods.Figure 3.11 presents examples of the learned DS from a demonstrated traje
torywith the methods presented in this se
tion: GMM-DS, BM, SEDS-MSE and SEDS-Likelihood. As mentioned before, the non-linear DS are sus
eptible to instabilities.Guaranteeing the estimates f̂ results in an asymptoti
ally stable traje
tory and is akey requirement to provide a useful 
ontrol poli
y. The GMM-GMR approa
h as de-�ned by Eq. 3.24 
annot guarantee the system's asymptoti
ally stability. The methodpresented by [Gribovskaya and Billard, 2009℄, Table 3.1, look for an estimate of f̂that is lo
ally stable around the target, but without guaranteeing that su
h a modelwould be found or 
onsidering the a

ura
y of its reprodu
tion. As 
an be seen from3.11(a) the learned model presents a spurious attra
tor and some of the traje
tories
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(
) SEDS-Likelihood (d) SEDS-MSEFig. 3.11: Examples of the learned DS. The letter C pattern demonstrations fromFig 3.9 are modelled with the GMM-DS(a), BM(b), SEDS-Likelihood(
)and SEDS-MSE(d) methods. Reprodu
tions are drawn as red lines. Thetarget attra
tor is drawn as a bla
k x at (0,0). The existen
e of spu-rious attra
tors is drawn as magenta ⋄. The streamlines of the learneddynami
s are drawn in blue.
are not a

urate enough. The BM approa
h [Khansari-Zadeh and Billard, 2010b℄,Table 3.2, ensures lo
al stability around a de�ned region D. Here, as 
an be seenfrom 3.11(b), spurious attra
tors 
an still exist outside of D, whi
h also has a limitedregion of appli
ability. The SEDS approa
h [Khansari-Zadeh and Billard, 2011℄, Ta-ble 3.3, provides stri
t stability 
onstraints ensuring that the model satis�es globalasymptoti
 stability of the DS at the target. As 
an be seen from 3.11(
)-(d), forSEDS-MSE and SEDS-Likelihood respe
tively, reprodu
tions of the learned DS areguaranteed to be globally asymptoti
ally stable.



106 3. Learning Robot Skills Models from Demonstrations.3.6 Reprodu
tion of Learned Robot SkillsAs stated before in the problem formalization in the previous se
tion, the sys-tem motion 
an be unambiguously determined by the state variable ξ when governedby the estimate f̂ of the motion dynami
s. Choosing this variable is therefore 
ru-
ial for the traje
tory of the reprodu
tion of the learned robot skill. The learningalgorithms des
ribed in se
tion 3.5 aim at being a generi
 framework and make noassumption on the variable that is used for training. Here, the 
hoi
e is made to repre-sent the motions in kinemati
 
oordinates, the Cartesian spa
e, with the assumptionthat appropriate 
ontrollers are available to 
onvert the kinemati
 variables to motor
ommands. Adopting a kinemati
 formulation is quite suitable for motion 
ontrol,sin
e the kinemati
 variables generalize over a large part of the workspa
e, and plan-ning in kinemati
 spa
e is often more 
onvenient for motor 
ontrol. Also, kinemati
plans 
an theoreti
ally be 
learly superimposed to form more 
omplex behaviours[S
haal et al., 2007℄.First, it is desirable to validate the performan
e of the methods presented inse
tion 3.5. For this a set of 2-D sample motions is 
olle
ted from the valida-tion data provided by the authors of the original formulation of these methodsin their respe
tive sour
e 
odes. A total of 8 motions were 
hosen to 
omparethe performan
e of the methods, 4 from [Khansari-Zadeh and Billard, 2011℄, 1 from[Khansari-Zadeh and Billard, 2010b℄, 2 from [Calinon, 2009℄ and �nally 1 hand drawnmotion re
orded withMLDemos visualization tool for ma
hine learning [Basilio, 2013℄.All reprodu
tions are generated in simulation to avoid adding the robot 
ontroller er-rors. The methods' performan
e are evaluated over two error measurements. Ana

ura
y error measurement, ē from 3.32, whi
h measures the error in the estimationof ξ̇ magnitude and dire
tion. And a �swept area error� measurement,
E =

1

D

D
∑

i=1

T i
∑

t=0

A(ξi(t), ξi(t + 1), ξt,i, ξt+1,i) (3.38)
A 
orrespond to the area of the tetragon generated by the points (ξi(t), ξi(t+1), ξt,i, ξt+1,i),were ξt, ξt+1 are given by the demonstration datapoints at t and t+1, and ξ(t), ξ(t+1),
omputed by ξ(t) = ξ̇(t) ∗ dt, are an estimate of the demonstrated traje
tories start-ing from the same initial points. Eq. 3.38 measures the 
umulative error over thereprodu
tion of traje
tories.Figure 3.12 and Tables 3.4, 3.5 summarize the results of validating the methodswith 8 sample 2-D motions. The GMM-DS method, tries to satisfy lo
al stability
onditions, however, it does not ensure the possibility of �nding a stable DS. TheBM method, generated the most a

urate estimates among the methods, produ
inggenerally better results than both SEDS versions. However, the BM method is alsothe more 
omputationally 
ostly and the one whi
h requires the highest numberof parameters among the methods, BM and GMM-DS have the same number ofparameters K(1+3n+2n2) yet the value for number of Gaussian K was 
onsistentlyhigher for BM sin
e this method began at a max number of Gaussian and mergeddown from there. Finally, the BM method only ensures lo
al stability of the DS.
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ura
y Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityGMM-DS 0.75348 0.226-1.660 1930.3 199-8766 101(60-165) No(Lo
al)BM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Lo
al)SEDS-Likelihood 0.77215 0.628-1.198 2241.3 648-10290 95(52-156) Yes(Global)SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)Tab. 3.4: Performan
e 
omparison of the methods presented in se
tion 3.5 with aset of sample 2-D motions. BM generates the most a

urate estimate, andalso require the more number of parameters among the methods. Theperforman
e of SEDS-MSE and SEDS-Likelihood is similar.The performan
e of both SEDS methods, Table 3.3, was 
omparable, with verysimilar results parti
ularly for the a

ura
y error (ē), and slightly better with SEDS-MSE for the sweep area error (E). The SEDS-MSE method is advantageous inthat it requires fewer parameters than SEDS-Likelihood. However, SEDS-MSE has amore 
omplex 
ost fun
tion, making the algorithm 
omputationally more expensive[Khansari-Zadeh and Billard, 2011℄. Both SEDS methods outperforms BM in thatthey ensure global asymptoti
 stability and are 
apable of better generalizing motionsfor traje
tories that are far from the demonstrations. Figure 3.12 shows results ofestimating the 8 sample 2-D motions of Table 3.5 with SEDS-Likelihood method.The motivation for this 
hapter is to learn and en
ode the demonstrated motiondynami
s in order to build models of the robot skills as needed by the subsequentmodules of the proposed framework in Figure 3.1. The Robot Skills Models are de�nedby the estimate of the motion dynami
s, f̂ , as learned by the methods in Se
tion3.5, des
ribed in Tables 3.1, 3.2, 3.3. Therefore a robot skill is modelled by theparameters θ of f̂ . We will use the notation M̄RS for a Robot Skill Model, determinedby f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, su
h that,
M̄RS = {θ1, · · · , θK} (3.39)where θi = {π, µ,Σ} of the N i Gaussian de�ned by Eq. 3.18, and K is the totalnumber of Gaussian fun
tions required to estimate the motions dynami
s.For the roboti
 system reprodu
tion of motions, the robot skills in this work areto be represented in the Cartesian 
oordinate system, the desired output variablesare then positions, velo
ities and a

elerations, in order to 
ontrol the system inthe operational task spa
e. From [Gribovskaya and Billard, 2009℄, the task spa
etraje
tories of the robot's end-e�e
tor are sele
ted so that it 
an be taught to 
ontrolthe position and orientation of the motion. The variables in the training set were
hosen as the translation 
omponent of a motion of the end-e�e
tor, a ve
tor ofCartesian 
oordinates x ∈ R

3; and the orientation of the end-e�e
tor, a pair ofvariables {s, φ} representing the axis and the angle of rotation. A

ording to thisrepresentation, the orientation of a moving referential {x′y′z′} with respe
t to a �xed
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ura
y Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MAngle1 0.332 0.737 0.708 1082 1931 1178 135 120 80Sine1 0.804 1.051 0.945 6101 7700 5627 195 90 60Khamesh1 0.371 0.703 0.688 861 969 1021 90 90 60Trapezoid1 0.353 0.698 0.675 575 984 789 180 75 50Ar
2 0.328 0.640 0.639 1037 1244 1112 90 75 50Waves4 0.759 0.875 0.887 723 1179 889 300 180 120U-Curve3 0.404 0.655 0.752 264 1825 1741 150 60 405-Curve3 0.509 0.747 0.584 2586 2814 1767 180 75 50Tab. 3.5: Performan
e Comparison of Learning Methods on Sample Set of 2-D Mo-tions. (1) taken from [Khansari-Zadeh and Billard, 2011℄, (2) taken from[Khansari-Zadeh and Billard, 2010b℄, (3) taken from [Calinon, 2009℄, (4)re
orded with MLDemos visualization tool [Basilio, 2013℄.referential {xyz} is des
ribed by the rotational axis s ∈ R3 and the angle φ ∈ [0; 2π].Internally an inverse kinemati
s 
ontroller is available to 
onvert the end e�e
tor's
ontrol variables to appropriated joint spa
e motor 
ommands, θ, ˙theta.Therefore, the estimate f̂ of the DS that it must be learned from the demonstra-tions is,
ẋ = f̂x(x) with ξ = x ∈ R

3 (3.40)for the dynami
s of the end-e�e
tor's position (x). And,
ȯ = f̂o(s, φ) with ξ = [s, φ], s ∈ R

3, φ ∈ [0; 2π] (3.41)for the dynami
s of the end-e�e
tor orientation (o).Alternatively, the state variable ξ 
an be made to en
ode the 
oupled dynami
sof the end-e�e
tor's position and orientation as,
ξ̇ = f̂ξ(ξ) with ξ = [x, s, φ], x ∈ R

3, s ∈ R
3, φ ∈ [0; 2π] (3.42)Then the estimate f̂ of the dynami
s 
an be inferred through the GMR pro
ess,

ξ̇ = f̂(ξ) = E

[

p(ξ̇ | ξ)
]

=
K
∑

k=1

hk(ξ)(Akξ + b
k) where,

x = f̂(x) = E [p(ẋ | x)] =
K
∑

k=1

hk(x)(Akx+ b
k)for 
ontrolling the position. (3.43a)
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e of the various methods.The resulting reprodu
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ura
y Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityBM 1.1079 0.179-2.258 1965 589-4548 112.5(45-210) Yes(Lo
al)SEDS-Likelihood 1.8395 0.582-4.920 2024 389-6454 81.25(65-91) Yes(Global)SEDS-MSE 1.7191 0.458-4.316 2989 985-8028 62.5(50-70) Yes(Global)Tab. 3.6: Performan
e 
omparison of the methods presented in se
tion 3.5 with aset of sample 3-D motions. The estimates generated with BM are morea

urate, while also requiring the bigger number of parameters among themethods. Performan
e of SEDS-Likelihood and SEDS-MSE is very similar,with SEDS-Likelihood outperforming SEDS-MSE in a

ura
y estimates,and SEDS-MSE doing better with Swept Area Error.
ȯ = f̂(o) = E [p(ȯ | o)] =

K
∑

k=1

hk(o)(Ako+ b
k)for 
ontrolling the orientation. (3.43b)

[ẋ, ȯ] = f̂(x, o) = E [p([ẋ, ȯ] | [x, o])]

=

K
∑

k=1

hk([x, o]))(Ak [x, o]) + b
k) for a 
oupled 
ontroller. (3.43
)as de�ned by Eq. 3.22 and Eq. 3.24.Figure 3.13 and Tables 3.6, 3.7 summarize the results of validating the methodswith 4 sample 3-D motions. The GMM-DS method, was omitted this time from thevalidations sin
e it does not ensure the stable DS it will not be further employedin this work. The BM method, again, generated the most a

urate estimates, pro-du
ing generally better results than both SEDS versions, although its performan
ewas not always better for all of the task, see Table 3.7, this 
ould be be
ause of badmodelling of the task. Also, just as expe
ted, the BM method presented the highernumber of parameters among all methods. The performan
e of both SEDS-MSE andSEDS-Likelihood was very similar with SEDS-MSE performing slightly better for thea

ura
y error (ē), and SEDS-Likelihood outperforming SEDS-MSE this time for thesweep area error (E). It must be taken into a

ount that these results are very taskdependent, and no other true 
on
lusion 
an be made between these methods ex
eptthat they are both su�
iently adequate for their intended purpose in this work. Fig-ure 3.13 shows the results of estimating the 4 sample 3-D motions of Table 3.7 withthe SEDS-Likelihood method.The assumption was made from Eq. 3.5, that the motions are modelled with a�rst order time-invariant ODE. The proposed DS are generi
 enough to represent awide variety of motions, however, they would fail to de�ne se
ond order dynami
sa

urately. This problem 
an be solved by de�ning the motion in terms of position,velo
ity and a

eleration [Khansari-Zadeh and Billard, 2011℄. This means solving
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ura
y Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MiCub-Task1 1.956 4.327 3.869 3112 599 1993 105 91 70Cup-Task2 1.522 1.215 1.248 11200 4758 24708 45 65 50Door-Task3 0.263 1.523 0.923 1989 2796 2684 90 78 60Cap-Task4 2.416 1.267 1.383 791 1064 1973 210 91 70Tab. 3.7: Performan
e 
omparison of learning methods on a sample setof 3-D Motions. (1) taken from [Gribovskaya and Billard, 2009℄,(2) taken from [Khansari-Zadeh and Billard, 2010b℄, (3) taken from[Kheddar et al., 2009a℄, (4) re
orded with kinaestheti
 demonstrationswith the robot HOAP-3.A

ura
y Error ē Swept Area Error E # of EnsureMethod Mean ē Range of ē Mean E Range of E Parameters StabilityBM 0.50394 0.217-1.118 1582.5 213-7062 165(90-300) Yes(Lo
al)SEDS-Likelihood 0.77215 0.628-1.198 2241.3 648-10290 95(52-156) Yes(Global)SEDS-MSE 0.74683 0.474-1.128 1767.7 449-8223 64(40-120) Yes(Global)Tab. 3.8: Performan
e 
omparison of the methods presented in se
tion 3.5 with aset of sample self-interse
ting motions.the problem as se
ond order DS. When 
onsidering the motions in its se
ond orderdynami
s, that is ẍ = g(x, ẋ), it would be very advantageous if it 
ould be simpli�edwith a 
hange of variable into a �rst order ODE,
{

ẋ = v

v̇ = g(x, v)
⇒ [ẋ, v̇] = f(x, v) (3.44)By de�ning the state variable, ξ, as ξ = [x, v] ⇒ ξ̇ = [ẋ, v̇] the Eq. 3.44 simpli�es to

ξ̇ = f(ξ) as in Eq. 3.24 and 
an be learned following the methods presented in theprevious se
tion.Figure 3.14 and Tables 3.8, 3.9 summarize the results of validating the methodsby learning the se
ond order dynami
s of a motion. It 
an be observed from thetraje
tories that when en
oding the interse
ting motion with only the �rst orderdynami
s reprodu
tion failed to re�e
t the full demonstrated motion, Figure 3.14.En
oding the se
ond order dynami
s of the motion allows disambiguation of thedire
tion of the motion when reprodu
ing a self-interse
ting traje
tory.In order for a robot to reprodu
e a skill a model,MRS, of the estimate f̂(ξ) of themotion dynami
s must have been learned beforehand as per the methods presented inthe previous se
tion. Assuming appropriate models exist the �rst step is to dete
t atarget obje
t of the skill, the attra
tor of the modelled dynami
s, in a �global referen-
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(a) Door-Task (b) Cap-TaskFig. 3.13: 4 3-D motions use to 
ompare the performan
e of the various methods.The results 
orrespond to the SEDS-Likelihood Models.
A

ura
y Error ē Swept Area Error E # of ParametersMotion BM SEDS-L SEDS-M BM SEDS-L SEDS-M BM SEDS-L SEDS-MLoop1 4.348 2.741 2.246 5601 1078 3587 90 65 50Letter T 2 3.260 7.211 6.448 3315 1773 2846 155 78 70Tab. 3.9: Performan
e 
omparison of learning methods on a sample set of self-interse
ting motions. (1) taken from [Khansari-Zadeh and Billard, 2010b℄,(2) re
orded with MLDemos visualization tool [Basilio, 2013℄.
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Fig. 3.14: 2 self-interse
ting motions DS use to 
ompare the performan
e ofthe various methods. Top traje
tory is a loop motion taken from[Khansari-Zadeh and Billard, 2010b℄. Bottom traje
tory is a letter T mo-tion re
orded with MLDemos visualization tool [Basilio, 2013℄. (left) Theresult of en
oding the �rst order dynami
s of the motion. (right) The re-sult of en
oding the se
ond order dynami
s of the motion as it is presentedin Eq. 3.44.
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Algorithm: On-line reprodu
tion of the learned robot skillInput: Learned Robot Skill Model, MRS , of the estimate ξ̂ of the motion dynami
s under-lying the skill.1. Dete
t a target position in the global referential {xt, yt, zt} : xG.2. Transfer the origin of the task referential frame to the dete
ted target {xt, yt, zt} :
xT = {0, 0, 0}.3. Re
ompute the 
urrent state of the end-e�e
tor in the target referential ξ∗ =
{x′

e, y
′

e, z
′

e} : xT .4. LOOP until the target position is rea
hed. t = 0.5. Infer the velo
ity at the time step t through GMR, Eq. 3.24.
ξ̇(t) =

∑K

k=1
hk(ξ∗)(Akξ∗ + b

k).6. Compute the end-e�e
tor's state for the next time step, ξ(t+ 1).
ξ(t+ 1) = ξ(t) + ξ̇(t+ 1) · dt.7. Compute the robot motor 
ommand for the next step,
ξ, ξ̇ 7→ q, q̇, solving the inverse kinemati
s problem.8. Exe
ute the robot 
ommand and sense the new q e�e
tor position.9. Update the end-e�e
tor state in the target referential
q 7→ ξ : ξ∗ = {x′

e, y
′

e, z
′

e} : xT .10. ENDOutput: ξ̇(t); ξ(t) = ξ(t− 1) + ξ̇ ∗ dt robot skill traje
tory.Tab. 3.10: Pro
edure for on-line reprodu
tion of the learned robot skills.
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 Primitives of Movement 115tial frame�, {xt, yt, zt} : xG, this 
ould be from the robot's own viewpoint referentialor any other per
eption system referential available for the task. The origin for thetask referen
e frame is then atta
hed to the target, {xt, yt, zt} : xT = {0, 0, 0}. There-fore, the robot skill motion is 
ontrolled with respe
t to this frame of referen
e, witha target attra
tor at the origin as in the formulation of Eq. 3.5. This representationalso makes that the parameters of the DS invariant to 
hanges in the target position.Subsequently, the 
urrent state of the end-e�e
tor, {xe, ye, ze} : xG, is re
omputed inthe referential frame of the target, ξ∗ = {x′e, y
′
e, z

′
e} : xT . The traje
tories of the repro-du
ed motion are governed by the modelled dynami
s, progressing from the 
urrentstate, ξ∗, towards the attra
tor point of the DS lo
ated at the origin of the targetreferential frame, xT = {0, 0, 0} , a

ording to the estimated attra
tor lands
ape ofthe learned DS, see Figures 3.12 and 3.13. At every step, the end-e�e
tor's nextstate, ξ∗+1, is inferred by sampling from the GMR, to obtain ξ̇ : ξ∗+1 = ξ∗ + ξ̇ · dt,this is repeated su

essively until the target is rea
hed. The robot reprodu
tion ofthe traje
tories of the learned motion dynami
s 
an be 
omputed on-line through theGMR of the modelled robot skill. The pro
ess for on-line reprodu
tion of the learnedmotion dynami
s is summarized in Table 3.10.3.7 Robot Skills as Basi
 Primitives of MovementA desirable appli
ation for the learned Robot Skill Models is the building of alibrary of so 
alled movement primitives that 
an be readily available for later reuseby the robot when a situation required it to.For motion 
ontrol in roboti
s di�erent motor behaviours 
an be seen as di�er-ent 
ontrol poli
ies, representing di�erent a
tions. It is desired to have methodsfor representing human movement 
ompa
tly in terms of a linear superimposition ofsimpler movements, whi
h are termed primitives. The motor primitives, also 
alled,movement primitives, basi
 behaviours, units of a
tions, et
., are sequen
es of a
-tions that 
an a

omplish a 
ertain movement goal [S
haal, 1999℄. Movement prim-itives are biologi
al stru
tures that organize the underlying me
hanism of 
ompletemovements [Fod et al., 2000℄. An approa
h based on movement primitives relies onpossessing available sequen
es of motor 
ommands, exe
uted in a 
ertain order, toa

omplish a given motor task. The movement primitives 
an be viewed as a basi
set of motor programs that are su�
ient for generating entire movement repertoires[Muelling et al., 2013℄.A starting point for this approa
h is in the assumption that 
omplex movementskills are 
omposed from smaller units of a
tion. The established belief is that humana
tivity is de
omposed into building blo
ks of elementary a
tions. There are manytheories whi
h propose human motion being divided into their elementary traje
tories[Fod et al., 2000℄.Dealing with these issues leads to fa
ing the problems of segmentation and 
las-si�
ation of human motion. The work of [Ve

hio, 2002℄ deals with de
omposing
ontinuous traje
tories of the human body into their 
omponents, whi
h are 
alled`movemes', and aims to build a so 
alled �alphabet of movemes� to represent and
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ribe human motion similar to the way phonemes are used in spee
h. The un-derlying idea for a roboti
 system to 
ope with the 
omplexity of repli
ating humanmotor skills is for the learned, demonstrated movements to be �rst segmented intosub-goals from whi
h appropriate primitives 
an be obtained.Movement primitives in their most simple form 
an be thought of as simple as theelementary a
tions in the symboli
 approa
h to imitation, with simple point-to-pointmovements employed by industrial robots [S
haal, 1999℄. Learning motions of su
h alow-level of representation failed to s
ale well to systems with many degrees of free-dom. Movement primitives would bene�t from 
oding 
omplete temporal behaviours,that result in state-a
tion representation that are 
ompa
t and whi
h need to adjustonly a few parameters for a spe
i�
 goal [S
haal, 1999℄. Learning the Robot SkillsModels as in se
tion 3.6 
an be a most suitable way of forming basi
 primitives ofmovement, en
oding within the model the motion dynami
s of a demonstrated skill.Learning su
h basi
 units of a
tion has long been thought useful for generatinglibraries of motor skills. A roboti
 system equipped with a library of movement primi-tives with a su�
ient number of skills 
an be thought of possessing an adequate reper-toire of a
tions to deal with a vast range of situations. Also, it is generally regardedthat 
omplex motions 
an be dealt with by building a library of movement primitives[Pastor et al., 2009℄, providing basi
 
omponents from whi
h multiple desired robottasks 
an be performed by 
ombination and superposition of the primitives.From leading views of motor 
ontrol in neurobiology it is generally regarded thathumans do employ basi
 motor primitives as an underlying me
hanism of biologi
almotor 
ontrol. Eviden
e exists from human and animal experiments supporting thebelief that sets of motor primitives are used to build a basis for voluntary motor 
ontrol[Kon
zak, 2005℄. It is well a

epted in these approa
hes that for 
oping with the
omplexity of motor skills learning for robots, it is ne
essary to rely on the insight thathumans de
ompose motor skills into smaller subtasks. There are many theories aboutmotor primitives whi
h suggest that they are a viable means for en
oding humanoidmovement. Primitives are fundamental building blo
ks of motor 
ontrol determiningan e�e
tive basis set of primitives is therefore a di�
ult problem [Fod et al., 2000℄.Motor 
ontroller 
omponents of the movement primitives may be manually derivedor learned. It is important that the representations used for extra
ting units of a
tionsalso relate to the movement generation [Meier et al., 2011℄. The primitives must be
hara
terized in parametri
 form to allow generalization and their appli
ability todi�erent s
enarios. Adequate representations are needed for the movement primitives,in order to build a library of skills.The work of [Ijspeert et al., 2003℄ was the �rst to suggest the idea of using DSas motor primitives. Their approa
h employed the DMP to learn and en
ode thedynami
s of demonstrated motions. The 
ontrol poli
ies 
ould be used to representbasi
 movements that form a library of motions. De�ning the primitives in terms of
ausal dynami
al systems allows then to be parametrized by a small set of dynami
alparameters and an input driving the overall dynami
s [Ve

hio, 2002℄.Various examples 
an be found to represent movement primitives su
h as thatrepertoires of motions that 
an be built from learned motion tasks. [Ude et al., 2007℄presents a framework for synthesizing goal-dire
ted a
tions from a library of example
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 Primitives of Movement 117movements; di�erent methods 
an be utilized for the 
onstru
tion of these movementlibraries. [Zoliner et al., 2005b℄ deals with the integration of learned manipulationtasks into a knowledge base as well as enabling the system to reason and reorga-nize the gathered knowledge in terms of re-usability, s
alability and explainability oflearned skills and tasks. In [Pastor et al., 2009℄ a 
olle
tion of dynami
 movementprimitives is used to build a library of movements by labelling ea
h re
orded move-ment a

ording to task and 
ontext. [Ve

hio, 2002℄ proposed understanding humanmotion by de
omposing it into a sequen
e of elementary building blo
ks that belongto a known alphabet of dynami
al systems, whi
h 
an be 
omposed to represent anddes
ribe human motions and shown dynami
al 
hara
teristi
s whi
h are su�
ient todistinguish between them. [Muelling et al., 2013℄ 
reated a movement library fromImitation Learning ; movements stored in the library 
an be sele
ted and generalizedusing a mixture of primitives algorithm. [Fod et al., 2000℄ presented a method usedto derive a set of per
eptual-motor primitives dire
tly from movement data. Theprimitives 
an be used as a lower-dimensional spa
e for representing movement.A di�
ult problem remains in these approa
hes in the segmenting of 
omplexmovements and 
lassi�
ation of the movement primitives. [Meier et al., 2011℄ ap-proa
h aimed at movement segmentation with simultaneous movement re
ognition,assuming that a library of movement primitives already existed, and redu
ed thesegmentation problem to online movement re
ognition.The ability to imitate is based on a mapping me
hanism whi
h 
an automati-
ally 
lassify all observed movements onto their set of per
eptual-motor primitives[Fod et al., 2000℄. Building systems that 
an dete
t and re
ognize human a
tion arean important goal. Thus segmentation and 
lassi�
ation be
ome key interrelated pro-
esses of movement interpretation. The segmentation problem 
an be divided intothree sub problems, �rst determining the number of segments, then estimating thestart and end time of ea
h segment and re
ognizing whi
h primitive from the libraryis exe
uted in ea
h segment [Meier et al., 2011℄. Understanding motor behaviour be-
omes a pro
ess of 
lassifying the observed movements into the known 
olle
tion ofmovement primitives [Fod et al., 2000℄.Distinguishing between general 
lasses of motor skills is useful. [Ve

hio, 2002℄ se-le
ts between �rea
h� and �drawing� motions. The work of [S
haal and Atkeson, 2010℄makes a 
lassi�
ation along �regulator� tasks whi
h keep the system over a point ofoperation. �Tra
king� task 
ontrol systems to follow a given desired traje
tory. �One-shot� tasks de�ned by a
hieving a parti
ular goal. And �periodi
� movement tasks.A 
omplex movement would be 
omposed of sequen
ing and superimposing of thesesimpler motor skills.[Ijspeert et al., 2002℄ showed that traje
tories with similar velo
ity pro�les �t sim-ilar en
oding parameters and proposed to use the learned 
ontrol poli
ies to 
lassifymovements, 
omputing the 
orrelation between them. The goal is to build a baseof robot skills learned from the demonstrations and to sele
t and generalize amongthese skills to adapt to new situations. A robot skill 
ould be 
ategorized a

ordingto its velo
ities and a

eleration pro�les and the 
orrelation between its variablesinto several 
ategories, su
h as rea
hing movements, striking or hitting movements,tra
ing or drawing movements and 
oordinated and un
oordinated movements.



118 3. Learning Robot Skills Models from Demonstrations.3.8 Summary of the ChapterThroughout this 
hapter a review of the �eld of Learning from Demonstration(LfD) has been presented along with the pro
ess and methods used for learning anden
oding the models of the robot skills. In se
tion 3.2 basi
 notions of LfD werepresented. Se
tion 3.3 reviewed methodologies for gathering demonstrations and the
orresponden
e problem. Various te
hniques for tea
hing and building the demon-stration datasets were presented, su
h as kinaestheti
 tea
hing, visual demonstrations,motion 
apturing systems for re
ording demonstrations and the generation of robottraje
tories with virtual reality or simulated environments. The framework employedthrough this work to learn robot skill motions from demonstrations was introdu
edin se
tion 3.4. The approa
h is based on learning time independent models of themotion dynami
s, estimated through a set of �rst order non-linear multivariate dy-nami
al systems. Se
tion 3.5 presented the formalization of the learning problem, areview of various regression te
hniques was presented. Also, three algorithms to learnthe dynami
s of demonstrated motions were introdu
ed. A �rst approa
h to learningmultivariate Gaussian was developed. This original formulation 
ould not guaranteethe learning of a stable estimate of the dynami
s. The BM method was presentednext, this method 
ould produ
e a model of DS with lo
al asymptoti
 stability at thetarget. Finally the SEDS method was reviewed with two obje
tives fun
tions, SEDS-likelihood and SEDS-MSE. The SEDS formulation to learn the underlying dynami
sof a motion 
an guarantee that the estimate of the dynami
s is globally asymptoti
allystable at the target. Se
tion 3.6 reviewed the methodologies used for the reprodu
tionof the learned motions dynami
s of the robot skills. Comparing the performan
e of themethods presented in se
tion 3.5. Validation was performed by learning the estimatesof 8 2-D motions and 4 3-D motions. The performan
e of the methods was 
ompareda
ross the demonstrated motions, the results are presented over Tables 3.4 to 3.9.Se
tion 3.7 dis
ussed the existing approa
hes for building libraries of basi
 movementprimitives with the learned robot skills. A library of robot skills 
an be built withthe learned models of motion dynami
s in order to build an appropriate repertoireof movements for a robot to perform in several situations. In this work a modulewas su

essfully implemented allowing the robot to learn skills from demonstrations,we employed three di�erent modalities to tea
h a robot the skill motions, re
ordingthe robot's traje
tories as manipulated by a tea
her with kinaestheti
 tea
hing, em-ploying vision system to tra
k the tea
her demonstrations, and re
ording the robottraje
tories in an OpenRAVE simulated environment. After studying, 
omparing,and implementing various algorithms and te
hniques a Dynami
al System approa
h,based on learning time independent models of the motion dynami
s through a setof �rst order non-linear multivariate dynami
al systems, was 
hoose in this thesisto learn the robot skills employing the SEDS-likelihood method for the remainingexperiments presented in this work.



4. REPRESENTATION OF ROBOTSKILLS KNOWLEDGE4.1 Outline of the ChapterThis Chapter des
ribes the development of a knowledge base for the storing andretrieval of the learned models of the skills. For a roboti
 system to perform di�erentskills and tasks in a 
hanging and unstru
tured s
enario, it is important to develop aframework in whi
h to organize the a
quired knowledge in a manner that allows itsretrieval in order to use it to deal with the 
urrent 
ontext 
onstraints. An importantaspe
t of the framework developed in this work is the existen
e of a knowledge base ofthe learned robot skills. Figure 4.1 shows the framework proposed through this workfor the adaptation of learned skills to task 
onstraints, highlighting the knowledgebase for robot skills model dis
ussed in this 
hapter. To introdu
e the 
ontents ofthis 
hapter, �rst a review of the basi
 notions and 
on
epts of knowledge represen-tation and reasoning is given; a review of di�erent approa
hes with a similar aim ofbuilding repertoires of basi
 motor skills is given next; the representational stru
tureand organization of the knowledge base is presented; the representations used in theknowledge base for the storing of the robot skills and the pro
ess for sear
hing theknowledge base are also des
ribed. The organization of this 
hapter is as follows:
• Se
tion 4.2, presents an introdu
tion to the topi
 of knowledge. The basi
notions and 
on
epts in the �eld of knowledge representation and reasoning arereviewed.
• Se
tion 4.3, presents a review of similar approa
hes aimed at building repertoiresof basi
 units of a
tion, also known as movement primitives, whi
h 
an representa basi
 set of elementary robot motor skills.
• Se
tion 4.4, presents approa
hes for the representation of the obje
t's knowledgein a robot skill's knowledge base.
• Se
tion 4.5, presents approa
hes for the representation of the a
tion's knowledgein a robot skill's knowledge base.
• Se
tion 4.6, presents approa
hes for the representation of the event's knowledgein a robot skill's knowledge base.
• Se
tion 4.7, presents the developed representational stru
ture of the robot skill'sknowledge base.
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Fig. 4.1: Module for representation of learned models of skills in a knowledge base,highlighted over the proposed 
ognitive framework for learning and adapta-tion of robot skills in 
omplian
e with task 
onstraints. A knowledge baseof the learned Robot Skills Models is built for their storage, 
lassi�
ationand retrieval.4.2 Knowledge Representation and ReasoningAn important 
hallenge for roboti
s, and parti
ularly for robots a
ting in un-stru
tured dynami
 environments, whi
h is a requirement for humanoid robots, is indealing with internal representation and understanding the world. Cognitive s
ien
eapproa
hes aim at understanding, also with the hope of repli
ating, the pro
esses ofhuman intelligen
e, and the workings of the mind, with an emphasis on, the mentalrepresentations and mental operations involved in the development of thought andintelligent behaviour. A 
entral point for the development of 
ognitive theories lies instudying the nature of knowledge; understanding the me
hanism by whi
h knowledgeis a
quired, stored, represented and operated upon in a way that generates intelli-gent thinking and behaviour. The �eld of philosophy has histori
ally tried to explainthe roots and essen
es of knowledge. One position, rationalism, supported by thephilosophers Des
artes, Spinoza, and Leibniz, among others, believed that knowledge
an be gained solely by employing thinking and reasoning skills about things. In
ontrast, empiri
ism, defended by Lo
ke, Hume, among others, believes that knowl-edge is a
quired primarily from sensory experien
e [Russell, 2012℄. Trans
endentalidealism, founded by Kant, and 
ontinued by S
hopenhauer, and others, tried to re
-on
ile the di�eren
es between rationalism and empiri
ism views, arguing that humanknowledge, and our understanding of the external world depend on not merely ourexperien
e, but in both sensed experien
e and a priori 
on
epts, innate to the mind
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hology theories of behaviourism, su
h as thoseof J.B. Watson, denied the mind, and suggested restri
ting themselves to examin-ing the relationship between per
eived stimulus and observed behavioural responses[Baum, 2003℄. The 
onstru
tivism view in philosophy, de�ned as a term by Jean Pi-aget, whose ideas 
ould be tra
ed ba
k to Giambattista Vi
o, and others, states that
on
epts are mental 
onstru
ts proposed in order to explain sensory experien
e, andthat all knowledge is a 
ompilation of human-made 
onstru
tions, 
reated through aseries of individual 
onstru
ts [Ro
kmore, 2005℄.The most agreed view by 
ognitive s
ientists is that knowledge in the mind 
on-sists of mental representations, and that intelligent behaviour and thought are theresultant produ
ts of manipulating, reasoning and operating upon these internal rep-resentations. People, states the view of 
ognitive s
ien
es, have mental pro
edures op-erating on mental representations that produ
e thought and a
tion [Thagard, 2005℄.Mu
h of the debate in the �eld is 
entred upon the 
lass and nature of these knowledgerepresentations, on the representational me
hanisms for a
quisition, organization, andutilization of knowledge, and on whether the internal representations are even neededat all or another if paradigm is required. All through history, philosophers, psy
hol-ogists, and other s
ientists, have formulated a variety of metaphors for the mind;for example, 
omparing it to a blank slate, `tabula rasa', starting empty, withoutany mental 
ontent or knowledge built into it, and on whi
h impressions are madere
ording knowledge from experien
e and per
eption. Other 
omparisons involve theanalogy to a hydrauli
 devi
e, with various for
es operating on it, governing theenergy �ows whi
h 
ontrol behaviours; and to the operations of a telephone swit
h-board, with an inter
ommuni
ating network of 
ells, involving 
omplex swit
hing ofinformation, responding to sensations, per
eptions, thoughts, et
., [Thagard, 2005℄.Currently, the dominant analogy in 
ognitive s
ien
es has been 
omparing themind and the brain to 
omputers, where thinking 
an be understood as 
omputa-tional pro
edures. This metaphor assumes that the mind has mental representationsanalogous to data stru
tures in a 
omputer program, and 
omputational pro
eduressimilar to programmed algorithms [Thagard, 2005℄. Other theories have also arisento 
hallenge the major premise of the 
omputational-representational understandingof mind (CRUM) thesis as the most suitable one for 
ognition. Conne
tionist modelsproposed novel ideas expanding theoreti
al frames of 
ognitive s
ien
e about repre-sentation and 
omputation that use neurons and their 
onne
tions. The 
onne
tionistanalogy is that mental phenomena 
an be des
ribed by inter
onne
ted networks ofsimple and often uniform units. Where neuron patterns and network 
onne
tions 
anbe 
ompared to data stru
tures, and neuron �ring and spread a
tivation is analogousfor algorithms [Thagard, 2005℄. Re
ent approa
hes in 
ognitive s
ien
e have taken agrowing interest in dynami
al systems. The dynami
al systems metaphor promotesthinking about the underlying for
es, ve
tor �elds, from whi
h observed patterns ofbehaviours emerge [S
höner, 2008℄. In this view, the brain is thought of as a dynami
physi
al system and the pro
esses in the mind 
an be des
ribed by di�eren
e anddi�erential equations. The driving idea motivating the dynami
al systems approa
his that 
ognitive pro
esses, 
ontrary to the 
omputational hypothesis of dis
rete rep-resentational operations, must unfold 
ontinuously and simultaneously in real time.



122 4. Representation of Robot Skills KnowledgeTherefore, a 
ognitive system would not be a sequential manipulation of dis
retestati
 representational stru
tures, but rather, a stru
ture of mutually and simulta-neously in�uen
ing 
hange [van Gelder and Port, 1995℄. The agents' behaviour, inits full 
omplexity, 
an �nally be generated from the 
omplex dynami
al evolutionof stable states and their instabilities in an interlinked non-linear dynami
al system[S
höner, 2008℄. The systems internal representations may be modelled, thereafter,not as simple inner states but as dynami
al patterns of just about any 
on
eivablekind [Clark, 2004℄.Traditional 
ommitment of 
ognitive s
ien
es to a 
omputational-representationalview of the mind, that is a view of intelligen
e as a problem of symbol manipulation,fa
ed in
reasing 
hallenges and s
epti
ism. These 
hallenges have been expli
itlystated in works of [van Gelder, 1995℄, [Thelen and Smith, 2007℄, [Wheeler et al., 1994℄,[Haselager et al., 2003℄, et
. Theirs is a 
hallenge to the isolationist 
on
eption of themind, and o�er a rather radi
al reje
tion of representations. Their thesis is basedon the idea that the symboli
 
omputational-representational views of 
ognition aremistaken, and that 
ognitive agents do not require use of internal representationto a
t upon the world. The anti-representationalists 
laim is that 
omputations ofstati
 symboli
 internal representations form an inadequate analogy to explain the
ontinuous dynami
ally 
omplex patterns of behaviour that 
ognitive agents display;moreover, that internal representational me
hanisms are not readily employed in na-ture in biologi
al 
ognition. Many resear
hers have looked for approa
hes trying to
ompletely disregard the use of representations and internal models as a whole. Thesee�orts are best summarized by the behaviourist radi
al mantra of �the world is itsown best model" [Brooks, 1990℄.The view of the proponents of this hypothesis is that the representational ap-proa
h is in
apable of produ
ing timely, suitable 
ognitive responses. The ontologi
al
ommitment in
urred by as
ribing to a knowledge representation [Davis et al., 1993℄,
an be seen as detrimental and 
ounterprodu
tive for developing intelligent physi
alagents. [Clark, 1997℄, addresses these 
hallenges, and argues in favour of a�ording
omplementary approa
hes for adaptive su

ess, instead of thinking in terms of 
om-peting perspe
tives. Here it is established, as a minimal 
ommon ground betweenrepresentationalist and anti-representationalist, that 
omplex persisting inner statesare at the heart of 
ognitive phenomena, and that is not ne
essarily required a re-vision of the notion of internal representations, but rather a revision of the ideas onthe kinds of inner states and pro
esses whi
h 
an possibly serve as vehi
les of su
hrepresentations. The 
riti
al distin
tion is not between representational and non-representational solutions but among an a
tion-neutral form of internal representa-tion, requiring disembodied symboli
 
omputational pro
essing, and a
tion-orientedforms, in whi
h a behavioural response is embedded into the representation itself[Clark, 2004℄. The 
all is to beware of approa
hes relying only in intelligen
e on thehead, and narrow representational 
ontents, and rather, to take a harder look at tem-porally extended pro
ess that span brain, body and world. The major 
ontributionof these 
hallenges is for a general broadening of 
ognitive s
ien
e from its histor-i
ally narrow fo
us on disembodied, language-like reasoning towards approa
hes ofembodied, embedded, situated, a
tion and 
ognition [Beer, 2000℄.



4.2. Knowledge Representation and Reasoning 123The theories of embodied 
ognition underlined that 
ognition is 
onstrained by thekind of body we possess, and emphasized the importan
e of a
tion grounding, and therole played by bodily states [Borghi and Cimatti, 2010℄. The fo
us in an embodied,embedded, approa
h, is in examining possibilities for a
tion provided by the bodyand the environment. A ne
essary emphasis is pla
ed on the 
lose link of 
ognitionwith the sensory and motor pro
esses and the environments in whi
h these are im-mersed. Models of 
ognition must be embodied pro
esses that 
apture the unfoldingof 
ognition in time, and the asso
iated sensory and motor surfa
es embedded in theenvironment in whi
h 
ognitive phenomena takes pla
e [S
höner, 2008℄. Therefore,an agent's potential for 
ognition is bounded to the motor 
apabilities of its body,dependent upon its physi
al 
hara
teristi
s and abilities, and its situatedness andpossibilities of intera
tion with the environment. The 
laim is not an outright reje
-tion of the legitima
y of representations, however in order to be valid, for embedded
ognition, the representations are to be limited, physi
ally grounded to the environ-ment and oriented toward the spe
i�
 needs of the given agent [Anderson, 2003℄. It is
lear that, despite the many 
hallenges, some form of reasoning and representation ofknowledge me
hanism must be featured in a 
ognitive agent to produ
e the intelligentand adaptable behaviour that are desired.The 
omputational-representational, 
onne
tionist and dynami
al systems theo-ries of 
ognition mentioned earlier, beyond their di�eren
es in formalism and the te
h-nologies employed, di�er markedly in their theoreti
al vo
abulary and explanation on
ognitive phenomena [Beer, 2000℄. However, while there is a substantial di�eren
ebetween the presented a

ounts of 
ognition, this does not render the approa
hesin
ompatible; they 
an be 
omplementary [Be
htel, 1998℄.The 
omputational theory is based on the existen
e of mental representations,and the presen
e in the mind of �algorithmi
� pro
esses that operate upon the rep-resentations; behaviours are produ
ed by applying pro
esses to the representations[Thagard, 2005℄. The explanatory fo
us of the symboli
 
omputational model is solelyon the stru
ture and 
ontent of the representations and the nature and e�
ien
y ofthe algorithms [Beer, 2000℄. Various kinds of representation 
an be 
onsidered, su
has rules, 
on
epts, analogies, frames, images, et
.Conne
tionist theory is expressed as layered networks and simple, neuron-like,nodes and links. The 
onne
tionist approa
h employs a more impli
it style of repre-sentation, repla
ing the symboli
 nature of 
omputational approa
h with numeri
alve
tors and operations of ve
tors 
ompletion and transformation [Clark, 1997℄. Here,representations involve simple pro
essing units 
onne
ted to ea
h other and pro
essesspread a
tivations between the units via their 
onne
tions, whi
h produ
es the be-haviour [Thagard, 2005℄. In a 
onne
tionist theory the fo
us of explanation is onthe network ar
hite
ture, the learning algorithm, and the intermediate distributedrepresentations that are developed [Beer, 2000℄.The dynami
al systems theory 
onveys a very di�erent format than other 
ogni-tive theories. A dynami
al model is expressed as a set of di�erential or di�eren
eequations, des
ribing system state 
hanges over time. This fo
us on system evo-lution and 
hange over time is an important 
ontribution of the dynami
al systemapproa
h [Be
htel, 1998℄. Dynami
al system parameters, attra
tors, traje
tories, bi-
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ations, et
., 
an be regarded with a representational status, storing knowledgewhi
h 
an in�uen
e behaviour [van Gelder and Port, 1995℄. Here, thought 
an bedes
ribed by variables governed by a set of non-linear di�eren
e equations, theseequations state spa
e and the nature of the systems dynami
s 
an explain stable pat-terns of behaviours, phase transitions, or the appearan
e of unpredi
table behaviours[Thagard, 2005℄. The explanatory fo
us of the dynami
al systems theory is thus onthe spa
e of possible traje
tories and the internal and external for
es that a
t overthe traje
tory unfolding over time, and not on the nature of the me
hanisms thatinstantiate the dynami
s [Beer, 2000℄.De
isions about how to a
t are made, for a wide range of a
tivities, based onwhat is known about the world. Intelligent behaviour is thus, 
learly 
onditionedby knowledge [Bra
hman and Levesque, 2004℄. The �eld of knowledge representationand reasoning is a part of arti�
ial intelligen
e 
on
erned with the me
hanism of howan agent 
an use what it knows to de
ide what to do. Knowledge representationdeals with how knowledge 
an be represented and manipulated in an automated way.The goal of knowledge representation and reasoning is the study of how knowledge
an be, simultaneously, represented as 
omprehensively as possible and reasoned withas e�e
tively as possible [Bra
hman and Levesque, 2004℄. The most important issuesrelated to an agent's needs in order to behave intelligently and to the 
omputationalme
hanism whi
h may allow for knowledge to be readily available to an agent asrequired. In knowledge representation and reasoning one's fo
us is on the symboli
stru
tures for representing knowledge and the 
omputational pro
ess for reasoningwith those stru
tures that must be 
reated. In dealing with the topi
 of knowledgewhen building intelligent systems, the problems of representation and reasoning mustalways be taken together. It is not su�
ient to state what needs to be known, inwhatever formal representational language, and it is not su�
ient either to developreasoning pro
edures, whi
h are e�e
tive for various tasks. There is a ne
essary trade-o� between these two 
on
erns; and it ne
essary to take into a

ount the needs thatreasoning with knowledge stru
tures has on the form of languages used to representknowledge. It is the interplay between representation and reasoning whi
h makes the�eld relevant [Bra
hman and Levesque, 2004℄.To understand the 
on
epts of knowledge representation [Davis et al., 1993℄ pro-poses to review its meaning in terms of the �ve fundamental roles it plays. Theseroles provide a framework useful for 
hara
terizing a wide variety of representationsand knowledge representation te
hnologies; that is, basi
 representation tools su
has logi
, rules, frames, semanti
 nets, et
., whi
h are used to build knowledge rep-resentations. For representations the fundamental task is 
apturing the 
omplexityof the natural world. It must form an ontologi
al 
ommitment and provide a theoryof intelligent reasoning. Representation and reasoning are inextri
ably intertwined.A knowledge representation is also a medium for pragmati
ally e�
ient 
omputationand of human expression [Davis et al., 1993℄. Those �ve roles help to 
hara
terize thespirit of the representations and representation te
hnologies that are developed.All representations fun
tion as surrogates for abstra
t notions, su
h as, a
tions,pro
esses, beliefs, 
ausality, 
ategories, et
., allowing for a des
ription of them tobe available so they 
an be reasoned with. However, every representation would



4.2. Knowledge Representation and Reasoning 125ultimately be an imperfe
t approximation to reality, attending to some things andignoring others, sin
e a 
omplete des
ription of the world would not be possible oreven pra
ti
al or desirable. By 
hoosing a representation and representation te
hnol-ogy a set of de
isions are made about what and how to see the world. The stan
esa representation takes on these issues and its rationale for those stan
es are indi
a-tors of what the representation says about how to view and reason about the world[Davis et al., 1993℄.The representation te
hnologies, logi
, rules, frames, et
., embody a viewpointof the kinds of things that are important in the world. For example, logi
 involvesviewing the world in terms of individual entities and the relationships between them.Rules view the world in terms of attribute-obje
t-value triples and the rules of plausi-ble inferen
e that 
onne
t them. Frames view in terms of prototypi
al obje
ts. Thus,the 
ommitment to a parti
ular view of the world begins with the sele
tion of a rep-resentation te
hnology. The sele
tion has a signi�
ant impa
t on the per
eption ofthe world and the task being modelled. Thus, existing representation te
hnologieswould supply its set of guesses about what to attend to and what to ignore in theworld. Choosing among any of them means more than the sele
tion of a represen-tation, in it a 
on
eption of the nature of intelligent reasoning is also being made[Davis et al., 1993℄. The sele
ted representation would have inevitable 
onsequen
eson how one sees and reasons about the world, so it must be sele
ted 
ons
iously and
arefully, trying to �nd one that is appropriate for the task. While the sele
tion oftools and te
hniques are important, however, the �eld of knowledge representationis also mu
h ri
her than that. It must be the 
entral preo

upation of the �eld tounderstand and des
ribe the ri
hness of the world [Davis et al., 1993℄.The fundamental 
ommitment for representations is as tools for des
ribing thenatural world; their main role being working as a stand-in for real entities, substi-tuting them for dire
t world intera
tion. The representations 
onvey the gatheredknowledge 
ontent, and fun
tion as stand-ins for the things that exist in the realworld. Representations thus perform as fun
tional abstra
tions of the per
eived en-vironment, en
oding an agent's knowledge of its world, obje
ts, a
tions and eventsinto manageable internal stru
tures; allowing for it to work, and reason, over therepresentations instead of a
ting dire
tly upon the world. Sin
e reasoning is an in-ternal pro
ess, while the things it needs to reason about exist externally, this fun
-tional abstra
tion is important. The representations are stru
tures standing in forsomething else outside the system, by virtue of relations su
h as similarity, 
asualhistory, and 
onne
tions with other representations [Thagard, 2005℄. An agent sys-tem, having useful representations, 
an therefore operate on them, abstra
ting itselfbeyond the world. A representation is a relationship between the two domains, aninner self and an external world, where the �rst is meant to take the pla
e of these
ond [Bra
hman and Levesque, 2004℄. This notion of representations, as proxiesof the world and bridging intera
tion with the environment, is a vehi
le of humanthought. Performing operations with the representation is a substitute for operatingwith real things, that is, a substitute for dire
t intera
tion with the world. The roleof representations as surrogates for the world leads to two important questions of
orresponden
e and �delity. There must be some form of 
orresponden
e between



126 4. Representation of Robot Skills Knowledgeits surrogates and its intended referents in the real world. Se
ond is the problem ofhow 
lose a surrogate 
an be to the real thing. A perfe
t �delity would be, bothin pra
ti
e as in prin
iple, impossible to obtain [Davis et al., 1993℄. The imperfe
tsurrogates also leads inevitably to having in
orre
t inferen
es. Independent of thereasoning and representation te
hnologies employed, every su�
iently broad attemptat reasoning about the world will eventually rea
h in
orre
t 
on
lusions. Therefore,the importan
e of the sele
tion of a good representation is in minimizing the error forthe spe
i�
 task [Davis et al., 1993℄.As already mentioned above, 
hoosing a representation involves making a set ofde
isions about how to see the world, and making a set of ontologi
al 
ommitmentsabout what part of the world to fo
us on. This is useful be
ause the judi
ious sele
-tions of 
ommitments provides the opportunity to fo
us attention on aspe
ts of theworld believed to be relevant [Davis et al., 1993℄. The natural world o�ers an over-whelming 
omplexity, the 
ommitments in
urred by the representational stan
e o�ersne
essary guidan
e in de
iding the parts of the world to attend to and the ones toignore. By determining what and how to see the world, the representations allow oneto 
ope with what 
ould be otherwise untenable 
omplexity and detail. The 
ommit-ment that is made by 
hoosing from di�erent ontologies 
an produ
e sharply di�erentviews of the task at hand. An ontology 
an be written down in a wide variety oflanguages and tools. The 
ommitment to a parti
ular view of the world, thus, startsin the sele
tion of a representation te
hnology and a

umulates from there as 
hoi
esare made about how to see the world in these terms [Davis et al., 1993℄.To use a representation, 
omputations must be made with it. Reasoning in purelyme
hanist terms 
an be seen as a 
omputational pro
ess. Questions about the 
om-putational e�
ien
y are 
entral to the notions of representation, but one 
an alsonot be overly 
on
erned with them to the point of produ
ing representations thatare fast but inadequate for real use [Davis et al., 1993℄. Knowledge representationsmust also be means for 
ommuni
ation in whi
h to express things about the world.The representations must ful�l the role of medium for expression and 
ommuni
ation.This role matters sin
e one must be able to speak the language, with heroi
 e�orts,in order to use it to 
ommuni
ate with the reasoning system [Davis et al., 1993℄.A representation 
an guide and fa
ilitate reasoning if it has at its heart a theoryof what reasoning to do. Representation and reasoning are inextri
ably and usefullyintertwined, in this view, reasoning itself is in part a surrogate for a
tion in the world.A knowledge representation is also a theory of intelligent reasoning. A representation
an be examined in three 
omponents, �rst its 
on
eption of intelligent inferen
e. These
ond 
omponent of a representation theory of intelligent reasoning is the set of san
-tioned inferen
es. Thirdly, more than an indi
ation of whi
h inferen
es 
an legallybe made is needed; an indi
ation of whi
h inferen
es are appropriate is also needed.Where the ontologi
al 
ommitment tells one how to see, the re
ommended inferen
essuggest how to reason [Davis et al., 1993℄. The 
on
ept of reasoning is as disputedas those of representation, knowledge and intelligen
e, 
olle
ting inputs from various�elds. Re
alled by [Davis et al., 1993℄, the mathemati
al logi
 view is that, reasoningis a variety of formal 
al
ulation. The view in psy
hology sees reasoning as a 
hara
-teristi
 human behaviour, symbolized by human problem solving. An approa
h rooted



4.3. Developing a Repertoire of Robot Skills Knowledge 127in biology takes the view that the key to reasoning is in stimulus-response behavioursemerging from the parallel inter
onne
tion of simple pro
essors. Approa
hes derivedfrom probability theory, add to logi
 the notion of un
ertainty, in whi
h reasoningintelligently means obeying the axioms of probability theory. Reasoning is the for-mal manipulation of the represented 
olle
tion of believed propositions in su
h a wayas to 
onstru
t representations of new propositions [Bra
hman and Levesque, 2004℄.Di�erent 
on
eptions of the nature of intelligent reasoning lead to di�erent goals andde�nitions of su

ess, and di�erent artifa
ts being 
reated [Davis et al., 1993℄.Knowledge representation hypothesis implies that we would want to build systemsfor whi
h the intentional stan
e is grounded by design in symboli
 representations.A knowledge base is a 
olle
tion of symboli
 stru
tures representing what it believesand reasons with during the operation of the system. A knowledge base system 
anbe understood at two di�erent levels. At the knowledge level, questions 
on
ern therepresentation language and its semanti
s. It deals with expressing adequa
y of arepresentation language and 
hara
teristi
s of entailments, in
luding 
omputational
omplexity. At the symbol level, questions 
on
ern the 
omputational ar
hite
tureand the properties of the data stru
tures and reasoning pro
edures, in
luding theiralgorithmi
 
omplexity [Bra
hman and Levesque, 2004℄. Broader 
on
eption of repre-sentations are important, re
ognizing that a representation embeds a theory of intelli-gent reasoning, the ability to disse
t some of the arguments about formal equivalen
eof representations, and that the 
entral task of knowledge representation is 
aptur-ing the 
omplexity of the real world [Davis et al., 1993℄. Human problem solvingdepends on what is important and interesting given the situation. A human expertlearns to re
ognize and to rea
t, they do not think and reason, as a knowledge basesystem would do, over an expli
it representation. [Dreyfus et al., 2000℄ would de-s
ribe the di�eren
e in terms of �knowing-that� and �knowing-how�. �Knowing-that�is a 
ons
ious, step-by-step problem solving ability, with 
ontext free symbols, whi
hwe manipulate using logi
 and language. �Knowing-how� is the natural way one dealswith things, when we just know what to do, and learn to sub
ons
iously, re
ognize asituation and rea
t. It generally makes a system slow down having to look up fa
ts ina knowledge base and reason with them at runtime in order to de
ide what a
tions totake. The ability to make behaviours whi
h depend on expli
itly represented knowl-edge only seems to pay o� when it is not possible to spe
ify in advan
e the ways thatknowledge will be used [Bra
hman and Levesque, 2004℄.4.3 Developing a Repertoire of Robot Skills KnowledgeThe main goal for humanoid roboti
s resear
h is to build human like robots that
an work alongside humans dealing with 
ontinuously 
hanging environments andperforming a wide variability of tasks. To a
hieve a 
omplex behaviour su
h as this,it would be ne
essary to have an in
lusive and 
omprehensive repertoire of robotskills. For this purpose the 
on
ept of movement primitives, also 
alled movements
hemas, basi
 behaviours, or units of a
tions, is pro
laimed. Movement primitives aresequen
es of a
tion that a

omplish a 
omplete goal-dire
ted behaviour [S
haal, 1999℄,



128 4. Representation of Robot Skills Knowledgeas it has been reviewed in Se
tion 3.7.From the �eld of neurobiology it is generally regarded that humans employ basi
motor primitives as an underlying me
hanism of biologi
al motor 
ontrol. Eviden
eexists from human and animal experiments supporting the belief that sets of mo-tor primitives are used to build a basis for voluntary motor 
ontrol [Kon
zak, 2005℄.Neuros
ien
e studies in animals point to two neural stru
tures, spinal �elds and mir-ror neurons, whi
h support the basis for a theory of per
eptual-motor primitives[Matari
, 2000℄. It is well a

epted in these approa
hes, that for 
oping with the
omplexity of motor skills learning for robots, it is needed to rely on the insight thathumans de
ompose motor skills into smaller subtasks. There are many theories aboutmotor primitives whi
h suggest that they are viable means for en
oding humanoids'movements.The movement primitives are sequen
es of a
tion that a

omplish a 
ertain move-ment goal. The primitives en
ode groups or 
lasses of stereotypi
al movements[Matari
, 2000℄. Movement primitives in their most simple form 
an be thought of assimple as the elementary a
tions in the symboli
 approa
h to imitation, with simplepoint-to-point movements employed by industrial robots [S
haal, 1999℄. To deal with
omplex motions, a library of movement primitives 
an be built [Pastor et al., 2009℄,providing basi
 
omponents from whi
h multiple desired robot tasks 
an be performedby 
ombination and superposition of the primitives. A roboti
 system equipped witha library of movement primitives, with a su�
ient number of skills, 
an be thought ofas possessing an adequate repertoire of a
tions to deal with a vast range of situations.A theory of primitives is a fundamental building blo
k for motor 
ontrol.Learning the Robot Skills Models as they were presented in Se
tion 3.6 
an be amost suitable way to form basi
 primitives of movement, en
oding within the modelthe motion dynami
s of a demonstrated skill. Su
h 
olle
tions of primitives are usedto build a knowledge base from the learned motions of a task. Various examples 
an befound on building up a knowledge base from learned motion tasks. [Ude et al., 2007℄presents a framework for synthesizing goal-dire
ted a
tions from a library of examplemovements; di�erent methods 
an be utilized for the 
onstru
tion of this movementslibrary. [Zoliner et al., 2005b℄ deals with the integration of learned manipulation tasksinto a knowledge base as well as enabling the system to reason and reorganize the gath-ered knowledge in terms of the re-usability, s
alability and explainability of learnedskills and tasks. In [Pastor et al., 2009℄ a 
olle
tion of dynami
 movement primitivesis used to build a library of movements by labelling ea
h re
orded movement a

ordingto task and 
ontext.The work of [Ijspeert et al., 2003℄ was �rst to suggest the idea of using DS asmotor primitives. Their approa
h employed the DMP to learn and en
ode the dy-nami
s of demonstrated motions. The 
ontrol poli
ies 
ould be used to represent basi
movements that form a library of motions. De�ning the primitives in term of 
ausaldynami
al systems allows then to be parametrized by a small set of dynami
al pa-rameters and an input driving the overall dynami
s. [S
haal et al., 2003℄, presents a
on
eptual imitation learning system whi
h alludes to the 
on
ept of movement prim-itives to generate a
tion behaviours. Per
eptual elements are transformed into spatialand obje
t information and are mapped onto a set of existing primitives, where a set
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ompete for a demonstrated behaviour. Motor 
ommandsare generated from input of the most appropriate primitive. Learning 
an adjustboth movement primitives and the motor- 
ommand generator [S
haal et al., 2003℄.E�e
tiveness of imitation learning with these dynami
 system primitives was su

ess-fully demonstrated in a humanoid robot that learned a series of movements su
h astennis forehand, tennis ba
khand and drumming sequen
es from a human tea
her[Ijspeert et al., 2003℄.[Matari
, 2000℄, proposed to stru
ture the motor system into a 
olle
tion of move-ment primitives, whi
h then serve both to generate a movement repertoire to thehumanoid robots, and to provide predi
tion and 
lassi�
ation 
apabilities for visualper
eption and interpretation of movement. The movement primitives or behavioursare the unifying me
hanisms between visual per
eption and motor 
ontrol in theirapproa
h. They represent the generi
 building blo
ks of motion that 
an be imple-mented as parametri
 motor 
ontrollers [Matari
, 2000℄. Su
h a primitive lets a robotrea
h toward various goals within a multitude of tasks; this allows for a small numberof general primitives to represent a large 
lass of di�erent movements, su
h as rea
hingvarious pla
es on and around the body. The general system segments the traje
toryover time these segments are, at ea
h point, mat
hed to the expe
ted output of ea
hof the primitives with the observed input and the best mat
h is sele
ted. The out-put of the 
lassi�
ation is a sequen
e of primitives and their asso
iated parameters.These then go to the motor 
ontrol system and a
tivate the primitives in turn thatre
onstru
t the observed behaviour [Matari
, 2000℄.[Fod et al., 2000℄ presented a method for representing human movement in termsof a linear superimposition of simpler movement primitives. The primitives 
an beused as a lower-dimensional spa
e for representing movement. In their model, the per-
eptual system is biased by the set of motor behaviours the agent 
an exe
ute. Thus,an agent 
an automati
ally 
lassify observed movements into its exe
utable repertoire.In [Jenkins et al., 2000℄ per
eptual-motor primitives formed a biologi
ally-inspirednotion for a basis set of per
eptual and motor routines. Primitives serve as a vo
ab-ulary for 
lassifying and imitating observed human movements, and 
an be derivedfrom the imitator's motor repertoire. Their notion of a motion vo
abulary 
omprisesmovement primitives that stru
ture a human's a
tion spa
e for de
ision making andpredi
t human movement dynami
s. Through predi
tion, su
h primitives 
an be usedto both generate motor 
ommands for spe
i�
 a
tions and per
eive humans perform-ing those a
tions, using a known vo
abulary of primitives [Jenkins et al., 2007℄.[Ve

hio, 2002℄ developed a study of primitives of human motion, termed �movemes�,using tools from dynami
al systems and systems identi�
ation, de
omposing it into asequen
e of elementary building blo
ks that belong to a known alphabet of dynami
alsystems, whi
h, in turn, 
an be 
omposed to represent and des
ribe human motions.[Ve

hio et al., 2003℄ address the problem of de�ning 
onditions under whi
h 
olle
-tions of signals are well-posed a

ording to a dynami
al model 
lass and, thus, 
angenerate the �movemes�. Also, developed segmentation and 
lassi�
ation algorithmsin order to redu
e a 
omplex a
tivity into the sequen
e of �movemes� that have gen-erated it. [Ve

hio, 2002℄ attempted to de�ne primitives in terms of 
ausal dynami
alsystems, that 
ould be parametrised by a small set of dynami
al parameters and by



130 4. Representation of Robot Skills Knowledgean input whi
h drives the overall dynami
s. An �alphabet of movemes� is built torepresent and des
ribe human motion. Their experiments showed that it was possibleto distinguish between the �movemes� in drawing tasks.[Zoliner et al., 2005b℄ built up a knowledge base of manipulation tasks by ex-tra
ting relevant knowledge from demonstrations of manipulation problems. Theirwork dealt with the integration of learned manipulation tasks into a knowledge base,as well as enabling the system to reason and reorganize the gathered knowledge interms of re-usability, s
alability and explainability of learned skills and tasks. Themain goal was 
omparing newly a
quired skills or tasks with already existing tasksand knowledge and de
iding whether to add a new task representation or to expandthe existing representation with an alternative. Gathered knowledge is reorganizedand stru
tured on the level of manipulation segments, enabling an exe
ution systemto sele
t from multiple alternative operations [Zoliner et al., 2005b℄.[Ude et al., 2007℄ presents a framework for synthesizing goal-dire
ted a
tions froma library of example movements, di�erent methods 
an be utilized for the 
onstru
tionof this movements library. The approa
h used a general representation based on�fth order splines. The proposed approa
h enables the generation of a wide range ofmovements that are adapted to the 
urrent 
on�guration of the external world withoutrequiring an expert to appropriately modify the underlying di�erential equations toa

ount for per
eptual feedba
k. In [Forte et al., 2012℄ traje
tories are generalizedby applying Gaussian pro
ess regression, using the parameters des
ribing a task asquery points into the traje
tory database.In [Pastor et al., 2009℄ a 
olle
tion of dynami
 movement primitives is used tobuild a library of movements by labelling ea
h re
orded movement a

ording to taskand 
ontext. Their work provides a general approa
h for learning roboti
 motor skillsfrom human demonstration. Generalization 
an be a
hieved simply by adapting astart and a goal parameter in the equation to the desired position values of a move-ment. Feasibility of the approa
h is demonstrated with a pi
k-and-pla
e operationand a water-serving task and 
ould generalize these tasks to novel situations.[Meier et al., 2011℄ approa
h aimed for movement segmentation with simultane-ous movement re
ognition, assuming that a library of movement primitives alreadyexisted, and redu
ed the segmentation problem to online movement re
ognition. In[Muelling et al., 2013℄ the goal was to a
quire a library of movement primitives fromdemonstrations and to sele
t and generalize among these movement primitives toadapt to new situations. The primitives stored in the library are asso
iated with aset of parameters that form an augmented state that des
ribes the situation presentduring demonstration; these parameters are used as 
omponents in a mixture of mo-tor primitives algorithm. To generate a movement, the system sele
ts movementprimitives from the library. A parametrized gating network is used in the mixtureof primitives algorithm to a
tivate 
omponents based on the augmented state andgenerate a new movement using the a
tivated 
omponents.The motor 
ontroller 
omponents of the movement primitives 
ould be manuallyderived or learned. In this work a framework to build the models of the robot skillsusing Learning from Demonstration te
hniques, as des
ribed through Chapter 3, was
hosen to learn the basi
 primitives of a
tion. Traditionally, learning motions at a
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ts in the Robot Skills Knowledge 131low level representation failed to s
ale well to systems with many degrees of freedom.The learning of movement primitives, therefore, would bene�t from 
oding the 
om-plete temporal behaviours that result in state-a
tion representation that are 
ompa
tand whi
h need to adjust only a few parameters for a spe
i�
 goal [S
haal, 1999℄.Primitives must be 
hara
terized in parametri
 form to allow generalization and theirappli
ability to di�erent s
enarios. It is important that the representations used forextra
ting units of a
tions also relate to the movement generation [Meier et al., 2011℄.The representation of the robot skills must be �exible and 
ompa
t enough to be ableto store, use and retrieve this knowledge in e�
ient ways and allow the robot have a
omprehensive repertoire of skills. Adequate representations are needed for the skillprimitives in order to build a repertoire of robot skills.4.4 Representing Obje
ts in the Robot Skills KnowledgeBefore one 
an start to deal with the issues of building a representation of theworld and the 
ommitments it must as
ribe to for the representations of knowledgeand the pro
ess of reasoning to work, a key de
ision must be made on whi
h as-pe
ts of the world one will fo
us on and whi
h aspe
ts of the world one will 
hooseto ignore and how the knowledge about the world would be stru
tured. For anyrepresentational system the question of what is needed to be modelled and what
an be ignored or abstra
ted away is a fundamental issue [Anderson, 2003℄. Theabstra
tions are ne
essary be
ause no system 
an possible manage a world modelthat in
ludes the whole of the world. Knowledge of the world, in a 
ognitive agent,
an 
ome from di�erent sour
es and present di�erent formalism. Knowledge aboutone's environment 
an 
ome through per
eption, knowledge about a 
urrent situationmay 
ome from planning, reasoning and predi
tion, knowledge about other agents
an 
ome via 
ommuni
ation and knowledge of the past 
ome from memory andlearning [Langley et al., 2009℄. It is an important ability for an intelligent agent todeal with these various forms of knowledge in an e�e
tive manner. For instan
e, anagent must have the ability to re
ognize situations or events as instan
es of knownpatterns, and to assign these obje
ts, situations or events to known 
on
epts or 
at-egories [Langley et al., 2009℄. Also, the ability to sele
t among alternative a
tionsand make de
isions is needed. Therefore, an agent must be able to represent andstore knowledge that would enable its a
tivity. Pre
eding dis
ussions have dealt withthe numerous views that 
laim a reje
tion of the internal representation paradigm fordeveloping 
ognitive agents, nevertheless, it is our belief that some form of representa-tions is not only inevitable but also ne
essary and adequate for roboti
s. However, therepresentations must be limited and physi
ally grounded to the environment; goodrepresentations must be sele
tive and oriented to a parti
ular use by a parti
ularagent [Anderson, 2003℄.One way to see the world, borrowing representational ideas from natural lan-guages, would have us dealing with �obje
ts�, su
h as people, houses, et
., and �re-lations� among �obje
ts�, or �properties�, su
h as red, round, et
., and �fun
tions�,su
h as fatherof, et
. Where almost any assertion 
an be thought of as referring
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ts�, and �properties� or �fun
tions� [Russell and Norvig, 2010℄. Traditionalrepresentations in arti�
ial intelligen
e have fo
used on the symboli
 dis
rete repre-sentation of obje
ts and a
tions [Geib et al., 2006℄. The obje
ts-a
tions di
hotomy isan important abstra
tion for the performan
e of robots as embodied 
ognitive situatedagents. A majority of approa
hes in 
ognitive ar
hite
tures fo
us on skill knowledgeof how to generate or exe
ute sequen
es of a
tions, while often relegating equally im-portant 
on
eptual knowledge dealing with 
ategories of obje
ts, situations or other
on
epts [Langley et al., 2009℄. Therefore, mu
h of an agent's knowledge must 
onsistof skills, 
on
epts and fa
ts about the world. From what has been 
onsidered so far,one is lead to a view of the world 
onsisting of obje
ts, 
on
epts, a
tions, skills, situ-ations and events. The importan
e of dealing with obje
ts when developing roboti
agents whi
h must perform in the world seems quite evident, sin
e most of a robot'soperations in the environment would be bound to the manipulation of an obje
t. Itseems 
lear that the representational attributions must be oriented to dealing withobje
ts in the environment and the a
tions that 
an be exe
uted on them. In order todeal with 
hanging dynami
 environments' representations must also have the abilityto handle di�erent situations or events. Re
ognizing di�erent events or situations inthe environments and the obje
ts and a
tions that pertain to the 
urrent 
on�gura-tion of the environment is a 
ru
ial ability that the roboti
 systems dis
ussed heremust be able to possess.Prior to populating a knowledge base with obje
t 
lasses it is ne
essary to stateout what is 
alled an ontology. An ontology determines the kinds of things that 
anbe said to exist. The word �ontology� means a parti
ular theory of the nature ofbeing or existen
e [Russell and Norvig, 2010℄. In philosophy, as an ontology is un-derstood the study of the nature of being, be
oming, existen
e, or reality, as well asthe basi
 
ategories of being and their relations. An ontology de�nes, in the 
ontextof 
omputer s
ien
e, a set of representational primitives with whi
h to model a do-main of knowledge [Gruber, 2009℄. The ontology de�nes the 
on
epts, relationships,and other distin
tions that are relevant for modelling a domain. By means of anontology one determines the kinds of obje
ts that will be important to the agent,the properties those obje
ts will be thought to have, and the relationships amongthem [Bra
hman and Levesque, 2004℄. Committing to an ontology requires 
hoosinga parti
ular view of the world. On
e the 
hoi
es are made one is left with a represen-tational vo
abulary spe
ifying the domain, with de�nitions for typi
al 
lasses or sets,attributes or properties, and relationships among 
lass members [Gruber, 2009℄. On-tologies 
an't provide 
omplete des
riptions of everything, but they leave pla
e-holderswhere new knowledge for any domain 
an �t in [Russell and Norvig, 2010℄. Ideally, anontology would try to unify di�erent areas of knowledge, general purpose ontologiesshould be appli
able in more or less any spe
ial purpose domain. However, generalontologi
al engineering has so far seen only limited su

ess [Russell and Norvig, 2010℄.Agreeing to an ontologi
al representation is a di�
ult proposition, and usually mostappli
ations in arti�
ial intelligen
e make use of spe
ial purpose knowledge engineer-ing, designing their own ontology, tailored for a parti
ular use.Organizing obje
ts into 
ategories is a vital part of knowledge representation[Russell and Norvig, 2010℄. It is essential to 
ir
ums
ribe the basi
 types of obje
ts
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Fig. 4.2: Representing knowledge of obje
ts. (left to right): The real-world obje
t.3D model representation of the obje
t. Convex bounding volume represen-tation of the obje
t. Representation of the obje
t in Cartesian, spheri
alor 
ylindri
al 
oordinates.our knowledge base would have, and to determine the set of attributes that our ob-je
ts 
an have. In general, a good ontology should require only a few general rules.On
e the types of our obje
ts have been established one 
an 
apture the propertiesof the obje
ts [Bra
hman and Levesque, 2004℄. The ontology provides a set of fea-tures that serve to identify obje
ts that 
an �t typi
al 
ategories. One infers thepresen
e of 
ertain obje
ts from per
eptual input, infers 
ategory membership fromthe per
eived properties of the obje
ts, and then uses 
ategory information to makepredi
tions about obje
ts [Russell and Norvig, 2010℄.A typi
al problem building a representational approa
h is that knowledge about anobje
t 
ould be s
attered around the knowledge base [Bra
hman and Levesque, 2004℄.The organization of the knowledge of obje
ts in the world towards a manageablestru
ture of obje
ts' knowledge is a 
riti
al aspe
t of the design of a knowledge base.Organizing obje
ts into 
ategories is a vital part of knowledge representation; theapproa
h is to group fa
ts or rules in terms of the kind of obje
ts they pertain to.Categories are the primary building blo
ks of knowledge representation s
hemes, thereal world 
an be seen as primitive obje
ts and 
omposite obje
ts built from them[Russell and Norvig, 2010℄. Obje
ts naturally fall into 
ategories, but 
an also bemembers of multiple 
ategories. The obje
ts 
an also be made of parts, the rela-tionship among an obje
t's parts is essential to it being 
onsidered a member ofa 
ategory. Building taxonomies is also an important aspe
t of general 
ommon-sense knowledge; the sub
lasses relations organize 
ategories into taxonomy hierar-
hies [Russell and Norvig, 2010℄.The framework of �rst-order logi
 en
odes knowledge about the obje
ts as log-i
al expressions, ea
h 
ast in terms of predi
ates and arguments, plus statementsthat relate these expressions in terms of logi
al operators. A model in �rst-orderlogi
 
onsists of a set of obje
ts and an interpretation that maps 
onstant symbolsto obje
ts, predi
ate symbols to relations on those obje
ts and fun
tion symbols tofun
tions on those obje
ts [Russell and Norvig, 2010℄. Produ
tion systems on theother hand, provide a more pro
edural notation, whi
h represents obje
t knowl-edge as a set of 
ondition-a
tion rules that des
ribe plausible responses to di�er-ent situations [Langley et al., 2009℄. Semanti
 networks provide graphi
al aids for



134 4. Representation of Robot Skills Knowledgevisualizing the knowledge base and algorithms for inferring the properties of anobje
t base on its 
ategory membership. Semanti
 networks allow the 
apabilityof representing individual obje
ts, 
ategories of obje
ts, and relations among ob-je
ts [Russell and Norvig, 2010℄. The des
ription logi
s system provides formal lan-guage for 
onstru
ting and 
ombining 
ategory de�nition, and for de
iding subsetand superset relationships between 
ategories. The notation of des
ription logi
swas designed to make it easier to des
ribe de�nitions and properties of 
ategories[Russell and Norvig, 2010℄. [Geib et al., 2006℄, proposes the pairing of obje
ts anda
tions in a single interfa
e representation. Obje
t-A
tion 
omplexes are suggestedas a framework for representing a
tions, obje
ts, and the learning pro
ess that 
on-stru
t su
h representations [Krüger et al., 2009℄. [Lemaignan et al., 2010℄ presentsan embeddable knowledge pro
essing framework along with a 
ommon-sense ontol-ogy designed for roboti
s.A system dealing with obje
ts in the real world must deal with various di�er-ent forms and types of knowledge. Representing the obje
ts' knowledge requiresa stru
tured approa
h. [Minsky, 1975℄, suggested the idea of using obje
t-orientedgroups of pro
edures, whi
h where 
alled frames. The frame 
on
ept o�ers a rep-resentation of an obje
t or 
ategory, with attributes and relations to other obje
tsor 
ategories, assembling fa
ts about parti
ular obje
t and event types and arrang-ing the types into a large taxonomi
 hierar
hy analogous to a biologi
al taxonomy[Russell and Norvig, 2010℄. Frames fo
us mainly on the re
ognition and des
riptionof obje
ts and 
lasses. The frame data stru
ture spe
i�es 
on
epts in terms of at-tributes, 
alled slots, and their values, 
alled �llers. One would have spe
ial systemsfor important obje
ts, but also a variety of frames for generally useful �basi
 shapes�.[Minsky, 1975℄ pi
tured a great 
olle
tion of frame systems stored in permanent mem-ory, when the per
eption eviden
e suggests one will �t a frame is evoked to workingmemory.The frame knowledge stru
ture 
an be seen as an instan
e of an obje
t-orientedrepresentation analogous to the development in an obje
t-oriented programming lan-guage. This 
ould allow the frame representation of obje
ts to share many advan-tages of obje
t-oriented programming systems, like the spe
i�
ation of general 
lasses,logi
al 
ontrol, inheritan
e of methods, en
apsulation of abstra
t pro
edures, et
.[Bra
hman and Levesque, 2004℄. In general, there are two types of frames, individualframes used to represent single obje
ts, and generi
 frames, used to represent 
ate-gories of 
lasses of obje
ts [Bra
hman and Levesque, 2004℄. Through inheritan
e ofproperties one 
an organize and simplify the knowledge base using 
ategories. Mu
hof the reasoning done with frames involves the instantiation of individual frames outof the generi
 frames. Filling some of the slots with some values and inferring others.The relian
e on default values for when a reliable inferring of the slots is not possibleis one important aspe
t of the frame system [Hayes, 1979℄. A generi
 obje
t frameholds all ne
essary information for the re
ognition and identi�
ation of an obje
t intoa 
ategory 
lass, and any positional information and 
onstraints relate to it and itssituation in the environment. Obje
t instan
e in the knowledge base would be de-s
ribed by the 
hara
teristi
 attributes of the obje
ts; this 
ould be, for instan
e, its
olor, shape, size, id tags, or any other relevant intrinsi
 information property of the
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t Frame: Example of generi
 obje
t frameand instan
es of an obje
t frame
〈Obje
t-frame〉 gObj
〈Color〉 none 〈/Color〉
〈Volume〉 0 〈/Volume〉
〈Model〉 none 〈/Model〉
〈Roles〉 obsta
le 〈/Roles〉
〈Position〉
〈Cartesian〉 0 0 0 〈/Cartesian〉
〈/Position〉
〈Obje
t〉 ObjA 〈Obje
t〉 ObjB
〈instan
eOf〉 gObj 〈instan
eOf〉 gObj
〈Color〉 Blue 〈/Color〉 〈Color〉 # FFFF00 〈/Color〉
〈Volume〉 none 〈/Volume〉 〈Volume〉 none 〈/Volume〉
〈Model〉 none 〈/Model〉 〈Model〉 none 〈/Model〉
〈Roles〉 tool 〈/Roles〉 〈Roles〉 obsta
le 〈/Roles〉
〈Position〉 〈Position〉
〈Cartesian〉 120 34 56 〈/Cartesian〉 〈Cartesian〉 30 -45 78 〈/Cartesian〉
〈/Position〉 〈Spheri
al〉 95 35 -56 〈/Spheri
al〉

〈/Position〉Tab. 4.1: Obje
t Frame example for a generi
 obje
t frame and instantiations ofparti
ular obje
t frames.obje
t that allows for its identi�
ation.Figure 4.2 presents di�erent modes for the representation of an obje
t lo
ationknowledge. The leftmost image 
orresponds to a real-world s
ene, representing theobje
t as it is. Managing a full model of the world is a very demanding task. Thereal-world obje
t 
an be represented by its 3D model; this 
ould be dire
tly 
omputedfrom sensory input or retrieve from memory given a prior re
ognition step. Complete3D models are not always ne
essary, a simpler 
onvex bounding volume representation
apturing the o

upied spa
e of the obje
t 
an su�
e, for instan
e when thinking ofthe obje
t as an obsta
le to avoid in a path. Typi
al tasks in roboti
s need onlyto rely on the knowledge of the obje
t position in either of Cartesian, 
ylindri
al orspheri
al 
oordinate frames of referen
e, making an obje
t representation in terms ofits point 
oordinates a valid one for this obje
tives. It must be noted that havingone or other representation 
an lead to a very di�erent set of 
omputations and tasksthat the robot 
ould be able to perform with an obje
t. Yet, these representations arenot ex
lusive and any 
ombination of these modes 
ould be present in a knowledgebase if the system is designed for it. In this work the data stru
ture of Frames isused to store knowledge about the obje
ts in the environment in our knowledge base.Table 4.1 shows an example of the obje
t frame. A generi
 obje
t frame is des
ribed,and two instan
es derived from the generi
 frame are also present. An instan
e ofan obje
t frame inherits from the properties and default values of the generi
 frame,but this does not prevent it having properties and updating its values on its own.
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t frame 
ould also represent instan
es of two or more generi
 frames or be
omposed of other obje
t frames as sub-parts. Important properties of the obje
tframes their name, position and role values for their identi�
ation, lo
alization andrelationship to the rest of the knowledge base.4.5 Representing A
tions in the Robot Skills KnowledgeAs outlined in the previous se
tion, the representational attributions of obje
tsand a
tions, and perhaps more importantly the interrelation between the obje
tsand a
tion representations, is a fundamental 
on
ern when exe
uting tasks in theworld. The main role of a humanoid roboti
 system is to a
t and a
hieve tasksand goals operating in 
omplex environments. The robots' a
tions would generallyinvolve the presen
e of an obje
t, or several obje
ts, plus the possible intera
tionwith human partners. De
iding on the model for the representation of a
tions isan essential undertaking for roboti
s and 
ognitive s
ien
e resear
h e�orts. Think-ing beings ought to be 
onsidered as a
ting beings in whi
h 
ognition is a situateda
tivity [Anderson, 2003℄. It is important to note that a
tions are not performedin a va
uum, the 
ognitive pro
ess does not o

ur in isolation, a
tions are not per-formed dis
onne
ted from their embodied presen
e and the e�e
ts they have on theworld [Nehaniv and Dautenhahn, 2001℄. These e�e
ts would be des
ribed in terms of
ombinations of a
tions, states and goals.Roboti
 systems, exe
uting tasks in unstru
tured environments, must have fun
-tional representations for a
tions that fa
ilitate the robot performan
e with obje
tsand their environment. In se
tion 4.2, the 
hallenges to the symboli
 internal repre-sentations and the stan
e for an embodied approa
h to 
ognition were reviewed. Theembodied view of 
ognition's most pressing 
on
ern lies in the intera
tion between anagent's body with the environment [Haselager et al., 2003℄, and a distrust of the ideathat 
ognition and knowledge representations are purely symboli
 mental pro
essesseparated from a
tion in the world. However, despite the various 
hallenges, an out-right reje
tion of internal representations also seems to be an in
omplete approa
h.To produ
e the intelligent and adaptive behaviours that we desire, a 
ognitive agentmust feature some form of reasoning and representation of knowledge.Human problem solving abilities involve the 
ooperation between internal rep-resentations, 
omputations and environmental intera
tions. [Clark, 1997℄ addressedthe 
hallenges to internal representations and argued in favour of adopting 
omple-mentary approa
hes rather than thinking in terms of 
ompeting perspe
tives. Repre-sentations, in order to be valid for embedded 
ognition, are to be limited, physi
allygrounded to the environment and oriented towards the spe
i�
 needs of the givenagent [Anderson, 2003℄. Therefore, a distin
tion must not be made between repre-sentational and non-representational solutions but among the a
tion-neutral formsof internal representations, requiring for disembodied symboli
 
omputational pro-
essing and more a
tion-oriented forms of representation, in whi
h the behaviouralresponse is embedded into the representation itself [Clark, 2004℄. Real world 
ognitivepro
esses o

ur in very parti
ular environments and are employed for very pra
ti
al



4.5. Representing A
tions in the Robot Skills Knowledge 137ends and exploit the intera
tion and manipulation of external props [Anderson, 2003℄.The previous dis
ussion points to the realisation that the ways in whi
h a roboti
system 
an a
t hinges on what its embodiment and the environment allow. This istied to the obje
t and situation oriented 
on
ept of a�ordan
es [Krüger et al., 2009℄.When thinking of a
tions' representations the 
on
ept of a�ordan
es is essential, asthe 
on
ept of an ontology was for the dis
ussion of obje
t representations. Therepresentations of obje
ts and a
tions are related in terms of their a�ordan
es. Thesystem's a
tions are embedded in a�ordan
es' representations of obje
ts and a
tionpairs [�ahin et al., 2007℄. The 
on
ept of a�ordan
es refers to the per
eived and a
-tual properties of things; parti
ularly to properties that are fundamental to determinehow a thing 
ould possibly be used [Norman, 1988℄. An a�ordan
e is the relationshipbetween a situation, usually in
luding an obje
t of a de�nite type, and the a
tions thatit allows [Krüger et al., 2009℄. The 
on
ept relates to the per
eived features in an en-tity, regarding how they 
an be used to do something. The a�ordan
es are proprietiesof the obje
ts and of the kinds of intera
tions they 
an support. An a�ordan
e is theobserved availability of things to 
ertain intervention [Anderson, 2003℄. A�ordan
esof an obje
t are thought to be dire
tly per
eived by the agent, per
eption is shapedin terms of a
tions; the world 
onstantly invites a
tion [Anderson, 2003℄. However,an a�ordan
e is not a

urately explained as an element of an obje
t representation,they are also related to the environment and to a
ting agents. An a�ordan
e is also arelationship between the abilities of an agent and the features of an environment; it isequally a reality of the environment and of the a
tions of an agent and it 
an be bothphysi
al and psy
hi
al and, at the same time, neither [Gibson, 1986℄. Hen
e, a�or-dan
es refer to the a
tions' possibilities that the obje
t presents in an environment.Yet, not only the tools, but also the rest of the environment 
an provide a�ordan
esin a situation [Nehaniv and Dautenhahn, 2001℄. The a�ordan
es of the environmentare what it o�ers to the agent, what it provides or furnishes is a relationship with theenvironment, the obje
t, and the agent. An a�ordan
e 
an point both ways, to theenvironment situation and to the observer morphology [Gibson, 1986℄. A�ordan
esdepend not only on the obje
ts and their design but also on their embeddedness tothe environment and on the parti
ular bodily stru
ture and 
on�guration of the agentwho might use them [Nehaniv and Dautenhahn, 2001℄. Finally, an a�ordan
e 
an bede�ned as an a
quired relationship between a behaviour, or a
tion, of an agent andan entity, for instan
e an obje
t, su
h that the appli
ation of the behaviour on the en-tity generates a 
ertain e�e
t [�ahin et al., 2007℄. [Bar
k-Holst et al., 2009℄ presentstwo approa
hes to modelling a�ordan
e relationships between obje
ts, a
tions ande�e
ts. A �rst approa
h uses a voting fun
tion to learn whi
h obje
ts a�ord whi
htypes of grasp. The se
ond approa
h uses an ontologi
al reasoning engine for learn-ing a�ordan
es. [Varadarajan and Vin
ze, 2012℄ des
ribes AfRob, an extension of ana�ordan
e network or roboti
 appli
ations. AfRob o�ers modules to enable robots tointera
t and grasp obje
ts through the generation of grasp a�ordan
es.Now, attention must be turned to the me
hanism for a
tion representation. In or-der to be general a
tions must be 
hara
terized in parametri
 form [Fod et al., 2000℄.When thinking in terms of roboti
 
ontrol, 
omputations for a
tions are 
aptured as
ontinuous transformations of 
ontinuous ve
tors over time. These ve
tors may be
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ontinuous values, like absolute points in three dimensionalspa
es, joint angles, for
e ve
tors, et
. [Geib et al., 2006℄. E�orts in arti�
ial intelli-gen
e resear
h has typi
ally fo
used on modelling high-level 
on
eptual state 
hangesthat result from the exe
ution of a
tions, and not on the low level 
ontinuous detail ofa
tion exe
ution. The representation in arti�
ial intelligen
e fo
uses on dis
rete sym-boli
 representations of obje
ts and a
tions, generally employing propositional or �rst-order logi
 [Geib et al., 2006℄. In order to des
ribe dynami
 environments and the ef-fe
ts a
tions have on the world in a symboli
 logi
 formalism situation 
al
ulus 
an beused. The basi
 
on
epts in the situation 
al
ulus are situations, a
tions and �uents[Fangzhen, 2007℄. A situation is an instant of the state of the world [Funge, 1999℄.Situation are de�ned as a period of time during whi
h a 
ertain set of properties hold;whereas the a
tions are the 
ause of state transitions [Belleghem et al., 1995℄. Thea
tions are what make the dynami
 world 
hange from one situation to another whenperformed by agents [Fangzhen, 2007℄. The �uents are situation-dependent fun
tionsused to des
ribe the e�e
ts of a
tions [Fangzhen, 2007℄. Any property of the worldthat 
an 
hange over time is known as a �uent [Funge, 1999℄. Another formalism isthe use of event 
al
ulus. The event 
al
ulus is a formalism for reasoning about a
tionand 
hange. In event 
al
ulus there is one real line of time points, and the eventsare the o

urren
e of an a
tion at a 
ertain point in time [Belleghem et al., 1995℄.Both the situation and event 
al
ulus provide ri
h frameworks for solving problemsin dynami
 systems. Situation 
al
ulus and event 
al
ulus share the property of beinginitiated and terminated by a
tions [Belleghem et al., 1995℄. In situation 
al
ulus thea
tions are hypotheti
al and time is tree-like. In the event 
al
ulus, there is a singletime line on whi
h a
tual events o

ur. [Mueller, 2007℄.In [Krüger et al., 2009℄ obje
t a
tion 
omplexes are proposed as a framework forrepresenting a
tions, obje
t and the pro
ess that 
onstru
ts su
h representations atall levels. The obje
t a
tion 
omplexes 
an be used as an interfa
e between the verydi�erent representation languages of robot 
ontrol and arti�
ial intelligent planning[Geib et al., 2006℄. They 
ombine the representation strengths of STRIPS planners,the 
on
ept of a
tion a�ordan
e, and the logi
 of event 
al
ulus [Krüger et al., 2009℄.Pairing a
tions and obje
ts in a single representation interfa
e 
aptures the needs ofboth high level a
tion representation and low level 
ontrol [Geib et al., 2006℄. Theexe
ution of obje
t a
tion 
omplexes is done in a hierar
hi
al system with di�erentlevel 
oding a
tions at di�erent levels of abstra
tion [Krüger et al., 2009℄.As has been dis
ussed throughout this se
tion, the prin
ipal aim of a situated agentis to take a
tions appropriate to its 
ir
umstan
es [Beer, 2000℄. Fitting representa-tions are essential for that goal. General approa
hes from arti�
ial intelligen
e andlogi
 base reasoning see the world more in terms of dis
rete time experien
es. How-ever, real-world a
tion is a 
ontinuous time phenomena. State and a
tion represen-tations are dynami
 entities [Krüger et al., 2009℄. Cognitive systems are not dis
retesequential manipulations of stati
 representational stru
tures, but rather, a stru
tureof mutually and simultaneously in�uen
ing 
hange [van Gelder and Port, 1995℄. Inorder to a
quire an internal representation of an a�ordan
e, an agent must 
arry outa 
omplex en
oding of the sensory stimulus; to reprodu
e the 
orresponding a
tion,an agent must de
ode the en
oded representation of the a
tions into proper signals.
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xFig. 4.3: Representing knowledge of a
tions. (left to right): Agent a
tion exe
utionin the real-world. Representation of the a
tion as a point to point ve
tortraje
tory. Representation of the a
tion as an attra
tor lands
ape of skilldynami
s. Representation of the a
tion en
oding the skill dynami
s in aMixture Gaussian Model.The embodied approa
h of 
ognition 
alls for the representations to be en
oded inthe body and not in the head [Anderson, 2003℄. A dynami
al system theory approa
hto 
ognition provides a way to over
ome the separation between mind and the worldthat was largely prevalent in most work on arti�
ial intelligen
e [Be
htel, 1998℄. Adynami
al approa
h is promising for providing a uni�ed theoreti
al framework for
ognitive s
ien
e, espe
ially when 
oupled with a situated embodied perspe
tive on
ognition [Beer, 2000℄. The working hypothesis of the dynami
al approa
h is thatthrough in
reasingly sophisti
ated use of internal states to mediate between per
ep-tion and a
tion, more 
ognitive behaviours emerge from the dynami
s of situateda
tion [Beer, 2000℄.Various proponents of a dynami
al system approa
h to 
ognition also advo
ate fora 
omplete reje
tion of representations, notably the work of [van Gelder, 1995℄. Yet,as addressed in se
tion 4.2, the provision of an inner model is not an impediment forreal-time su

ess, but a
tually enhan
es �uent real time a
tion [Clark and Grush, 1999℄.Most of these 
hallenges stem from a mistaken idea that representations are usefulas a representation for the system must be 
ontemplated as a representation by thesystem pro
essing [Clark, 1997℄. The dynami
 systems theory provides an alterna-tive to the traditional formats of representations 
onsidered in 
ognitive s
ien
e, yet,despite the di�eren
es between the approa
hes, they need not be in
ompatible they
an be 
omplementary [Be
htel, 1998℄. A dynami
al relationship of a representationwith what it represents does not under
ut its status as a representation. Something
an stand-in for something else being 
oupled to it in a dynami
al manner, and de-termining its response by being so 
oupled, whi
h alters the thing being represented[Be
htel, 1998℄. A wide variety of aspe
ts of dynami
al models 
an be regarded ashaving a representational status, su
h as states, attra
tors, traje
tories, bifur
ations,and parameter settings [van Gelder and Port, 1995℄. The dynami
al models are notbased on the transformations of representational stru
tures, the representation in adynami
al systems theory has radi
ally di�erent formats from others used in 
ogni-tive s
ien
e [Be
htel, 1998℄. However, the dynami
al systems 
an store knowledge andhave this stored knowledge in�uen
e their behaviour [van Gelder and Port, 1995℄.Resear
h in 
ognitive s
ien
e has explored a wide variety of representational for-
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tion Frame: Example of a
tion-a�ordan
e frame
〈A
tion-A�ordan
e〉 gA
t
〈Obje
tList〉 gObj1 gObj2 gObj3 〈/Obje
tList〉
〈iniConditions〉 0 〈/iniConditions〉
〈Skill〉 MRS1 〈/Skill〉
〈A
tion〉 A
t1
〈instan
eOf〉 gA
t 〈SkillModel〉 MRS1
〈iniConditions〉 ... 〈/iniConditions〉 〈Prior〉 0.302 0.295 0.403 〈/Prior〉
〈Skill〉 MRS1 〈/Skill〉 〈Mean〉-424.72 173.09 487.24 -747.64-118.99 4.04 534.15 -72.19-295.90 538.47 -1030.21 -644.18 〈/Mean〉
〈Obje
t〉 gObj2 〈/Obje
t〉 〈Covar〉4.04e+3 -5.63e+3 1.33e+4 1.09e+4-5.64e+3 9.60e+3 -2.65e+4 -1.70e+41.33e+4 -2.65e+4 1.02e+5 4.60e+41.09e+4 -1.70e+4 4.61e+4 3.65e+48.42e+3 -7.55e+2 -3.23e+4 8.17e+3-7.55e+2 1.34e+2 2.11e+3 -1.17e+3-3.23e+4 2.11e+3 2.07e+5 -2.96e+48.17e+3 -1.17e+3 -2.96e+4 1.27e+42.43+4 1.27e+4 -6.27e+4 4.01e+41.27e+4 8.81e+3 -3.83e+4 2.05e+4-6.27e+4 -3.83e+4 2.81e+5 -6.72e+44.01e+4 2.05e+4 -6.72e+4 1.01e+5 〈/Covar〉Tab. 4.2: A
tion-A�ordan
e Frame example for generi
 a
tion frame and instan
eof a parti
ular a
tion frame and skill model.mats; the dynami
al system theory introdu
es new notions, su
h as the 
on
epts oftraje
tories and dynami
 attra
tors. One important 
ontribution of dynami
al sys-tem theory is that it fo
uses on representations that 
hange as the system evolves[Be
htel, 1998℄. A 
ru
ial di�eren
e between traditional symboli
 
omputational mod-els and dynami
al models is that the rules that govern how the system behavesare de�ned over the entities that have representational status in a 
omputationalmodel, whereas for a dynami
al model, the rules are de�ned over numeri
al states[van Gelder and Port, 1995℄. For a dynami
al system theory approa
h, the pro
esseswithin the system are not de�ned over representations [Be
htel, 1998℄. Namely, thedynami
al systems 
an be representational without this meaning having the rulesthat govern their evolution de�ned over representations [van Gelder and Port, 1995℄.The dynami
al system theory is revolutionary in adopting a di�erent 
on
ept ofexplanation than the me
hanisti
 
on
eption adopted by most 
ognitive s
ientists[Be
htel, 1998℄.All through Chapter 3 the framework for tea
hing and learning the robot skillsby Robot Programming by Demonstration was presented. The robot skills ought toen
lose the knowledge of the task to allow generalization of the skill for reprodu
tion
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tions in the Robot Skills Knowledge 141and to form full goal dire
ted a
tions. The idea of employing autonomous dynam-i
al systems was proposed as an alternative approa
h for representing movementsas mixtures of non-linear di�erential equations with well-de�ned attra
tor dynami
s[Ijspeert et al., 2001℄. The dynami
 system 
an be generally expressed as di�erentialequations of the form ẋ = f(x, θ), as per Eq. 3.2 . Autonomous non-linear dynam-i
al systems are a powerful me
hanism to modulate the 
ontrol poli
ies by learningthe model of the skill building a stable estimate of f based on a set of demonstra-tions. The dynami
al systems approa
h to skill learning 
an o�er a fast, simple andpowerful formulation for representing and generating movement plans. The dynam-i
al systems framework allows it to 
omply with the attra
tor dynami
s of a skill,modulating it with a set of non-linear dynami
al systems that form an autonomous
ontrol poli
y for motor 
ontrol. Statisti
al learning te
hniques are used to arbitrar-ily shape the attra
tor lands
ape of the 
ontrol poli
y for en
oding in it the desiredtraje
tory. The end-e�e
tor traje
tories of a skill a
tion are modelled in terms of adynami
 systems approa
h, as in [S
haal et al., 2007℄ for an autonomous dynami
alsystem en
oding of the a
tion. The Robot Skills Models are learned by estimating thenon-linear fun
tion f , a time independent model of the a
tion is estimated througha set of �rst order non-linear multivariate dynami
al systems as in the frameworkspresented in [Gribovskaya et al., 2010℄ and [Khansari-Zadeh and Billard, 2011℄, de-s
ribed in Se
tion 3.5, following the method of Table 3.3. Therefore the robot skillsare modelled by the parameters θ of f̂ . M̄RS de�nes a Robot Skills Model determinedby f̂ = {N 1(ξ; θ1), · · · ,NK(ξ; θK)}, where θi = {π, µ,Σ} of the N i Gaussian fun
-tion, de�ned by Eq. 3.18, are the prior, πk, the mean, µk, and the 
ovarian
e matrix,
Σk, of the K Gaussian and they en
ode the representation of the skill a
tion in adynami
al system approa
h.Figure 4.3 shows di�erent representations for a skill a
tion. The leftmost imagesdisplay a tennis swing skill exe
ution of the a
tion by a humanoid agent. Commona
tion representations in roboti
s rely on ve
tor traje
tories des
ribing expli
itly thepositions for the robot 
ontrol at every point. Dynami
al systems theory allows torepresent the skill a
tion in terms of their attra
tor dynami
s. A dynami
 systemrepresentation allows it to fo
us on the internal and external for
es that a
t over thetraje
tory unfolding over time. Here, the dynami
s of the skill a
tion are en
oded ina statisti
al approa
h employing the Gaussian mixture models.Table 4.2 shows an example of the a
tion-a�ordan
es frame. Generi
 a
tion frameshave an asso
iated Robot Skills Model of the en
oded skill a
tion dynami
s. As statedby [van Gelder and Port, 1995℄, the dynami
 models representation status are de�nedover numeri
al states. In addition to the model of the skill, the a
tion frame linksa
tions with the 
orresponding obje
ts that a�ord them. Generi
 a
tion frames listall available obje
ts for su
h a
tion, the parti
ular instan
es of an a
tion frame,
reated by the system in the environment, presents only one obje
t a�ordan
e for theexe
ution of the a
tion. For instan
e, lets 
onsider a 〈Pi
k〉 a
tion. A generi
 〈Pi
k〉a
tion-a�ordan
e frame would hold a robot skill model en
oding the a
tion and a listof obje
ts whi
h a�ord the a
tion, like spoons, forks, knifes, et
. While parti
ularinstan
es of the a
tion frame, su
h as 〈Pi
k Spoon〉 serve as representational tools forthe exe
ution of an a
tion upon a spe
i�
 obje
t found in the environment.
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tions 4.4 and 4.5 have dis
ussed me
hanism for representing obje
ts and a
-tions respe
tively. However, fo
using only on these two aspe
ts would not be enoughto develop the knowledge representation stru
tures needed by the humanoid roboti
systems that are the aim of this work. In addition to obje
ts and a
tions the rep-resentational attributes need to take into a

ount the state of the world groundingthe representations to the environment, the task at hand and the 
urrent situationor present events. As dis
ussed in se
tion 4.2, one of the roles of representationsis as stand-ins for external things outside the system. A roboti
 system would userepresentations to operate on them and not dire
tly over the world. The systemrepresentations should in
lude obje
ts, a
tions, tasks goals and world event 
on�g-urations, as in the representations of Figure 1.5. This does not require building up
omplete models of the agent's body and the environment, the stand-ins are onlyneeded for those aspe
ts that are relevant for guiding behaviour [Be
htel, 1998℄. Themajor goal for humanoid robots, 
ognitive systems and embodied situated agents isto take the a
tions whi
h are appropriate to take in the present 
ir
umstan
es of theworld. There are many resour
es in servi
e of this obje
tive, in
luding the physi
alproperties of an agent's body, the stru
ture of its immediate environment and itsso
ial 
ontext [Beer, 2000℄.One of the most important properties of the world is 
hange. Change is having ana
tion move you from a given situation to a new one [Bra
hman and Levesque, 2004℄.Propositional logi
 representations have limitations, su
h as tying dire
tly the notionof time. Situation 
al
ulus gets around these limitations by repla
ing the notion oflinear time with bran
hing situations [Russell and Norvig, 2010℄. Situation 
al
ulustakes into a

ount situations and a
tions in the domain [Bra
hman and Levesque, 2004℄.The situations are 
omplete states of the world at some point in time, and a se-quen
e of a
tions leading from some initial situation to the given a
tual situation[Bra
hman and Levesque, 2004℄. Situation 
al
ulus was designed to des
ribe a worldin whi
h a
tions and situations are dis
rete, instantaneous and happening one at atime, making situation 
al
ulus limited in its appli
ability [Russell and Norvig, 2010℄.Event 
al
ulus was introdu
ed as an alternative formalism whi
h is based on points oftime rather than on situations. Event 
al
ulus opens the possibilities of talking abouttime, and time intervals. Events, a
tions and time 
ould still be represented either insituation 
al
ulus or event 
al
ulus representations [Russell and Norvig, 2010℄.The obje
t a
tion 
omplexes, des
ribed in [Geib et al., 2006℄, de�ne instantiatedstate transition fragments to be a situated pairing of an obje
t and an a
tion that 
ap-tures a fragment of the planning domain's state transition fun
tion. The fragmentsare de�ned as a tuple 〈si, mpj, Objmpi, si+1〉, 
omprising the initial sensed state of theworld si, a motor program instan
e mpj , the whole obje
t 
ontaining the 
omponentthe motor program was de�ned relative to Objmpi, and the state that results from exe-
uting the motor program si+1. The instantiated state transition fragments 
ontain allof the information the robot has about the two states of the world [Geib et al., 2006℄.Mu
h of the world spa
e in S will be irrelevant for a parti
ular 
omplex sin
e it isnot required for the performan
e of the a
tion and the a
tion will not a�e
t it, the
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es in observing these non-relevant parts of theworld [Krüger et al., 2009℄. It is important to redu
e the world spa
e to only thefeatures pertinent to the 
urrent a
tion. The representation in [Geib et al., 2006℄ arebounded unto two states of the world, an initial state and a desired end state, and toplanning state transition fun
tion from one to another. The dis
ussion in Chapter 2dis
ourages us from this type of planning approa
h for appli
ations su
h as humanoidroboti
s.For our goal the representations are to be at one time larger, but also more stru
-tured and more intimately 
onne
ted, 
ombining knowledge of a
tion and obje
tswith the situations of the environment, the system tasks and the e�e
ts of exe
u-tion. [Minsky, 1975℄, suggested the idea of using obje
t-oriented groups of pro
eduresto re
ognize and deal with new situations. The term frame was used for the datastru
ture that represents these situations [Bra
hman and Levesque, 2004℄. Frameswere put forward as a set of ideas for the design of a formal language for express-ing knowledge [Hayes, 1979℄. A Frame is a 
olle
tion of questions to be asked abouta hypotheti
al situation; it spe
i�es issues to be raised and methods to be used indealing with them [Minsky, 1975℄. To use frames is to make a 
ertain kind of as-sumption about what entities will be assumed to exist in the world being des
ribed[Hayes, 1979℄.Frames are essentially bundles of properties. A frame is a data-stru
ture intendedfor representing a stereotyped situation [Minsky, 1975℄. Atta
hed to ea
h frame areseveral kinds of information. Some of this information is about how to use the frame.Some is about what one 
an expe
t to happen next. Some is about what to do ifthese expe
tations are not 
on�rmed [Minsky, 1975℄. It is made up of slots whi
h 
anbe �lled by expressions named �llers whi
h may themselves be other frames. Given aframe representing a 
on
ept, we 
an generate an instan
e of the 
on
ept by �lling inthe slots. A frame instan
e denotes an individual, and ea
h slot denotes a relationshipwhi
h may hold between that individual and some other [Hayes, 1979℄. An individualframe 
ould look like ( Name-frame: < slot1 �ller1 >, < slot2 �ller2 >, . . . ). Tohelp understand the 
on
ept 
onsider a generi
 room frame as representing the generalidea of a room with generi
 slots that 
an later be �lled by individual room frames,su
h as a kit
hen room, living room, bedroom inheriting from the generi
 room frameand �lling them with their own spe
ial 
hara
teristi
s. The individual frames are aspe
ialization of the general one, [Bra
hman and Levesque, 2004℄. ( Kit
hen-frame:< Is-a: room >, < Role: 
ooking >, . . . ).Frame theory adopts a stru
tured approa
h, assembling fa
ts about parti
ularobje
ts and event types and arranging the types into large taxonomi
 hierar
hies[Russell and Norvig, 2010℄. The idea behind the approa
h is that when one en
oun-ters a new situation one would sele
t from memory a stru
ture 
alled a frame. This isa remembered framework to be adapted to �t reality by 
hanging details as ne
essary[Minsky, 1975℄. Colle
tions of related frames are linked together into frame-systems.The di�eren
es between the frames of a system 
an represent a
tions, 
ause-e�e
trelations, or 
hanges in 
on
eptual viewpoint [Minsky, 1975℄.It is useful to think about frames as a network of nodes and relations. Thetop levels of a frame are �xed, and represent things that are always true about the



144 4. Representation of Robot Skills Knowledgesupposed situation. The lower levels have many terminal slots that must be �lledby spe
i�
 instan
es or data [Minsky, 1975℄. Colle
tions of frame systems are storedin memory, and one of them is evoked when per
eptual eviden
e makes it plausiblethat the s
ene will �t [Minsky, 1975℄. When a proper frame is retrieved its slots are�lled with available information, its default assignments be
ome instantly available,and the more 
omplex assignment negotiations are 
ompleted later as they be
omeavailable [Bra
hman and Levesque, 2004℄. Certain assignments to the slots terminalsare 
ompulsory, others are optional, and others take default assignment values inthe absen
e of better information. The theory states that frames are never to bestored in long-term memory with unassigned terminal values. Instead, frames arestored with weakly-bound default assignments at every terminal, where values 
anbe 
hanged dynami
ally when more suitable information is deemed to be a

essible[Minsky, 1975℄. The pro
ess of mat
hing a proposed frame suitable to represent the
urrent situation is 
ontrolled by the system 
urrent goals and by information atta
hedto the frame [Russell and Norvig, 2010℄.The representations of events are, thus, largely 
on
entrated on two major frames,one of the system tasks and goals' knowledge, and one representing the 
urrent stateof the world knowledge. Representations of the task event knowledge 
onsist of theagent's knowledge about what it is doing or trying to a
hieve. This is the knowledgeabout its purpose, its 
ommands, its goals, both global and lo
al, its planned a
tions,and the relationships between them and the state of exe
ution of the task in the world.Task event frames would hold knowledge for the requested exe
ution of a task. Su
h asthe task goal, task a
tions, in
luding proper instan
es of required a
tion frames, taskstart, end and invoking 
onditions, et
. Task events are instantiated from re
ognizingmat
hing invoking 
onditions for the event frame or by dire
tly giving the system highlevel 
ommands for a task exe
ution 
orresponding to a parti
ular task event. Therepresentation of world event knowledge 
onsists of the agent's knowledge about thesituation of the environment its operating in. That is, knowledge about obje
ts andpla
es and their relationships. The representation of a world event frame would tryto maintain an a

urate model of the agent's environment, as it is being explored, sothe world frame holds knowledge of obje
ts being per
eived as well as the most re
entassumptions of obje
ts no longer in the 
urrent view that are reasonably thought tostill lie around. Continuous operation of the robot and its per
eptual system providesupdates and reinstantiations of the world event. To 
larify these points we 
an revisethe example raised in Chapter 1, represented in Figure 1.5. A robot is requested topla
e a spoon inside a 
up on top of a sau
er plate on a table. Aside from obje
t anda
tion frames already stored in the knowledge base, two frames are 
reated at the startof the robot operation. A world event frame is 
reated from the robot's per
eptionof its environment, so in this 
ase it would re�e
t knowledge about dete
ted obje
tssu
h as the 
up, the spoon, the plate or any obje
ts that are present and per
eived bythe robot, representing, for the robot system, their positions, states, et
. The worldevent frame representation 
orrelates to the world state dimension from Figure 1.5.The task event frame is 
onstru
ted from the given task robot 
ommand representingthe knowledge of the task exe
ution, in this 
ase it des
ribes task goals, state, steps.The task event frame representation 
orrelates to the goal dimension from Figure 1.5.
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Fig. 4.4: Representing event knowledge. (left) Chessboard state during play. A
hess master 
an re
ognize from this state, world event, the pie
es andpatterns important to its obje
tive. (top) Board is redu
ed to relevantknowledge whi
h would lead the player next moves, a
tive view event.(bottom) Whites have a 
he
kmate, task event goal, in three moves. (right)Football game just after the snap. A professional QB 
an read the defensive
overage, world event, to instantly re
ognize favourable mat
hups. (top)Field is redu
ed and only the position of the marked players is important forthe play. (bottom) Having a right read on the defen
e leads to a su

essful
ompletion of a pass, task event goal, to an open player for a �rst down.When an agent en
ounters a new situation a viewed event s
ene is analysed by as-sembling and instantiating frames, the system should wat
h for 
ertain kinds of eventsand inje
t proposed reasons, motives, and explanations for them [Minsky, 1975℄. In
omputer vision systems images seem to 
hange so qui
kly, as fast as the s
ene does,that performing the 
omputations for instantiating the representations at su
h pa
edoes not seem to be 
omputationally e�
ient. [Minsky, 1975℄ theory proposes that
hanges in the frame-stru
ture representation pro
eed at their own pa
e. The sys-tem makes small 
hanges whenever possible. In su
h a 
omplex problem it is notpossible to 
ope with many details at on
e. At ea
h moment, one must work withina reasonably simple framework, and the illusion of 
ontinuity is due to the persis-ten
e of assignments to terminals 
ommon to di�erent view-frames [Minsky, 1975℄.Almost any event, a
tion, 
hange, �ow of material, or even �ow of information 
an berepresented to a �rst approximation by a two-frame generalized event [Minsky, 1975℄.While the di�erent viewpoints help to insulate the parts of the potential 
ontradi
tionfrom one another [Hayes, 1979℄.Sin
e 
omputational resour
es are limited, what is important to 
onsider here is anagent 
apa
ity for dis
rimination and fo
using attention. Humans do not pro
ess thewhole of a s
ene, one 
onstantly dis
riminates information from a s
ene, 
ategorizing,grouping and dis
arding 
hunks of information. An engage worker would generallyfo
us all of its attention into a very small region of features deemed important for itslabour. Hen
e it is desirable to have some indi
ation as to whi
h parts of the worldto fo
us attention on, and to be able to dis
riminate from the whole information ofthe world only the important features of the 
urrent situation toward the 
urrenta
tion. Here, questions arise as to what is relevant, where must attention go, whatpoint of view to take, how to 
onstru
t this fo
us view that would drive what is taken



146 4. Representation of Robot Skills KnowledgeEvent Frame: Example of the task and world event frameand instan
es of an a
tive view event frame
〈Task-event〉 gTask 〈World-event〉 Env1
〈Goal〉 ... 〈/Goal〉 〈Time〉 1 〈/Time〉
〈A
tionSet〉 a
t1 a
t2 〈/A
tionSet〉 〈Obje
tSet〉 obj1 obj2 obj3 〈/Obje
tSet〉
〈exe
State〉 0 〈/exe
State〉 〈Pla
es〉 ... 〈/Pla
es〉
〈Conditions〉 ... 〈/Conditions〉 〈Relationship〉 ... 〈/Relationship〉
〈A
tiveView-event〉 fview
〈A
tion〉 a
t2 〈/A
tion〉
〈Obje
ts〉 obj1 obj3 〈/Obje
ts〉
〈Conditions〉 ... 〈/Conditions〉Tab. 4.3: Event frame example for a generi
 task event frame.from the world to furnish one's thinking and a
ting. To determine what would bethe agent's a
tive view, its fo
us on exe
uting attention, we propose to start from thetwo event frames, representing the task and world knowledge, and build from thema single frame of what 
onstitutes the relevant aspe
ts of the 
urrent event of theworld, fo
using on the knowledge for task exe
ution. This event frame, 
alled herean a
tive view event frame, 
onsists of knowledge from obje
ts and relationships inthe environment taken from the world event frame a

ording to what the task eventframe requires towards a frame of a
tive fo
us that would drive the agent exe
ution.Figure 4.4 presents two examples of human ability to dis
riminate from worldknowledge of a s
ene, an appropriate simpler frame that fo
us on only the relevantparts to a
hieve a desired goal. In the leftmost images a 
hess board is depi
tedat some stage of a game, whi
h would form a world event frame of the situation ofthe 
hess environment. A 
hess master 
an re
ognize from this state, the pie
es andpatterns important to its obje
tive, whi
h in a 
hess task is 
learly the goal of 
he
k-mating your opponent represented in a task event frame. In the right top image theboard is redu
ed to present only relevant knowledge whi
h would lead to the player'snext moves, that is, the a
tive view event. With the information from its world andtask event, a player re
ognizes its patterns for a
tion, in this 
ase a su�o
ation mate,atta
king with the bishop at b2 and the knight at d4 [Wetes
hnik, 2006℄. In the rightbottom image, the player with whites has a 
he
kmate in three moves starting fromthe original board state in the world event. The rightmost images show a 
apturesnapshot from a football game just after the snap, forming the world event framefor that situation. A professional quarterba
k 
an read the defensive 
overage toinstantly re
ognize favourable mat
h-ups helping him to a
hieve 
ompletion of themove, whi
h would represent a task event frame. In the right top image the �eld isredu
ed and only the position of the marked players is 
onsidered important for theexe
ution of the move, whi
h 
onstitutes the a
tive view event. With the informationfrom its world and task event a player re
ognizes its patterns for a
tion, in this 
asethe ba
kward position of the defensive players allows for an open spa
e in the middleof the �eld for the re
eiver to exploit. In the right bottom image, having a right read
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e lead to a su

essful 
ompletion of the pass to an open player for a �rstdown.Table 4.3 shows an example of the event frames. Generi
 world event frame andtask event frame are des
ribed and an instan
e of the a
tive view event frame derivedfrom the world and task frames is also presented. A world event frame holds a set ofobje
t frames instantiated from the environment, and of pla
es or spe
ial lo
ations ofthe environment, like an exit door et
., and frames des
ribing relationships betweenthem. The task event frame bears knowledge of the set of a
tion frames requiredfor a
hieving the task goals, the state of exe
ution of the task and the 
onditions forinvoking, exe
uting, and ending exe
ution of a
tions. The a
tive view event frame isfo
used towards the knowledge ne
essary for instantiating exe
ution, the frame onlyhas the a
tion and obje
t frames that relate to the exe
ution of the 
urrent a
tivitythe agent is engaged with.4.7 Stru
ture of the Robot Skills Knowledge BaseThe �nal aim is to populate a knowledge base of the robot available skills forreprodu
tion. The knowledge base would need to hold all ne
essary information forreprodu
tion of the skills. A robot task would be 
onsidered to be of the form 〈 robotpi
k blue ball 〉, 〈 robot pla
e 
up on plate 〉, et
. in whi
h an a
tion is des
ribedrequesting an operation upon an obje
t for a goal oriented task. Therefore, a dire
tlink between obje
ts and skill a
tions 
an be intuitively established.The �rst attempt at building a knowledge base of robot skills 
onsisted on the pair-ing of obje
ts and a
tions. The elements in the knowledge database were representedin two prin
ipal dire
tions of obje
ts and skill a
tions [Hernández et al., 2009℄. Thetask 
ontemplated in [Kheddar et al., 2009b℄ required for a robot performing a
tionsover an obje
t that is found in the environment. A knowledge base of the robot skillwas proposed, where the models of the skill would reside and a humanoid robot 
oulda

ess the ne
essary learning to perform di�erent motor skills. By linking a
tions tomanipulatable obje
ts in the representation of the skills knowledge, robot systemswould be 
apable of generalizing learned motions of manipulation.In [Hernández et al., 2009℄ an obje
t was represented by any ne
essary informa-tion for the re
ognition and identi�
ation of that obje
t, and any 
onstraint relatedto it, su
h as, Tag, Color, Size, Shape, et
. Similarly an a
tion would 
orrespondto the ne
essary information from the model of the skill to reprodu
e said a
tion.The elements in the database were, in an analogy to obje
t-oriented programming,instan
es of a 
lass obje
t, de�ned by its 
hara
teristi
 attributes and available skilla
tions. The knowledge database 
ontained a series of known obje
ts that the robot
ould identify in its environment. Linked to any instan
e of an obje
t there were one,several or no skill models' operations asso
iated with it.Obje
t1[attributes] =⇒ A
tion {SkillModelA

SkillModelB
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Fig. 4.5: Instan
e of the Obje
t-A
tion Skill Knowledge Database representing ob-je
ts and a
tions in the s
ene �lled with various instan
es and behaviours.It was also possible to build sequen
es of a
tions to be performed, therefore,expanding the fun
tionalities of the Skills Database implementing �behavioural� in-stan
es, Figure 4.5. Skill1 7→Skill2 7→Skill3 ⊢ BehaviourA behaviour, 
onsisted of a sequen
e of a
tions, with their asso
iated obje
ts, thatneed to be exe
uted to a
hieve a goal.Behaviour {SkillA[obje
t℄SkillB[obje
t℄Thinking in terms of obje
ts and a
tions is not only intuitive but also 
onvenientfor a representational undertaking in roboti
s. Obje
t and a
tions are at the basisof robot performan
e, and manipulating and reasoning with them is important forrobots, as 
an be seen from the e�orts in obje
t a
tion 
omplexes [Krüger et al., 2009℄.However, representing the manipulation task as pure a
tion sequen
es is not �exibleand also not s
alable [Zoliner et al., 2005b℄. Se
tions 4.4, 4.5 and 4.6 have shownthat representational attributions must also in
lude information about the world andsituations, events and goals, for e�e
tive situated performan
e.From our earlier attempts [Hernández et al., 2009℄, it was 
lear that informationof obje
ts and a
tions alone was not su�
ient to 
apture the entire state of the world.Sin
e for a single task or behaviour there 
ould be more than one pairing 〈 obje
t,skill model 〉 the addition of at least one more dimension 
ould be required in orderto prevent ambiguities. See Figure 4.6. The obje
ts and a
tions frames don't providesu�
ient and 
omplete information for a robot situated in its environment to be ableto perform its task adequately. To resolve this problem, as has been shown fromse
tion 4.6, 
onsidering two more representational dire
tives is suggested: one for thetask goal, and one for the 
on�guration of the 
urrent state of the world, mainlyobje
ts position and relations with themselves, the robot and a human operator.



4.7. Stru
ture of the Robot Skills Knowledge Base 149

Cup

Plate

Spoon 
Fork 

Cup

Plate

Spoon
Fork 

GraspC

GraspP

Pick

PlaceS

PlaceC

Fig. 4.6: Representations of the robot skills in the knowledge base in the obje
t anda
tion dire
tionsAn agent's knowledge must 
onsist of skills, 
on
epts and fa
ts about the world.From what has been dis
ussed in this 
hapter, world knowledge is thought to 
onsistof obje
ts, a
tions, and task, situations and events. The representations perform asfun
tional abstra
tions for the per
eived environment en
oding the agent knowledgeabout its obje
ts, a
tions, and events, into manageable internal stru
tures standing,in for things outside the system.In addition to the presen
e of obje
ts and a
tions representations, as establishedabove, the representational attributes need to take into a

ount the state of the world,grounding the representations to the environment, the task at hand and the 
urrentsituation or present events. The dis
ussion in Se
tion 4.2 established the importan
eof grounding representations to the environment and 
ognition to situated a
tivity.The 
ognitive pro
esses in the real world o

ur in parti
ular environments employed toa
hieve a parti
ular pra
ti
al end, and must exploit the possibilities of intera
tion andmanipulation in the environment. It is ne
essary to work with symbols and modes ofreasoning related to the per
eption and a
tion of a parti
ular system [Anderson, 2003℄.Embodied agents intera
ting with the real world must develop predi
tive models that
apture the dynami
s of the world in order to a
hieve its goals [Krüger et al., 2009℄.The dynami
al system approa
h works on the hypothesis that through in
reasinglysophisti
ated use of internal states to mediate between per
eption and a
tion, more
ognitive behaviours emerge from the dynami
s of situated a
tion [Beer, 2000℄.The representations 
arry information about the obje
ts or events being repre-sented. The fun
tion of a representation is in the 
arrying of spe
i�
 information ori-ented toward the needs of the given agent. Representations must be highly sele
tive,



150 4. Representation of Robot Skills Knowledgerelated to their eventual purpose, and physi
ally grounded. Di�erent me
hanisms
ould very well be needed for high level and low level representations, su
h as therepresentations of high level abstra
t 
on
epts of obje
t frames, and the low leveldynami
 motion 
ontrol of a
tion exe
ution; plus the 
oordination of their behaviourwithin the events of the environment. The system representations must in
lude ob-je
ts, a
tions, and events 
on�gurations as stated in Se
tions 4.4, 4.5 and 4.6.Obje
ts are all entities that exist in the world, only real physi
al per
eived enti-ties are being 
onsidered but the approa
h 
ould be extended to take into a

ountabstra
t and imaginary entities whose existen
e lies outside the world plane. A
tionsare all pro
esses, transformations, et
., that 
an be performed or operated over anobje
t. Here, �a
tions� refers to robot skills expressed in terms of a dynami
al system.A
tions must provide real e�e
ts on the world yet they 
ould be generalized to in
ludeabstra
t and imaginary a
tions, like the a
t of thinking. As �events�, one thinks of allsituations, states, s
enarios and 
on�gurations of the world that one 
an be in andre
ognize one's self to be in. The state of the world instantiates the world event withall that 
an be per
eived in it; the pairing of the world event and a task event leadto re
ognition of the relevant features of the world, in term of its task, to instantiatea fo
used a
tive view frame where thought 
an take pla
e and a
tions are invoked.Se
tion 4.3 presented various approa
hes aimed at building libraries or databasesof learned motion primitives as ways of having 
omprehensive repertoires of robotskills, allowing a roboti
 system to deal with a vast range of situations. Most ofthese approa
hes, while providing information on how the movement primitives 
anbe learned and generated, generally o�ered little advi
e on how the library of skills
ould be used in the environment to sele
t and adapt the primitives to deal withdi�erent 
onditions.The knowledge base needs to hold all ne
essary information for reprodu
tion ofthe skills in the environment. Knowledge of the task would be distributed among therepresentation of obje
ts, a
tions and events of the goal and the state of the world.A task is then represented by the phrase �Do an A
tion (A), To an Obje
t(O), For a
hieving Goal (G), When State of the World is (W)� . Therefore,the tuple formed by 〈 Do = A
tion(A), To = Obje
t(O), For = Goal(G), When =World State(W)〉 holds all ne
essary information for the reprodu
tion of the task.The skill knowledge module representation presented in this 
hapter, see Figure 4.1,would allow the robot to extra
t from the re
eived per
eptual input knowledge aboutobje
ts, goals and 
urrent state of its working environment. The roboti
 system wouldbe able to retrieve an appropriate skill a
tion from the knowledge base by �nding theanswer to the phrase �Do A
tion (?) ... � for its 
urrent task 
onstraints whenbeing presented with the triple 〈Obje
t, Goal, World State〉.Figure 4.7 shows the representation of the skills in the knowledge database in athree dimensional spa
e de�ned by the 〈Obje
t, Goal, World State〉 triple. Sele
tingfrom their interse
tion an adequate model of the skill for the reprodu
tion of the task.For example, let us 
onsider, as a general typi
al task for humanoid robots that op-erate in a domesti
 environment together with other human agents, a kit
hen settingand the 
ooperative labours that 
ould arise from it su
h as the setting up or 
learingof a table, the 
leaning of dishes, the storing of gro
eries, et
. Tasks behaviours 
ould
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Fig. 4.7: Representation of the skills in the knowledge base. The interse
tion of thetriple 〈Obje
t, Goal, World State〉 allows to sele
t the adequate model ofthe skill for reprodu
tion.be 〈 robot pi
k red spoon 〉 and 〈 robot pla
e spoon in blue 
up 〉 in whi
h we'll have
〈Do = action, To = Spoonred, F or = task_event,When = world_event〉, where theworld situation and the state of exe
ution of the task will help 
hoose whether theproper a
tion would be 〈Do = pick〉 or 〈Do = place〉 in performing the pi
k and pla
ebehaviour.The stru
ture of knowledge 
an be of various kinds, su
h as programming by ex-ample, Hebbian neural network, probabilisti
 look-up table, behavioural 
loning, et
.[Nehaniv and Dautenhahn, 2001℄. In [Geib et al., 2006℄ obje
t a
tion 
omplexes arede�ned as instantiated state transition fragments of a situated pairing of an obje
t andan a
tion generalized by the tuple 〈si, mpj, Objk, si+1〉 
omprised of two abstra
tedstates 〈si and si+1〉 a set of motor programs mpj and an obje
t 
lass Objk. Here, asomewhat similar organization, in terms of the elements that 
onstru
t the tuple, isused. A stru
ture built on frames, as proposed by [Minsky, 1975℄, has been adopted.Frames are a 
omputational devi
e for organizing stored representations in mem-ory, and for organizing the pro
esses of retrieval and inferen
e whi
h manipulatethese stored representations [Hayes, 1979℄. The theory of frames is an e�ort to moveaway from attempts trying to represent knowledge as 
olle
tions of separate simplefragments [Minsky, 1975℄. Frames' data stru
tures are used to represent re
ognizablesituations. The frame approa
h has been extraordinarily in�uential, with wide appli-
ations in relationship re
ognition, data monitoring, and propagation and enfor
ementof 
onstraints [Bra
hman and Levesque, 2004℄. The hold idea of frames is based on atheory for stru
turing 
hunks of memory grouped into pa
kets of related fa
ts, whi
h
an 
ontain other pa
kets, where any number of pa
kets 
an be a
tivated or made
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ess at on
e. The invo
ation of few appropriate pa
kets 
reates anexe
ution environment tailored to 
ontain only the relevant portion of the system'sglobal knowledge [Minsky, 1975℄. The major for
e is not at a representational level,but rather at the level of implementation, the frames theory works as a suggestionabout how to organize large memories, mainly in a non-
lausal form [Hayes, 1979℄In order for a pro
ess to use a representation, the pro
ess must be 
oordinatedwith the format of the representation, only states appropriate to the pro
ess will
ount as representations [Be
htel, 1998℄. The pro
ess for using the representationsbegins by instantiating the appropriate frames. On
e a frame is proposed to repre-sent a situation, a mat
hing pro
ess tries to assign values to ea
h frame's terminals[Minsky, 1975℄. When �llers for all the slots of a parti
ular frame are dis
overed thenit means one has found a frame of su
h 
lass. The data stru
ture of a frame is madeup of slots �lled with attributes, whi
h 
an be made of other frames, as organized interms of a 
lass hierar
hy, analogous to an obje
t-oriented programming paradigm.When instantiating a frame its slots will be �lled with the values present in the system,any slots with unavailable information will be �lled by default attributes asso
iatedwith the 
lass 
ategories. Default values are assumptions reasonably made when thestate of knowledge holds no information to the 
ontrary. Default assumptions involvean impli
it referen
e to the whole state of knowledge at the time the assumption wasgenerated, any event whi
h alters the state of knowledge is liable therefore to upsetthese assumptions [Hayes, 1979℄. Relian
e on default values in [Minsky, 1975℄ is basedupon the realization that thinking begins with defe
tive networks that are slowly, ifever, re�ned and updated.Figure 4.8 presents the 
ontrol data �ow for the pro
ess of using the representa-tions in the knowledge base for extra
ting the task 
onstraints and the appropriateRobot Skills Models within the knowledge module presented in Figure 4.1 and theframework of Figure 2.6. The knowledge of the environment and goals is representedin terms of the World Event Frame and Task Event Frame, with Obje
t and A
tionFrames representing knowledge about available obje
ts and a
tions in the knowledgebase respe
tively. From the knowledge of these frames an A
tive View Event Frameis built of the fo
used knowledge promoting the agent's exe
ution. Looking up theknowledge base for the given obje
t and a
tion a�ordan
e frames yields the neededmodels of the skill, M̄RS, for building the task model.To serve adequately the demands of a 
onstantly 
hanging environment, it isne
essary not only to pi
k items out of their general setting, but to know what partsof them may �ow and alter without disturbing their general signi�
an
e and fun
tions[Bartlett and Bartlett, 1995℄. The pro
ess for using the representations begins withthe re
eption of per
eptual input. From a given s
ene the system instantiates frames,generally governed by the pre
eden
e of visual eviden
e. From the per
eived giveninput the �rst step for extra
ting a task 
onstraint is the mat
hing of the world toan instan
e of the World Event Frame and the instantiation of the Task Event. Themat
hing pro
ess whi
h de
ides the suitability of a proposed frame is partly 
ontrolledby knowledge of the system's 
urrent goals and partly by information atta
hed tothe frame [Minsky, 1975℄. From information 
olle
ted in the World and Task eventframes, whi
h in turn are made up of other obje
t and a
tion frames, the system
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ontrol �ow for using the knowledge representations. TheWorld Event Frame and Task Event Frame are instantiated, and an A
tiveView Event Frame is built from them with the 
onstraints of the task.From obje
t and a
tion a�ordan
e frames in the knowledge base the neededmodels of the skill are taken for building the task model.would have information about its 
urrent goals and the situation of the environment;yet this is not enough to ground the representations in order to e�e
tively use themfor supporting its performan
e. As has been dis
ussed previously, the representationsmust be sele
tive, physi
ally grounded and leading to situated a
tivity. Extending thenotion of sele
tive representations leads to 
losing the gap between per
eption anda
tion. The per
eption �eld is always already an a
tion �eld, the per
eived world isalways known in terms dire
tly related to an agent's 
urrent possibilities for futurea
tion [Anderson, 2003℄. Out of the per
eived knowledge of the world, whi
h we
olle
t in the World Event Frame, the required models for a
tion must be invoked forthe system's operation. [Minsky, 1975℄ imagined that thinking and understanding,be it per
eptual or problem-solving, was 
on
erned with �nding and instantiating aframe, breaking large problems down into many smaller jobs to be done. Maintaininga full model of the world is a large problem and one that 
ontributes to the failure ofplanning approa
hes dealing with 
hanging environments, but a problem with whi
hit is not ne
essary to deal with, in su
h 
omplex environments one 
an never 
ope withmany details at on
e. At ea
h moment, one must work within a reasonably simpleframework. [Minsky, 1975℄ 
ontend that any problem that a person 
an solve at all, isworked out at ea
h moment in a small 
ontext and that the key operations in problemsolving are 
on
erned with �nding or 
onstru
ting these working environments.Therefore motivation for 
reating an A
tive View Event Frame is 
lear from theneed to fo
us attention and dis
riminate from the information of the world and taskevents and the important features of the 
urrent situation toward the 
urrent a
tion.To 
onstru
t this fo
us view that would drive what is taken from the world to furnish
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ting, we build a single frame of what 
onstitutes the relevantaspe
ts of the 
urrent event of the world, fo
using on knowledge for task exe
ution.The A
tive View Event Frame, 
onsists of knowledge from obje
ts and relationshipsin the environment taken from the world event frame a

ording to what the task eventframe requires to drive the agent exe
ution, and 
onstitutes the system's output forthe 
urrent world and task 
onstraints. The frames representation is envisioned aspa
kets of data and pro
esses, and so are the high level goals [Minsky, 1975℄. When aframe is proposed, its pa
ket is added to the 
urrent knowledge so that its pro
esseshave dire
t a

ess to what they need to know, without being 
hoked by a

ess tothe entire knowledge of the whole system. One must 
hoose from one's 
olle
tion of
lustering methods by using the goals in a mi
ro world 
ontext [Minsky, 1975℄.For an agent working in an unstru
tured environment, the fo
us of its per
eptionmust be dire
ted towards its exe
uting a
tion. Knowledge of its environment and taskwould be 
olle
ted into their appropriated frames and a fo
used a
tive view framewould be built, taken from their global knowledge and breaking it down into a simplerframework from whi
h 
omputations and knowledge take pla
e.Revisiting the kit
hen setting, and the task 〈 robot pla
e spoon in 
up 〉. A pro-totypi
al s
ene is given in whi
h the obje
ts relevant to the task are re
ognizabletogether with 
lusters of other 
urrently unimportant obje
ts. The frames of obje
tsand a
tions' knowledge are instantiated along with an event frame for the 
on�gura-tion of the environment and an event frame invoked with the knowledge of the taskfrom the desired given task behaviour. Knowledge from the event frames is redu
edinto a simpli�ed a
tive frame ignoring information not pertaining to the exe
ution ofthe 
urrent task.Figure 4.9 presents the organization of the knowledge base in terms of the framesdes
ribed in Se
tions 4.4, 4.5 and 4.6. To help better understand these points, wereview an example, as before, 
onsidering a simple 
ase in whi
h a humanoid robotis requested to pla
e a spoon inside a 
up, and pla
e the 
up on top of a sau
er plateon top of a table, as if it serving a 
up of tea or 
o�ee. The robot would begin isoperation in a kit
hen setting s
ene in front of a table with various identi�able obje
tstypi
al of the tasks whi
h would be 
olle
ted into the World Event Frame and thene
essary instan
es of Obje
t Frames for the obje
ts present in the s
ene. Naturally,in our example we would have spoon, 
up and plate obje
ts, as the robot exploresits environment it will re
ognize any obje
t as it �nds them, relevant to its task ornot, and will �ll the World Event Frame with its respe
tive Obje
t Frames instan
es.Additionally the system is provided with the Task Event Frame representing theknowledge of the task and the instan
es of the A
tion Frames. In this example to
omplete the requested task, the robot would be required to perform several simplertasks or subtasks, su
h as pi
king up the spoon, grasping the 
up and pla
ing the 
upon top of the sau
er plate, et
. The Task Event Frame holds knowledge of the stateof exe
ution of the task and A
tion Frames instan
es for the knowledge of the robotskills for reprodu
tion.The Task Event Frame and the World Event Frame represent the knowledge of thestate of exe
ution of the task and the environment, with Obje
t and A
tion Framesrepresenting the available obje
ts and a
tions. The A
tive View Event is 
reated from



4.7. Stru
ture of the Robot Skills Knowledge Base 155

Fig. 4.9: Knowledge base stru
ture and organization of the knowledge representa-tions. World Event Frame and Task Event Frames represent the knowledgeof the state of the environment, with Obje
t and A
tion Frames represent-ing the available obje
ts and a
tions. From the knowledge of this framesan A
tive View Event Frame is built of the fo
used knowledge required todrive the agent exe
ution, and the system's output for the 
urrent worldand task 
onstraints.all these knowledge frames redu
ing the view of the world into a simpler s
ene withthe important Obje
t Frames for the task, with their proper roles assigned for theexe
ution of the a
tion. The full s
ene in Figure 4.9 is broken down into the redu
eds
ene of the A
tive View Event Frame whi
h promotes the exe
ution of the a
tion asin the Figure 4.7. Now let us return to our example at some point during the taskexe
ution. Imagine for instan
e the exe
ution of the 〈 robot pla
e spoon inside 
up
〉 tasks. To perform the task it is assumed that the spoon obje
t has already beenpi
ked by the robot and is in one of its hands, so the target obje
t for the task isthe 
up. The World Event Frame and the Task Event Frame are �lled as dis
ussedabove and as in Figure 4.9. The A
tive View Frame is built form these knowledgeframes to 
reate a fo
used, simpli�ed frame with only the knowledge pertaining tothe a
tion being performed. In our 
ase this means a redu
ed frame where only therelevant Obje
t instan
es are in
luded, the spoon, the 
up and the plate, and onlythe exe
uting A
tion frame instan
e is in
luded to extra
t the ne
essary Robot SkillModel for the a
tion exe
ution.Di�erent approa
hes on related topi
s fo
used on the management of knowledgeby roboti
 system exists, su
h as KnowRob, [Tenorth and Beetz, 2013℄ or RoboEarth,[Waibel et al., 2011℄. However these systems lie at a higher more abstra
t level of the
ognitive hierar
hy while our framework lies at a lower level of a
tion exe
ution.Further resear
h requires study and 
omparison of other systems, in parti
ular theones that may be used to 
omplement the framework developed in this work.



156 4. Representation of Robot Skills Knowledge4.8 Summary of the ChapterThroughout this 
hapter the development of a knowledge base for the storingand retrieval of the learned models of the skills has been des
ribed. In se
tion 4.2an introdu
tion to the topi
 of knowledge was presented, and its importan
e for de-velopment of 
ognitive roboti
s. The embodied view of 
ognition and its 
hallengesto the traditional approa
hes of symboli
 representations were studied. Also, basi
notions and 
on
epts in the �eld of knowledge representation and reasoning werereviewed. Se
tion 4.3, presented a review of similar approa
hes aimed at buildingrepertoires of basi
 units of a
tion, also known as movement primitives, whi
h 
anrepresent a basi
 set of elementary robot motor skills. Learned motion primitives 
anbe used as ways of having 
omprehensive repertoires of robot skills. Most of theseapproa
hes generally o�ered little advi
e on how the library of skills 
ould be used inthe environment to sele
t and adapt the primitives to deal with di�erent 
onditionsor their me
hanism for representing their knowledge. In se
tions 4.4, 4.5 and 4.6 theapproa
hes and problems for building representation of obje
ts, a
tions, and eventsknowledge were presented, respe
tively. Finally, se
tion 4.7, presented the develop-ment of a knowledge base for the storing and retrieval of the learned models of theskills, and the representational stru
ture of the robot skills' knowledge base devel-oped in this 
hapter. The embodied view of 
ognition 
alls for representations to belimited, physi
ally grounded to the environment and oriented towards a parti
ularuse. The prin
ipal aim for the humanoid robot is to take a
tions, as situated agents,that are appropriate to its 
ir
umstan
es. Fitting representations are essential forthis goal. Our representational framework fo
uses on a lower level of abstra
t repre-sentation aiming at a
tion exe
ution, while most other systems lie at a higher moreabstra
t level of the 
ognitive hierar
hy, however this 
ould allow both approa
hes to
omplement ea
h other. In this 
hapter, the developed representations for our robotwere presented. Obje
t and a
tions are at the basis of robot performan
e, thereforethinking in terms of obje
ts and a
tions was not only intuitive but also 
onvenientfor a representational undertaking in roboti
s. However, representational attributionsmust also in
lude information about the world and situations, events and goals, fore�e
tive situated performan
e. A stru
ture built on frames has been adopted in thiswork; the frames are a 
omputational devi
e for organizing stored representations inmemory, and for organizing the pro
esses of retrieval and inferen
e whi
h manipulatethese stored representations. In our system the knowledge of the environment andgoals is represented in terms of World Event Frame and Task Event Frames, with Ob-je
t and A
tion Frames representing knowledge about available obje
ts and a
tionsrespe
tively. From the knowledge of these frames, an A
tive View Event Frame isbuilt of the fo
used knowledge promoting the agent's exe
ution. Figure 4.9 presentsthe organization of the knowledge base in terms of the World Event, Task and A
tiveEvent Frames, Obje
t and A
tion Frames as des
ribed in Se
tions 4.4, 4.5 and 4.6.



5. GENERATION AND ADAPTATIONOF ROBOT SKILLS5.1 Outline of the ChapterThis 
hapter presents the algorithms developed for the generation and adaptationof robot skills. Humanoid robots are required to perform a wide repertoire of tasksworking beside humans in 
omplex dynami
 environments. While Learning fromDemonstration (LfD) approa
hes provide adequate methods used for learning anden
oding the models of the robot skills for every 
on
eivable s
enario the robot mayen
ounter would be a daunting undertaking, therefore, me
hanisms for the generationand adaptation of new robot skills from previously learned skill models are needed.Figure 5.1 shows the framework proposed throughout this work for the adaptation oflearned skills to task 
onstraints, highlighting the generation of task models dis
ussedin this 
hapter. This 
hapter des
ribes the pro
ess by whi
h, using the already learnedmodel of a robot skill and the extra
ted 
onstraints knowledge of the 
urrent task, themodel of a skill is adapted to reprodu
e a new task. Di�erent modes are presentedfor the adaptation, update, merger, 
ombination and transition between the RobotSkills Models. The organization of this 
hapter goes as follows:
• Se
tion 5.2, presents developments for the generation and adaptation of therobot skills. A review of related approa
hes aiming at the adaptation of learnedskill models is given. Also, the framework employed through this work to adaptand generate the task models is presented.
• Se
tion 5.3, presents the adaptation of a task model by operations on its inher-ent dynami
al properties. The Robot Skills Models are learned in a Dynami
alSystems (DS) approa
h. DS are intrinsi
ally robust to spatio-temporal per-turbations, do not expli
itly depend on time and 
an be generalized to unseeninitial 
onditions.
• Se
tion 5.4, presents the adaptation of a task model by updating a robot skill.Models of a skill must be updatable, when given new information for the repre-sentation of a skill, the system must allow for the models to be improved. Thisse
tion des
ribes methods by whi
h Robot Skills Models 
an be updated.
• Se
tion 5.5, presents the generation of a task model by merging robot skills.Skills 
an be generated by merging two or more models into a new skill, multiple



158 5. Generation and Adaptation of Robot Skills
DemonstrationsDemonstrationsDemonstrationsDemonstrationsDemonstrations

Extraction 

of Task 

Constraints

Reproduction

Skills Knowledge base

Model ofModel of

 a skill

Perceptual 

Input

Robot Skill Generation 

Adapatation Module

Task 

Model

Generation 

Adapatation 

Algorithms

Fig. 5.1: Module for the generation of task models from the robot skills in the knowl-edge base and the 
onstraints of the task, highlighted over the proposed
ognitive framework for learning and adaptation of robot skills.desired robot skills may be 
omposed from superposition of various models. Thisse
tion des
ribes methods by whi
h Robot Skills Models 
an be merged.
• Se
tion 5.6, presents the generation of a task model by 
ombining robot skills.Models of a skill 
an be 
ombined to generate new models that en
ompass alarger spe
trum of the attra
tor dynami
s. This se
tion des
ribes methods forthe 
ombination of Robot Skills Models.
• Se
tion 5.7, presents the generation of a task model by transitioning betweenrobot skills. To generate 
omplex behaviours, the system must sequen
e andtransition between models of the robot skills. This se
tion des
ribes methodsby whi
h the system 
an shift smoothly among the reprodu
tion of di�erentRobot Skills Models.5.2 Generation and Adaptation of Robot SkillsHumanoid robots are thought to 
ollaborate and intera
t together with humans,sharing the same spa
e, tools and a
tivities. For humanoid robots to a
t �uently inunstru
tured environments, intera
ting with di�erent obje
ts and people, they mustbe able to perform dynami
ally 
hanging tasks that require great adaptations. Flexi-ble and generi
 
ontrol methods that 
an adapt to various tasks and robots 
onstraintsare ne
essary. Learning systems are required to a
quire skills and me
hanisms are
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apa
ities to adapt their a
quired skills, expandingthe system's knowledge and ability to a
t in the environment.Traditionally available 
ontrol algorithms are not nearly versatile, robust or �exi-ble enough to a
hieve the 
omplexity levels of the biologi
al systems whi
h are to beemulated [Peters et al., 2003℄. In order to bene�t from the full potential of humanoidrobots a learning approa
h is required [S
haal, 1999℄.One of the aims of this work is learning models of robot skills whi
h are thenused to build a knowledge base of the robot skills knowledge for a humanoid robotreprodu
tion. To tea
h and learn the robot skills a LfD framework was implementedin Chapter 3. The motivations for adopting an Imitation Learning approa
h werestated in the previous 
hapters, the most important 
hara
teristi
s are that it providesintuitive and user-friendly methods to tea
h tasks to a robot by demonstrating theskills without requiring the user to have expert programming skills, it redu
es the
ost of developing automated planning and manual programming of robot 
ontrol,and speeding up the learning pro
ess, as opposed to reinfor
ement learning methods,redu
ing 
omplexity of sear
h spa
es, giving prior knowledge of task performan
e.The fo
us of the LfD approa
hes is the development of algorithms that are generi
in their representation of the skills and in the way they are generated. LfD methodsallow a human user to tea
h a robot how to a

omplish a given task simply bydemonstrating the task and generalizing the demonstrated movements a
ross a set ofdemonstrations [Gribovskaya et al., 2010℄. The robot 
annot simply reprodu
e a skillby 
opying an observed behaviour, it must have the 
apability to generalize it. One
ommon approa
h for generalizing a skill 
onsists of 
reating a model of the skill basedon several demonstrations, performed in slightly di�erent 
onditions exploiting thevariability inherent to the various demonstrations [Calinon, 2009℄. Imitation Learningfo
uses on three important issues: e�
ient motor learning; the 
onne
tion betweena
tion and per
eption; and modular motor 
ontrol in the form of movement primitives[S
haal, 1999℄.To a
hieve the 
omplex behaviours, su
h as those needed for a humanoid robot towork alongside humans, it would be ne
essary to have in
lusive and 
omprehensiverepertoires of robot skills. For these purposes movement primitives, basi
 units of a
-tion to 
omplete a goal, are promoted. The assumption that 
omplex movement skillsare 
omposed from smaller units of a
tion is well a

epted for these approa
hes. Theinsight that human a
tivity is de
omposed into building blo
ks of smaller elementarya
tions is an established belief whi
h 
an help to 
ope with the 
omplexity of motorskills learning for robots. There are many theories about motor primitives suggestinghuman motion be divided into its elementary traje
tories [Fod et al., 2000℄.To learn su
h basi
 units of a
tions is 
onsidered a useful approa
h for generatinglibraries of motor skills. Endowing a roboti
 system with a library of movementprimitives �lled with a su�
ient number of skills 
an provide it with an adequaterepertoire of a
tions to deal with a vast range of situations.The motor 
ontroller
omponents of movement primitives 
ould be manually derived or learned. It isimportant to allow their generalization and appli
ability to di�erent s
enarios thatthe primitives be 
hara
terized in parametri
 form and be provided with adequaterepresentations. Chapter 4 reviewed approa
hes to deal with 
omplex motions a



160 5. Generation and Adaptation of Robot Skillslibrary of movement primitives and presented the development of the knowledge basefor the storing and retrieval of the Robot Skills Models learned in Chapter 3 as basi
primitives of a
tion.Therefore, it is ne
essary to extend the 
lassi
al LfD approa
h of learning a skillmodel in a way that allows the adaptation of a robot previously learned motion skillsto new unseen 
ontexts.The Learning from Demonstration (LfD) approa
hes previously reviewed o�erednatural, fast and impli
it means of tea
hing a robot new skills. However, despite its
lear advantages, it would be impra
ti
al for the human operator to tea
h the robotthe skills for every needed task and for every foreseen situation, sin
e the numberof demonstrations the human must provide to the robot to generate a new modelof a skill 
ould turn it into a tiresome and time-
onsuming pro
ess and it wouldn'tbe possible to 
over every ne
essary task and every unforeseen situation. For thisreason, enhan
ing the LfD with the 
apa
ity to adapt and generate new skill modelsis important. Additionally, despite the fa
t that the LfD o�ers the 
apability togeneralize the learned model, the generalization is relatively limited to 
hanges ininitial 
onditions or to rather small perturbations during the exe
ution. To expandthe s
ope of a learned model to areas unexplored by the demonstration would requiredi�erent me
hanism. Hen
e, to extend the 
lassi
al LfD approa
h of learning a skillmodel in a way that allows the adaptation of a robot previously learned motion skillsto new unseen 
ontexts is ne
essary.To reprodu
e a task adapted for an unseen 
ontext the robot is provided withknowledge of the state of the environment and the 
onstraints of the task extra
tedfrom its per
eptual input and other high level orders it 
ould possess. Using both,the already learned model of a skill, and the extra
ted 
onstraints information of the
urrent task, the model of the skill is adapted to reprodu
e the task. Figure 5.2,illustrates the pro
ess for enhan
ing a 
lassi
al LfD approa
h to generalize a skill toallow adapting a robot's previously learned skills models. The traditional approa
h inLfD from [Billard et al., 2008℄ as represented by the top s
heme in Figure 5.2 presentsa somewhat stati
 
ontrol s
heme, akin to an open loop 
ontroller, and it won't besu�
ient to reprodu
e a task when the state of the environment is too dissimilar fromhow it was when the demonstrations were given to en
ode the model of the skill. Byadding environmental and task knowledge as input to the s
heme, in the bottom ofFigure 5.2, the 
ontrol diagram 
ould be thought of as a 
lose loop 
ontroller, witha feedba
k signal from the 
onstraints of the task and the environment, whi
h allowsthe model of a skill to be adapted a

ordingly to its 
ontext.Reprodu
tion of robot skills, if they are to be general enough, needs to presentthe 
apa
ity for adaptation and to generate new skills when the 
urrent situationof the world and its 
onstraints of the task demand them. Working in dynami
ally
hanging environments, it is ne
essary to adjust the desired traje
tories appropri-ately, or to generate new ones by generalizing from previously learned knowledge[S
haal et al., 2007℄. The robot skills learned with the methodology des
ribed inChapter 3 would present stable traje
tories that a

urately reprodu
e the demon-strated motion dynami
s, however, there is no guarantee that outside the area of thedemonstrations the reprodu
tion of these traje
tories would provide a meaningful or
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Fig. 5.2: Augmenting the LfD approa
h for the generalization of a skill to allowadapting a robot previously learn skills models. (top) Generalization ofa skill by extra
ting the statisti
al model a
ross multiple observations.(bottom) Adaptation of a learn skill to new 
ontext by extra
ting the task
onstraints with a new observation and using the environment informationto modi�ed previously learned models of the skill.proper behaviour in a

ordan
e to what would be expe
ted from the task. As anexample, 
onsider a 
ase in whi
h the robot has been taught motion skills in orderto grasp a 
up approa
hing from the left side; and later it's requested to grasp a 
uppositioned to its right, it would be the impulse of the robot, governed by its model ofthe skill, to approa
h the obje
t from the left as the demonstrations showed it. How-ever, su
h behaviour would not only be unnatural to a
hieve the task but potentiallyunsafe for the robot or other entities in the environment.The Robot Skills Models were learned by employing a Dynami
al Systems (DS)approa
h. The DS framework allows to 
omply with the attra
tor dynami
s of thedesired behaviour, modulating it with a set of non-linear dynami
 systems that forman autonomous 
ontrol poli
y for motor 
ontrol. A DS approa
h was 
hosen be-
ause it allowed 
ertain desirable properties. DS are intrinsi
ally robust in the fa
e ofspatio-temporal perturbations. DS do not expli
itly depend on time and are able tomodel arbitrary non-linear dynami
s. DS 
an also be easily modulated to generatenew traje
tories that have similar dynami
s. By learning the skills under a probabilis-ti
 approa
h employing Gaussian Mixture Model (GMM) the parameters governingthe attra
tor dynami
s of the motion are fully en
oded into the parameters de�ningthe Gaussian fun
tions. The learned Robot Skills Models would form a set of basi
primitives of a
tion from whi
h a knowledge base of skills was built in Chapter 4.An approa
h based on movement primitives relies on possessing available se-quen
es of motor 
ommands, exe
uted in a 
ertain order, to a

omplish a given
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al stru
tures that organize the under-lying me
hanism of 
omplete movements [Fod et al., 2000℄. It is generally believedthat humans employ basi
 motor primitives as an underlying me
hanism of biologi
almotor 
ontrol. Eviden
e exists from human and animal experiments supporting thebelieve that sets of motor primitives are used to build a basis for voluntary motor
ontrol [Kon
zak, 2005℄.By working under a theory, based on the existen
e of basi
 primitives, from whi
hfull human motions are made, it seems 
lear that following the issue of how to 
reate,build and learn these basi
 units of a
tion primitives, the next question would be fo-
used on how these primitives 
an be manipulated; how primitives 
an be 
ombined toform higher level movement primitives; how sequen
ing and re
ognition of sequen
esof movement primitives 
an be a

omplished [S
haal, 1999℄. The idea is that a
tions
an be de
omposed into sequen
es of reusable primitives; primitives might be pre-served in memory and adequate primitives might be retrieved from it. Humans 
angenerate diverse a
tions by 
ombining behaviour primitives [Arie et al., 2012℄.To generate 
omplex human like motions from a learned set of basi
 primitivesunits, the Robot Skills Models, and be able to reprodu
e various 
omplex task be-haviours, methods for operating and manipulating upon the primitives must be de-veloped. The robot skills must be adaptable to 
onditions of its operating environmenteven when di�ering substantially from its original demonstrations. Also, the modelsof a robot skill must be updatable, when given new information for the representa-tion of a skill the system must allow for the models to be improved. Additionally,the a
tion primitives approa
h must be able to generate new skills by merging two ormore primitives into a new skill, multiple desired robot skills may be 
omposed fromsuperposition of various primitives. Another important property is the 
ombinationof the Robot Skills Models to generate new models that en
ompass a larger spe
trumof the attra
tor dynami
s. A �nal desirable operation over the basi
 set of primitivesskills 
onsist of sequen
ing and transition between models of robot skills in order togenerate 
omplex behaviour with smooth transformation among the reprodu
tion ofdi�erent skill motions.The bulk of the work in LfD or RPbD and movement primitives approa
hes hasbeen 
entred on the development and validation of algorithms that would allow thelearning and en
oding of the skill motions, whi
h would 
onstitute the movementprimitives, to take pla
e. Little work has been fo
used on the development of te
h-niques that would endow the system with the ability to operate upon its movementprimitives and generate new and more 
omplex behaviours. Yet some examples ofthese e�orts 
an be found.[Muelling et al., 2013℄ presented a framework to learn 
ooperative skills from in-tera
tion with a human. First, a set of elementary movements are learned from ahuman tea
her by kinaestheti
 tea
hing. Subsequently, the system generalizes thesemovements to a wider range of situations using our mixture of motor primitives ap-proa
h. The resulting poli
y enables the robot to sele
t appropriate motor primitivesas well as to generalize between them.The work of [Shukla and Billard, 2012℄ fo
used on 
ombining several learned DS,with distin
t attra
tors, resulting in a multi-stable DS. Their work presented an
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h inherits region partitioning ability of well know Sup-port Ve
tor Ma
hine (SVM) 
lassi�ers and is augmented with novel 
onstraints de-rived from the individual DS.In [Khansari-Zadeh and Billard, 2012℄ a novel approa
h is presented to real-timeobsta
le avoidan
e based on DS, that ensures impenetrability of multiple 
onvexshaped obje
ts. Obsta
le avoidan
e pro
eeds by modulating the original dynam-i
s. The modulation is parametrizable and allows to determine a safety margin andto in
rease the robot's rea
tiveness in the fa
e of un
ertainty in the lo
alization ofthe obsta
le.[Kulvi
ius et al., 2012℄ fo
used on an approa
h for joining movement sequen
esby modifying the learned DMP exempli�ed on handwritten appli
ation. The methodis based on the modi�
ation of the original DMP formulation. The new method 
anreprodu
e the target traje
tory with high a

ura
y regarding both the position andthe velo
ity pro�le and produ
es smooth and natural transitions in position spa
e, aswell as in velo
ity spa
e.In [Gomez et al., 2012a℄ a novel roboti
 learning te
hnique based on Fast Mar
hingSquare is presented. The method assumes that the task taught to the robot 
anbe 
odi�ed into a path planning problem. Their method takes into a

ount theenvironment, sin
e it modi�es the path planning algorithms of the system instead ofmodifying the motion 
ontrol.The work of [Palm and Iliev, 2010℄ re
ords the operator's motions by a data-
apturing system; they are then modelled via fuzzy 
lustering and a Takagi-Sugenomodelling te
hnique. The resulting skill models use time as input and the operator'sa
tions as outputs. The robot exe
utes the re
ognized skill by using the 
orrespondingreferen
e skill model. Drasti
 di�eren
es between learned and real world 
onditionswhi
h o

ur during the exe
ution of skills by the robot are eliminated by using theBroyden update formula for Ja
obians. This method was extended for fuzzy modelsespe
ially for time 
luster models.[S
haal, 1999℄ dis
ussed a set of primitives for generating 
ontrol 
ommands forany given motion by modifying traje
tories appropriately, or generating entirely newtraje
tories from previously learned knowledge.[Calinon et al., 2012℄ derive a task-parametrized model that 
an adapt motion andimpedan
e behaviours in real-time with respe
t to the 
urrent position/orientationof frames. The proposed extension is built upon the produ
t properties of Gaussianfun
tions.[Tani and Ito, 2003℄ investigated the self-organization of behavioural primitivesin a neural network model in the 
ontext of robot imitation learning. The modelis 
hara
terized by the parametri
 biases whi
h adaptively modulate for embeddingdi�erent behaviour patterns in a single re
urrent neural net, in a distributed way.Diverse behaviour patterns other than learned patterns were generated be
ause of self-organization of non-linear map between the parametri
 biases and behaviour patterns.[Arie et al., 2012℄ des
ribes a model dealing imitation learning generalization byfo
using on the problem of a
tion 
ompositionality. A robot was trained with aset of di�erent a
tions 
on
erning obje
t manipulations whi
h 
an be de
omposedinto sequen
es of a
tion primitives. Then the robot was asked to imitate a novel
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ompositional a
tion, 
omposed of prior-learned a
tion primitives. The results showedthat the novel a
tion 
an be su

essfully imitated by de
omposing and 
omposing itwith the primitives by means of organizing uni�ed intentional representation hosted bymirror neurons, even though the traje
tory level appearan
e show di�eren
e betweenthose observed and those self-generated.The robot would re
eive from the di�erent modules of per
eption and intera
tionthe required appropriate 
ommands ordering the reprodu
tion of a skill, and wouldextra
t the 
onstraints of the task and its environmental 
on�guration to instantiatethe appropriate knowledge frames as des
ribed in Chapter 4. With this informationtaken from the knowledge base, together with the pertinent Robot Skills Models 
or-responding to the requested task, the module for the generation and adaptation ofrobot skills is 
alled to adapt the robot skills a

ordingly and to generate the taskmodels for the robot reprodu
tion of the task, Figure 5.1. For the operation of themodule, two distin
t pro
esses are required. A �rst step 
alls for a skill model tobe adapted, if ne
essary, to 
omply with the 
onditions of the task in whi
h it willbe reprodu
ed or to be updated with new information. A se
ond step requires thegeneration of a task model, allowing the reprodu
tion of the en
oded knowledge of theskills by the robot in order to perform a requested task. The versatility and usabilityof a robot skill approa
h depend on the 
apa
ity to manipulate the skills. These ma-nipulations of the skills must allow for the adaptation, update, merger, 
ombination,and transition between the Robot Skills Models as ne
essary.Methods for model 
ombination or joining 
an be found in the �eld of ma
hinelearning and pattern re
ognition. Performan
e improvement 
an be obtained by 
om-bining multiple models together in some way, instead of just using a single model inisolation [Bishop, 2006℄. One method involves the learning of di�erent models andthen using the average of the predi
tions made by ea
h model. An alternative formof model 
ombination is 
hoosing one of the models to make the predi
tion as a fun
-tion of the input variables, in this way di�erent models be
ome responsible for makingpredi
tions in di�erent regions of input spa
e [Bishop, 2006℄. These methods are verydependent on the de
ision pro
ess. A way of softening the weights in the de
isionpro
ess 
an be done by moving to a probabilisti
 framework for 
ombining models.These methods are known as mixtures of experts; models 
an be viewed as mixturedistributions 
onditioned by the input variables. A mixture of experts 
an be given:
p(t|x) =

K
∑

k=1

πk(x)pk(t|x) (5.1)In whi
h the mixing 
oe�
ients πk(x) are known as gating fun
tions and the individual
omponent densities pk(t|x) are 
alled experts. The idea behind this is that di�erent
omponents 
an model the distribution in di�erent regions of input spa
e and thegating fun
tions determine whi
h 
omponents are dominant in whi
h region. Thee�orts in LfD approa
hes and the theory of generating movement primitive roboti
skills 
an only have a real implementation value for developing humanoid roboti
systems if the models of the skill 
an be operated upon to generate new behavioursof in
reasing levels of 
omplexity.



5.3. Operations with Robot Skills 1655.3 Operations with Robot SkillsA knowledge base of robot skills was developed in the previous 
hapter. TheRobot Skills Models in this work has been learned by employing a Dynami
al Systems(DS) approa
h, built as basi
 primitives of movements en
oding within the modelthe motion dynami
s of a demonstrated skill. Autonomous dynami
al systems wereproposed as an approa
h for representing movements as mixtures of non-linear di�er-ential equations with well-de�ned attra
tor dynami
s [Ijspeert et al., 2001℄. The DSframework allows it to 
omply with the attra
tor dynami
s of the desired behaviour,modulating it with a set of non-linear dynami
 systems that form an autonomous
ontrol poli
y for motor 
ontrol.The DS framework provides a e�e
tive means to en
ode traje
tories through time-independent fun
tions that de�ne the temporal evolution of the motions. The motiondynami
s are estimated through a set of �rst order non-linear dynami
al systemequations. It is assumed that the motion is governed by a �rst order autonomousordinary di�erential equation, ξ̇ = f(ξ), as in Eq. 3.3.A DS approa
h to skill learning 
an o�er a fast, simple and powerful formulationfor representing and generating movement plans learned from demonstration. The DSframework allows to 
omply with the attra
tor dynami
s of the desired behaviour,modulating it with a set of non-linear dynami
 systems that form an autonomous
ontrol poli
y for motor 
ontrol. DS provide e�
ient and 
lean means for en
odinga skill and ful�lling various desirable properties.The DS framework presents three advantages, i) DS 
an be easily modulated togenerate new traje
tories that have similar dynami
s, performing in areas that werenot 
overed during demonstrations, [Khansari-Zadeh and Billard, 2011℄; ii) DS areintrinsi
ally robust and 
an adapt their traje
tories instantly in the fa
e of spatio-temporal perturbations [Khansari-Zadeh and Billard, 2010a℄; iii)DS do not expli
itlydepend on time indexing and provide 
losed loop 
ontrol and are able to modelarbitrary non-linear dynami
s, [Gribovskaya et al., 2010℄.The 
on
ept of a dynami
al system is quite general. Dynami
al Systems aremathemati
al obje
ts that unambiguously des
ribe how the state of some systemevolves over time [Beer, 2000℄. DS theory o�ers a wide variety of tools for visual-izing and analysing the temporal behaviour of su
h systems. There are two typesof dynami
al systems di�erential equations and iterated maps or di�eren
e equa-tions [Strogatz, 1994℄. Di�erential equations de�ne a ve
tor �eld, whi
h assigns aninstantaneous dire
tion and magnitude of 
hange to ea
h point in the state spa
e.The sequen
e of states generated by the a
tion of the dynami
s is 
alled a solutiontraje
tory. The set of all possible solution traje
tories is 
alled the phase portrait.Of parti
ular interest is the possible long-term behaviour of a dynami
al system.Over time, the state of many dynami
al systems eventually ends up in a small subsetof the state spa
e 
alled a limit set. Two simple types of limits sets are equilibriumpoints and limit 
y
les. For stable limit sets or attra
tors, all nearby traje
tories
onverge on the limit set, so that small perturbations away from the limit set willreturn there. In 
ontrast, any perturbation from an unstable limit set will not returnto that limit set, but will instead be 
arried elsewhere by the dynami
s [Beer, 2000℄.
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e of phase portraits is 
ontrolled by the �xed points ξ̄ de�ned by
f(ξ̄) = 0 representing equilibrium point solutions [Strogatz, 1994℄. The qualitativestru
ture of the �ow 
an 
hange as parameters are varied; �xed points 
an be 
reatedor destroyed, or their stabilities 
hanged. These 
hanges in the dynami
s are 
alledbifur
ations. Bifur
ations provide models of transitions and instabilities as some
ontrol parameter is varied [Strogatz, 1994℄.5.3.1 Stability Con
ernsA key matter when adopting a Dynami
al System approa
h to modelling therobot skills for 
reating 
ontrol poli
y of the movement primitives is the requirementto ensure the stability of learned DS [Khansari-Zadeh and Billard, 2011℄. Fallinginto an unstable behaviour or a divergen
e from the desired traje
tory would be apotentially dangerous o

urren
e when 
ontrolling a robot, more spe
ially a humanoidrobot whi
h may be performing together with other humans. Therefore, analysingthe behaviour of the system is essential, as is determining whether it is stable. StableDS would bene�t from inherent properties 
ru
ial to modelling movement primitivesrobot skills.The stability analysis of DS is usually around its equilibrium points. In thiswork the notation ξ̄ de�nes an equilibrium point, a point ξ̄ is an equilibrium point if
ξ(0) = ξ̄ initially and then ξ(t) = ξ̄ for all time, an equilibrium is de�ned to be stableif all su�
iently small disturban
es away from it damp out in time [Strogatz, 1994℄.The equilibrium points 
an be determined by 
omputing the real roots of Eq 3.3. Thestability of a given equilibrium point ξ̄ 
an be de�ned as follows.

ξ = ξ̄ is a lo
ally stable equilibrium point if for ea
h R > 0, there is r = r(R) > 0su
h that if the initial state ξ(0) − ξ̄ < r, then the evolution of the system in timesatis�es ξ(t)− ξ̄ < R for all t > 0.
ξ = ξ̄ is a lo
ally asymptoti
ally stable equilibrium point if it is stable and r 
anbe 
hosen su
h that if ξ(0)− ξ̄ < r, then it implies limt→∞ ξ(t) = ξ̄.
ξ = ξ̄ is a globally asymptoti
ally stable equilibrium point if the asymptoti
stability holds for any initial point, limt→∞ ξ(t) = ξ̄, for all ξ(0) ∈ Rd.Studying the stability of DS 
an generally be divided into linear and non-linearsystems. An autonomous linear DS has the following general form:

ξ̇ = Aξ + b (5.2)where A ∈ Rd×d and b ∈ Rd are a 
onstant matrix and a ve
tor. The stabilityof linear dynami
s in Eq. 5.2 is global asymptoti
 at the unique equilibrium point
ξ̄ = −A

−1
b if and only if the real part of all eigenvalues of the matrix A are stri
tlynegative. Eq. 5.2 
orrespond to the linear terms of Eq. 3.24 for the GMR.Stability analysis of linear dynami
al systems is well studied, in 
ontrast, there isno unique method to analyse the stability of non-linear DS, and theoreti
al solutionsexist only for parti
ular 
ases [Gribovskaya et al., 2010℄. The Lyapunov methods arethe most 
ommon and general approa
hes for studying the stability of non-linearDS. The stability analysis via the standard Lyapunov Stability theorem requires �rst
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tion V (ξ) ≥ 0, and se
ond verifying if it alwaysde
reases in a neighbourhood around the equilibrium point ξ̄.The non-linear DS given by Eq. 3.3 is asymptoti
ally stable at ξ̄, if a 
ontinuousand 
ontinuously di�erentiable Lyapunov fun
tion V (ξ) 
an be found su
h that










V (ξ) > 0 ∀ξ ∈ Ω ⊂ Rd&ξ 6= ξ̄

V̇ (ξ) < 0 ∀ξ ∈ Ω ⊂ Rd&ξ 6= ξ̄

V (ξ̄) = 0&V̇ (ξ̄) = 0

(5.3)In this 
ase, the domain Ω is 
alled the stability domain or region of attra
tion,and should 
orrespond to a level set of V (ξ). If the stability domain is expandedto the whole state-spa
e Ω = Rd and V (ξ) → ∞ as ‖ξ‖ → ∞ then ξ̄ is globallyasymptoti
ally stable.[Khansari-Zadeh and Billard, 2011℄ algorithm SEDS was employed to learn theestimates for the DS, as des
ribed in Chapter 3. SEDS 
omputes the optimal valuesfor the parameter θ while ensuring the estimate f̂ to be globally stable in Rd givensu�
ient stability 
onditions.An arbitrary non-linear DS given by Eq. 3.24 is globally asymptoti
ally stable atthe target ξ̄ ∈ Rd by ensuring the following stability 
onditions,
{

b
k = −A

kξ̄

A
k + (Ak)⊤ ≺ 0

∀k = 1 . . .K as in Eq. 3.34where A
k and b

k are de�ned a

ording to Eq. 3.23, and ≺ 0 refers to the negativede�niteness of a matrix.A proof and details 
an be found on [Khansari-Zadeh and Billard, 2010a℄. Eq.3.34 provides us with su�
ient 
onditions to make DS globally asymptoti
ally stableat the target ξ̄. Su
h a model is advantageous in that it ensures that starting fromany point in the spa
e the traje
tory always 
onverges on the target.5.3.2 Generalizing to Unseen ConditionsAs we have reviewed adopting a DS framework was advantageous be
ause it of-fered several valuable properties inherent to the nature of the Dynami
al Systems. DS
ould be modulated to generate traje
tories that have similar dynami
s, performing inareas that were not 
overed during demonstrations [Khansari-Zadeh and Billard, 2011℄.Generalization of the motion to an unobserved part of the spa
e results im-mediately from the appli
ation of the fun
tion to the new set of input variables[Gribovskaya et al., 2010℄. The ability to generate a traje
tory from an arbitrary ini-tial position to the target with a relevant velo
ity pro�le is a strong point of en
odingmotion with DS. This generalization pro
ess 
onsists of exploiting the variability in-herent in the various demonstrations and to extra
t the essential 
omponents of thetask. These essential 
omponents should be those that remain un
hanged a
ross thevarious demonstrations [Calinon, 2009℄.DS 
an en
ode movements and replay them in various 
onditions, Figure 5.3present results of the generalization of the motion in di�erent starting 
onditions
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Fig. 5.3: Generalize the motion to di�erent starting 
onditions. (left) The result ofstarting one of the motion tested in Chapter 3, 5Curve, at di�erent startingpoints. (right) The result of starting one of the motion tested in Chapter3, Sine, at di�erent starting points.tested on the reprodu
tion of a 
ouple of motions learned in Chapter?. Generalizationproperties allow the system to adapt a robot reprodu
tion of the skill to 
hanges inthe environment relating to the position of the targets at the onset of motion.The DS do not de�ne a single traje
tory but a family of solutions within theattra
tor lands
ape of our system, therefore adapting to di�erent starting positions
omes naturally under the DS framework, just as in the potential �eld approa
hes, Dy-nami
al Systems approa
hes in motor 
ontrol 
reate ve
tor �elds a

ording to whi
hmovement system is supposed to move. DS traje
tory based thinking 
reates simpler,although less �exible, attra
tor lands
apes, but s
ales easily to higher dimensions andenables ma
hine learning to shape the lands
apes [Ijspeert et al., 2009℄.5.3.3 Robustness to PerturbationsAnother advantage of adopting a DS framework is its inherent robustness toperturbations. DS are intrinsi
ally robust and 
an adapt their traje
tories instantlyin the fa
e of spatio-temporal perturbations [Khansari-Zadeh and Billard, 2010a℄.A major strength of the DS approa
h is its ability to 
ope with perturbations inreal-time. As a perturbation is understood, the unexpe
ted 
hanges the position ofthe attra
tor or the robot's joints 
ould present during motion. The learned dynami
swith a position of an obje
t mapped into an attra
tor 
an su

essfully tra
k the obje
t.Su
h �exibility 
ombined with the guarantee of ultimately rea
hing the obje
t is one ofthe major advantages of the proposed method in 
omparison with traditional planners[Gribovskaya et al., 2010℄.The DS framework provides a robust robot 
ontroller in the fa
e of perturba-tions during the reprodu
tion of a learned robot skill. Perturbations are produ
edby displa
ement of the target obje
t or of the robot traje
tory during reprodu
tionattempts. The robot 
an smoothly adapt its generalized traje
tory to handle dy-nami
 perturbations during the reprodu
tion. We must distinguish between spatialand temporal perturbations. Temporal perturbations are produ
ed when the robot
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Fig. 5.4: Robustness to a perturbation of the target position during reprodu
tion.(left) The result of perturbation with one of the motion tested in Chapter 3,Ar
, moving the target during exe
ution. (right) The result of perturbationwith one of the motion tested in Chapter 3, Angle, moving the targetduring exe
ution. Traje
tories are drawn in red with di�erent startingpoints. A bla
k star marks the target position and the bla
k dotted line thedispla
ement from the perturbation. The moment when the perturbationtakes pla
e is marked by a bla
k asterisk.
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Fig. 5.5: Robustness to a perturbation of the robot traje
tory during reprodu
tion.(left) The result of perturbation with one of the motion tested in Chapter 3,Ar
, moving the robot during exe
ution. (right) The result of perturbationwith one of the motion tested in Chapter 3, Angle, moving the robot duringexe
ution. Traje
tories are drawn in red with di�erent starting points.A bla
k star marks the target position. The displa
ement of the robottraje
tory from the perturbation is marked by the red dashed line en
losedby bla
k 
ir
les at the moment of perturbation.
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tory is momentarily stopped be
ause of a safety issues or an obje
t blo
kingits path. Spatial perturbations typi
ally derive from the dynami
 intera
tion withan environment in whi
h an obje
t or robot's arm 
ould be displa
ed by an externalperturbation.Figure 5.4 presents results of the adaptation of the motion to a spatial perturba-tion in the position of the target tested on the reprodu
tion of a 
ouple of motionslearned in Chapter 3. The moment when the perturbation takes pla
e is marked bya bla
k asterisk. The traje
tories are instantly re
overed from the perturbation anddon't display noti
eable 
hanges in their exe
ution towards their new target position.Figure 5.5 shows results of the adaptation of the motion to perturbations in the robottraje
tory during exe
ution tested on the reprodu
tion of a 
ouple of motions learnedin Chapter 3. The moment when the perturbation takes pla
e is marked by a bla
k
ir
le en
losing the displa
ement of the robot traje
tory marked by the red dashedline. The DS re
overs its traje
tory instantly from the perturbation and doesn'tdisplay noti
eable 
hanges in its exe
ution towards its new target position.Dynami
al systems o�er a parti
ularly interesting solution to an imitation pro
essaimed at being robust to perturbations whi
h are robust to dynami
al 
hanges in theenvironment [Billard et al., 2008℄. Learning the robot skills as DS whi
h are time-invariant and globally stable, the system is able to handle both temporal and spatialperturbations, while performing the motion as 
lose to the demonstrations as possible.A 
ontroller driven by a DS is robust to perturbations be
ause it embeds all possiblesolutions to rea
h a target in one single fun
tion [Khansari-Zadeh and Billard, 2010a℄.The system is generi
 regarding tasks it may reprodu
e; furthermore, it may workwith limited and ina

urate information about the environment, as it does not requireany 
ostly replanning.5.3.4 Obsta
le Avoidan
eWorking with humanoids in the natural environment requires that the roboti
systems work in 
luttered environments, where they may fa
e several obje
ts duringthe task exe
ution. Collision avoidan
e 
apabilities would have to be present for thesesystems.Obsta
le avoidan
e is a 
lassi
 problem in roboti
s and many approa
hes havebeen proposed to solve it. One may distinguish between lo
al and global methods, de-pending on whether the obsta
le in�uen
es the behaviour either lo
ally or everywhere.Global methods, su
h as those dealt with by path planning algorithms, ensure �ndinga valid solution, if it exists. However, these methods 
annot o�er the rea
tivity soughtfor swiftly avoiding obsta
les that appear suddenly [Khansari-Zadeh and Billard, 2012℄.In Arti�
ial Potential Fields, obsta
les are modelled as repelling potential �eldswhi
h are designed to automati
ally push a 
ontrol system to 
ir
umnavigate themin an on-line rea
tive way whi
h prevents the robot from 
olliding with the obsta
le.An appropriate repulsion for
e should be 
omputed so that it repels the traje
torysu�
iently away from the obsta
le while avoiding getting stu
k in lo
al minima. Su
hrea
tive behaviour assumes that obsta
les may appear in an unforeseen and suddenway, su
h that pre-planning is not possible or useful [Ijspeert et al., 2009℄
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hes based on attra
tor dynami
s are another variant of the potential�eld method, whi
h uses heading dire
tion, rather than the Cartesian position of therobot. The Dynami
 Potential Field approa
h extends the potential �eld prin
ipleby also 
onsidering the velo
ity along the path [Khansari-Zadeh and Billard, 2012℄.[Ijspeert et al., 2009℄ suggested a model for obsta
le avoidan
e with the use ofa 
oupling term in their DS approa
h. On the way to the goal state, an obsta
leis positioned at o = [o1o2o3]
T and needs to be avoided. A suitable 
oupling term

Ct = [Ct,1Ct,2Ct,3]
T for obsta
le avoidan
e 
an be formulated as Ct = γRẏφexp(−βφ).The angle φ is interpreted as the angle between the velo
ity ve
tor ẏ and the di�eren
eve
tor (o− y) between the 
urrent position and the obsta
le. R is a rotation matrixwhi
h 
auses a rotation of 90 degrees about the ve
tor r perpendi
ular to the planespanned by ẏ and (o− y).In [Khansari-Zadeh and Billard, 2012℄ a novel approa
h is presented to real-timeobsta
le avoidan
e based on DS that ensures impenetrability of multiple 
onvexshaped obje
ts. Their approa
h indu
ed a modulation on the generi
 motion dueto the presen
e of an obsta
le. First, start with an obje
t 
entred on ξo and providea 
onvex bounding volume formulation of the outer surfa
e of the obsta
le and de�ne

ξ̃ = ξ − ξo to simplify notation. A 
ontinuous fun
tion Γ(ξ̃), whi
h proje
ts Rd into
R, has 
ontinuous �rst order partial derivatives and in
reases monotoni
ally. By 
on-stru
tion, the relation Γ(ξ̃) = 1 holds at the surfa
e of the obsta
le. A modulationmatrix is given by M(ξ̃) = E(ξ̃)D(ξ̃)E(ξ̃)−1 The dynami
 modulation matrix M(ξ̃)propagates the in�uen
e of the obsta
le on the motion �ow. The e�e
t of the dynami
modulation matrix is maximum at the boundaries of the obsta
le, and vanishes forpoints far away from it [Khansari-Zadeh and Billard, 2012℄. The modulation matrix
an be applied to the original dynami
s given by f so as to have,

ξ̇ =M(ξ̃)f(ξ) (5.4)From [Khansari-Zadeh and Billard, 2012℄ a motion that starts outside the obsta-
le, Γ( ˜ξ(0)) ≥ 1, and evolves a

ording to Eq. 5.5 does not penetrate the obsta
le.Therefore, the dynami
 modulation matrix M(ξ̃) 
an be used to deform a robot mo-tion su
h that it does not 
ollide with an obsta
le. The magnitude of the modulation
an be tuned by modifying the eigenvalues of the dynami
 modulation matrix.When in the presen
e of multiple obsta
les, the single modulation matrix is inef-fe
tive and should be modi�ed to in
lude the e�e
t of all the obsta
les. Considering
K obsta
les with asso
iated referen
e points ξo;k and boundary fun
tions Γk(ξ̃k), for
k = 1..K. the dynami
 modulation matrix for ea
h obsta
le 
an be expressed by
Mk(ξ̃k) = Ek(ξ̃k)Dk(ξ̃k)Ek(ξ̃k)−1. The 
ombined modulation matrix that 
onsidersthe net e�e
t of all the obsta
les is then given by,

M̄(ξ̃) =
K
∏

k=1

Mk(ξ̃k) (5.5)The modulation is parametrizable and allows to determine a safety margin. Forproof and further explanations see [Khansari-Zadeh and Billard, 2012℄. The approa
hshould be in
orporated as part of the Robot Skills Models in future work.



172 5. Generation and Adaptation of Robot Skills5.4 Update of Robot SkillsIn previous 
hapters the te
hniques to learn the models of robot skills and thedevelopment of a knowledge base to store and a

ess them to have a set of basi
primitive a
tions on whi
h to generate 
omplex human like motions have been pre-sented and developed. Now it is ne
essary to 
ome up with methods to operate uponthe Robot Skills Models. A �rst desirable manipulation over the learned robot skillswould naturally be the ability to update and re�ne the models in order to adapt theskill with new information. As outlined at the beginning of this 
hapter, learning anden
oding the models of the robot skills for every 
on
eivable s
enario the robot mayen
ounter would not be feasible, therefore, updating previously learned models is akey me
hanism for generating new models and expanding the appli
ation and versa-tility of the robot skills. A robot skill must be updatable; when given new informationfor the representation of a skill the system must allow for the models to be re�ned.The update approa
hes are related to those e�orts to develop in
remental learningte
hniques. Unlike other approa
hes whi
h assume that data 
omes in blo
ks, thein
remental learning approa
hes work for the 
ase when novel data points arrive oneby one. In
remental learning approa
hes that gradually re�ne the task knowledgeas more examples be
ome available pave the way towards LfD systems suitable forreal-time intera
tions between humans and robots [Billard et al., 2008℄.Intuitively, a new model of the skill 
ould be generated by in
luding the newdemonstrations Dnew of the skill with the previous dataset Dorig and just retrain themodel of the skill, with the 
omplete dataset D = Dorig + Dnew, as it was des
ribedin Chapter 3. This would produ
e a new model, yet, several issues arise. First, forthis approa
h to be possible it would be required that all the training informationfrom the demonstrations' dataset be stored in memory. Storing all this informationshould not be required. New available data must allow to re�ne a model of the mo-tion without the need for keeping the whole training demonstrations data in memory[Calinon, 2009℄. Se
ondly, trying to update the skill model with all the previousdemonstrations 
ould present a problem of diluting the in�uen
e at the new demon-strations if is paired with a mu
h bigger dataset. Intuitively, it 
an be seen that ifall the information that was available is the 
urrent GMM estimate, then a singlenovel point would never 
arry enough information to 
ause signi�
ant 
hange in theGaussian 
omponents [Arandjelovi
 and Cipolla, 2005℄. Also, by using the 
ombineddataset of old and new demonstrations there 
ould be issues on the 
ompatibility ofthe re
orded demonstrations, whi
h would need to be adjusted before training withthe possible loss of information.The system must be 
apable of updating and re�ning its model of a skill whenpresented with new relevant information for the skills, taking only the stored knowl-edge of the Robot Skill Model in memory by updating its learned parameters θ basedon the new demonstration.The problem of in
rementally updating a GMM, taking only into a

ount newin
oming data and a previous estimation of GMM parameters has been proposedfor on-line data stream 
lustering. [Song and Wang, 2005℄ suggested an approa
h toin
rementally updating the estimate taking only the newly arrived data and the pre-



5.4. Update of Robot Skills 173viously estimated model. Their approa
h �rst 
reates a new GMM from the newin
oming data, and then 
reates a 
ompound model by merging the 
omponents ofthe old and the new GMM. Their in
remental Gaussian mixture model estimationalgorithm merges Gaussian 
omponents that are statisti
ally equivalent. For ea
h
luster in the new GMM, it is determined if there is a statisti
ally equivalent 
ovari-an
e and mean with any of the 
omponents of the old GMM, then a new 
omponentis 
reated by merging them. If not it will add the remaining 
omponents adjustingtheir weights a

ordingly. The main drawba
k of the suggested approa
h is that it is
omputationally expensive and tends to produ
e more 
omponents than the standardEM algorithm [Calinon, 2009℄. Also, they fail to exploit the available probabilisti
information by failing to take into a

ount the eviden
e for ea
h 
omponent at thetime of merging [Arandjelovi
 and Cipolla, 2005℄.Other approa
hes suggest the use of the temporal 
oheren
e properties of datastreams to update the GMM parameters. [Arandjelovi
 and Cipolla, 2005℄ proposea method 
onsisting of a three-stage model update ea
h time a new data point be-
omes available. First, model parameters are updated under the 
onstraint of �xed
omplexity. Then new Gaussian 
omponents are postulated by model splitting and
omponents are merged to minimize the expe
ted model des
ription length. Theirmodel assumes that data varies smoothly in time, whi
h allows the GMM parametersto be adjusted when new data is observed.[Calinon, 2009℄ proposes two approa
hes to deal with these problems, where theneed is for adjusting an already existing model when new data points are given. A �rstmethod proposed a reformulation of the problem in [Arandjelovi
 and Cipolla, 2005℄for a generi
 observation of multiple data points. The idea is that an adaptationof the EM algorithm in Eq. 3.21 by separating the parts dedi
ated to the dataalready used to train the model and the one dedi
ated to the newly available data,with the assumption that the set of posterior probabilities remain the same whenthe new data is used to update the model. The model is �rst 
reated with N datapoints ξj and updated iteratively during T EM-steps until 
onvergen
e to the set ofparameters (πk
T , µ

k
T ,Σ

k
T )

k
k=1. When a new demonstration is given, T̃ EM-steps areagain performed to adjust the model to the new Ñ data points ξ̃j, starting from aninitial set of parameters (π̃k

0 , µ̃
k
0, Σ̃

k
0)

k
k=1 = (πk

T , µ
k
T ,Σ

k
T )

k
k=1 and iterating until a newupdated model is estimated.It is important to note that for this approa
h to work, it is assumed that the 
umu-lated posterior probability does not 
hange mu
h with the in
lusion of the novel datain the model; this is only true if the new data is 
lose to the model [Calinon, 2009℄.This restri
tion is important be
ause it 
annot always be guaranteed and more im-portantly most times it is not even wanted, sin
e the desirable re�nement of themodel requires su�
ient departure from the original skill for the update pro
ess tobe meaningful. To illustrate the result of this method Figure 5.6 shows the result ofupdating a learned model of a skill with a new demonstration.[Calinon, 2009℄ also presented an alternative to the above method using a sto
has-ti
 pro
ess to update the parameters. An initial GMM model (πk, µk,Σk)kk=1 is �rst
reated using the EM algorithm in Eq. 3.21. When an update is required withnew given data a pro
ess of GMR regression is performed over the learned model to
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Fig. 5.6: Dire
t in
remental method update of a skill. (left) Model of the learnedskill, with demonstrations in bla
k. (
enter) New demonstration, in ma-genta, over the learned skill model. (right) Updated model of the skill.
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Fig. 5.7: Generative method update of a skill. (left) Model of the learned skill, withdemonstrations in bla
k. (
enter) Model of the learned skill, with the newdemonstration in magenta and the generated traje
tories in red. (right)Updated model of the skill.sto
hasti
ally generate a dataset from the model. Therefore a new dataset is 
reated
omposed of this generated demonstration and the new observed dataset; the GMMparameters of the updated model are then retrained with the EM algorithm. For thispurpose a learning rate α was de�ned, along with the number of samples, n = n1+n2used for the learning pro
edure, where n1 and n2 are respe
tively the number of ex-amples from the new observation and number of examples generated sto
hasti
allyby the 
urrent model. The training set of n traje
tories is used to re�ne the model byupdating the 
urrent set of parameters using the EM algorithm [Calinon, 2009℄. Thevalue for α ∈ [0; 1] 
an be set to a �xed learning rate or depend on the 
urrent numberof demonstrations used to train the model, also α 
an be 
omputed re
ursively forea
h newly available demonstration.To illustrate the result of this method Figure 5.7 shows the updating a learnedmodel of a skill in the same way as the one that was presented for the previous methodin Figure 5.6.For the adaptation of a task model by updating a robot skill in this work amethod similar to the one presented above from [Calinon, 2009℄ is employed. Modelsof a skill must be updatable when given new information for the representation of a



5.5. Merger of Robot Skills 175Algorithm: Update the learned robot skillInput: Learned Robot Skill Model, MRS , with parameters θk = (πk, µk,Σk).1. Re
ord new demonstration traje
tory for the update of the skill.2. Generate sto
hasti
ally ngen traje
tories from the 
urrent model by the GMR.3. Determine the parameter α = αk ∈ [0; 1]; k = 1..K4. Create a new update demonstration dataset {ξ, ξ̇}update5. Generate the new update model of the skill.6. ENDOutput: Updated Robot Skill Model, MRSupdate
, with parameters θkupdate = (πk, µk,Σk).Tab. 5.1: Pro
edure for updating a learned model of a robot skill.skill without having to store the training demonstrations data in memory. A RobotSkill Model, M̄RS, is �rst learned by means of the SEDS algorithm presented by[Khansari-Zadeh and Billard, 2011℄ as des
ribed in Chapter 3 with learned parame-ters θk = (πk, µk,Σk). We are 
onsidering only the 
ase when the model is re�ned afterre
eiving one update demonstration for the skill, so therefore, the number of samples

n, used for the learning pro
edure would be n = ngen+1, with ngen being the numberof examples generated sto
hasti
ally from the 
urrent model by the GMR. For ourmethod the new update demonstration dataset {ξ, ξ̇}update would be grouped into K
lusters a

ording to the number of Gaussian fun
tions determined for the originalRobot Skill Model, and the parameter α would be de�ned as αk ∈ [0; 1]; k = 1..K,and it would determine a measure of the relative importan
e of the area in 
luster
k the update demonstration should have for re�ning the model over the sto
hasti
demonstrations generated from the learned model. When generating the sto
hasti
demonstrations sampling out of the GMR with the learned parameters θ of the robotskill random samples are taken starting around the given demonstration. To indu
emore weight on the update dataset or the generated dataset as determined by theparameter αk, data points of the generated dataset whi
h are too far removed fromthe update dataset a

ording to a threshold dependant of α will be dis
arded.To illustrate the result of this method Figure 5.8 shows the result of updatinga learned model of a skill. The pro
ess for updating a learned Robot Skill Model issummarized in Table 5.1.5.5 Merger of Robot SkillsAs it has been stated throughout this 
hapter, e�orts at learning and generatingmovement primitives roboti
 skills 
an only have a real implementation value fordeveloping humanoid roboti
 systems if the models of the skill 
an be operated uponto generate new behaviours of in
reasing levels of 
omplexity. It is ne
essary to 
ome
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Fig. 5.8: Update pro
ess of a robot skill. Model of the learned skill with new demon-strations in magenta. Updated model of the skill. (top) this example showthe update of the skill for the same demonstration as the above examples,the parameter αk are de�ne to govern the in�uen
e of new data on theupdate pro
ess. (bottom) Appropriate sele
tion of αk allows the updatedmodel to reprodu
e the 
urve at the top of the traje
tory.



5.5. Merger of Robot Skills 177up with methods to manipulate the Robot Skills Models. En
oding models of therobot skills for every 
on
eivable need the robot may �nd itself in is not plausible,hen
e, it is key for approa
hes to be able to generate new skills by merging di�erentskill primitives into a new skill. The ability to generalize skills and adapt themto a new situation is fundamental for the LfD 
on
ept; performing the task underdi�erent 
ir
umstan
es from those present during demonstrations, given appropriateadaptation, 
an allow an a
quired skill to 
arry out more 
omplex task than thetea
her is 
apable of demonstrating [Khansari-Zadeh and Billard, 2011℄.The learned DS models en
ode spe
i�
 motion skills, whi
h 
an be seen as build-ing blo
ks used to generate more 
omplex motions. Multiple desired robot skills maybe 
omposed from sequen
ing or superposition of various primitives skills. The mod-ularity of the DS approa
h is essential as it would allow to 
ontrol a wider repertoireof movements from a smaller set of basi
 skills [S
haal, 1999℄. Intuitively, one 
ould
onsider an approa
h to merging two or more models of a skill simply by adding andaveraging together their learned parameters θ = (π, µ,Σ) in order to obtain a new skillmodel through a linear superposition. The models would represent the distributions
f 1(ξ) and f 2(ξ) respe
tively as from Eq. 3.17,

f 1(ξ) =

N
∑

i=1

πiN i(ξ;µi,Σi)

f 2(ξ) =
M
∑

j=1

πjN j(ξ;µj,Σj)A weighted sum of these densities would give the merged model
f(ξ) = αf 1(ξ) + βf 2(ξ) (5.6)The weights α and β s
ale the prior of the 
omponents to give the new GMM, with

N +M 
omponents, by simply 
on
atenating the des
riptions of ea
h GMM,
f(ξ) =

N+M
∑

k=1

πkN k(ξ;µk,Σk)the �rst N 
omponents terms are spe
i�ed from f 1(ξ), while the remaining 
om-ponents 
ome from f 2(ξ). The prior πk are exa
tly the πi or πj of f 1, f 2 s
aled by
alpha or β a

ordingly, while the µk 
entres and Σk 
ovarian
e matrix are 
opiedfrom their sour
e GMM. While this approa
h may work in some 
ases it is importantto note that dire
t superposition of the skills does not allow to 
ontrol the mannerin whi
h the new model is generated. Also the non-linear sum of two or more stableDS would not ne
essarily generate a stable new model and spe
ial attention shouldbe 
onsidered in this regard [Khansari-Zadeh and Billard, 2011℄.The work of [Hall et al., 2005℄ presents a modi�ed approa
h to merging a pair ofGMM to produ
e a third GMM ; this 
losely approximates the GMM whi
h would
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onstru
ted by a standard algorithm for �tting the data, having the 
on
atenationof data sets of the two mixture models as input.
f(ξ1)⊕ f(ξ2) ≈ f(ξ1 : ξ2) (5.7)There are three main steps to their approa
h, �rst 
on
atenating the models bytrivially 
ombining the GMM into a single model, as per Eq. 5.6, to produ
e amodel with M + N 
omponents. Then simplifying the GMM of the 
on
atenatedmodel by merging 
omponents using a weighted summation of their parameters.[Hall et al., 2005℄ merged 
omponents by 
ombining their parametri
 des
riptions,not by adding the density fun
tions. Finally, sele
ting the optimal number of 
om-ponents 1 ≤ K ≤M +N for the GMM that best explains the distribution.[Muelling et al., 2013℄ presented a framework to generalize learned motor primi-tives to a wider range of situations using a mixture of motor primitives approa
h. Theresulting poli
y enables the robot to sele
t appropriate motor primitives as well as togeneralize between them. The goal was to a
quire a library of movement primitivesfrom demonstrations and to sele
t and generalize among these movement primitivesto adapt to new situations. The primitives are asso
iated with a set of parameters re-ferred to as the augmented state. A new movement is generated for a new augmentedstate sele
ting a primitive to use as 
omponents of the mixture of motor primitivesalgorithm [Muelling et al., 2013℄. The algorithm a
tivates 
omponents using a gat-ing network based on the augmented state and generates a new movement using thea
tivated 
omponents.The mixture of motor primitives generates a new movement for the 
urrent sit-uation triggered by the augmented state by 
omputing the weighted average of allmovement primitives in the library, the resulting poli
y f(ξ) generated by the algo-rithm is given by
f(ξ) =

L
∑

i=1

γi(δ)f i(ξ)

L
∑

j=1

γi(δ)

(5.8)where the fun
tion γi(δ) generates the weight of f i given the augmented state
ξ. The sum of all weights L

∑

j=1

γi(δ) form the gating network of the mixture of motorprimitives algorithm [Muelling et al., 2013℄. The gating network weights the move-ment primitives based on their expe
ted performan
e within the 
urrent 
ontext,ensuring only appropriate movement primitives 
an 
ontribute. The weights aremodelled by an exponential family distribution. The resulting motor poli
y f(ξ)is 
omposed of several primitives weighted by their suitability in the given 
ontext ofthe task; the weights are adapted to the task based on the out
ome of previous trials[Muelling et al., 2013℄.In this work, in order to generate a new skill based on the merger of several RobotSkills Models, previously learned and stored in the knowledge base, we developeda method taking from the above approa
hes. First we review a 
ouple of useful
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Fig. 5.9: Pro
ess of merging two robot skills to generate a new model. (left) Repre-sentation of the two learned models of the robot skill and their non-linearterms hk. (right) Representation of the new robot skill model generatedfrom the merger pro
ess and its non-linear terms h̃k.mathemati
al properties from the SEDS formulation 
hosen to learn the skills,if f(ξ) is SEDS, and α > 0 ∈ R

ξ̇ = αf(ξ) is SEDS
onsider M SEDS models f i(ξ), i ∈ 1..M

ξ̇ =
M
∑

i=1

αif i(ξ);αi > 0 is SEDS (5.9)
The models of the robot skills 
an be expressed as a non-linear sum of lineardynami
al systems of the form

ξ̇ = f̂(ξ) =
K
∑

k=1

hk(ξ)(Akξ + b
k) as in Eq. 3.24Here, re
alling the expression of the non-linear weighting fun
tion hk(ξ), as inEq. 3.23, it 
an be found that it shares a similar formulation with the expression ofthe weights γi(δ) for the gating fun
tion of Eq. 5.8. The merger of the Robot SkillsModels 
an be 
arried out with a model 
ombination approa
h expressed in mixturesof experts model as from Eq. 5.1, in whi
h the mixing 
oe�
ients πk(x) of the gatingfun
tion are given by the non-linear weighting fun
tion hk(ξ), and the pk(t|x) densityis given by the linear DS A

kξ + b
k.The pro
ess for the merging of robot skills would pro
eed as in the above ap-proa
hes; �rst, the GMM of the robot skills are joined into a single model. Thena new weighting fun
tion h̃(ξ) for the single model must be built out of the origi-nal weighting terms hk(ξ) from the merged models, ensuring the Gaussian with thebiggest weight in every region of the traje
tory provides the largest in�uen
e over thenew GMM model in that region and that the new weighting fun
tion h̃(ξ) still meetsthe 
onstraint of the mixing 
oe�
ient as in Eq. 3.22, 0 > hk(ξ) > 1 and∑ hk(ξ) = 1.
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Fig. 5.10: Merger of two learned GMM skill models to generate a new skill. (left)Learned models of the robot skill. (
enter) Merging pro
ess of the twomodels to generate a new one. (right) Merged skill model.Then a new weighting fun
tion h̃k(ξ) would be given by h̃k(ξ) = αk(ξ, h)hk(ξ) where
αk(ξ, h) is a s
alar fun
tion that weights the original hk(ξ) of the models, and ensuresthe 
onstraints of h̃(ξ). Figure 5.9 illustrates the pro
ess of merging two robot skillsto generate a new skill model.Figure 5.10 illustrates the result of merging two robot skills to generate a newskill model. The pro
ess for updating a learned Robot Skill Model is summarized inTable 5.3.5.6 Combination of Robot SkillsOperations over the models of the robot skills must in
lude the 
apa
ity to gener-ate skills in order to allow 
arrying out more 
omplex task than those the tea
her is
apable of presenting during demonstrations. The Robot Skills Models must be 
om-binable into new models 
apable of generating skills, en
ompassing a larger spe
trumof the attra
tor dynami
s. One important gain from the 
ombination of robot skills
omes from in
reasing the a

ura
y of the generalized behaviour. The 
onvergen
eof the motion to the target is ensured, yet, due to the la
k of information for pointsfar from demonstrations, a model may reprodu
e some traje
tories that are not 
on-sistent with the usual way of doing the task. The presented behaviours of the robotmay not be optimal in these 
ases; however, su
h results are inevitable, given thatthe information from demonstrations is in
omplete and the inferen
e for points toofar from them is not reliable. The generation of a model by 
ombining robot skills isne
essary in order to improve the task exe
ution.The more dire
t and intuitive approa
h would rely on providing the robot withmore demonstrations over regions not 
overed before. By showing the robot moredemonstrations and re-training the model with the new data, the robot should be ableto su

essfully a

omplish the task [Khansari-Zadeh and Billard, 2011℄. However,



5.6. Combination of Robot Skills 181Algorithm: Merger of the learned robot skillInput: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .1. Compute the new model as∑K

k=1
hk(ξ)(Akξ + b

k).2. Compute the parameters αk for the new model.3. Build the weighting fun
tion h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).4. Generate the new merged model of the skill.5. ENDOutput: Merged Robot Skill Model, MRSmerged
, given by ∑K

k=1
h̃k(ξ)(Akξ + b

k).Tab. 5.2: Pro
edure for merging learned models of a robot skill.this approa
h would not seem to be the most �exible and general, and also robotsperforming tasks in the real world 
annot reliably expe
t to have an available tea
herto provide them with more demonstrations whenever their knowledge of a task doesn'tsu�
e.The work of [Chatzis et al., 2012℄ reformulate GMR models, introdu
ing the 
on-
ept of quantum states, whi
h 
an be 
onstru
ted by superposing 
onventional GMRstates by means of linear 
ombinations; their approa
h is espe
ially suitable for learn-ing 
omplex demonstration traje
tories. In [Shukla and Billard, 2012℄ the fo
us ison 
ombining several learned DS, with distin
t attra
tors, resulting in a multi-stableDS, as 
ould be the 
ase of di�erent attra
tors representing several grasp points ofa single obje
t. Their work presented an Augmented-SVM model, whi
h inherits re-gion partitioning ability of well know Support Ve
tor Ma
hine (SVM) 
lassi�ers andis augmented with novel 
onstraints derived from the individual DS. A DS 
omposedof multiple stable attra
tors provides an opportunity to en
ode multiple dynami
s,dire
ted towards di�erent attra
tors, into a single DS. Restri
ting the motion dynam-i
s to a single attra
tor 
onstrains 
onsiderably the appli
ability of these methods torealisti
 grasping problems. From a roboti
s viewpoint, a robot 
ontrolled using aDS with multiple attra
tors would be able to swit
h online a
ross grasping strategies[Shukla and Billard, 2012℄.The stability at multiple targets is an important 
on
ern; this problem has beenaddressed largely through neural networks approa
hes. For instan
e, Hop�eld net-works 
an o�er a powerful means of en
oding several stable attra
tors in the samesystem. However, the dynami
s to rea
h these attra
tors was not 
ontrolled for; norwas the partitioning of the state spa
e that would send the traje
tories to ea
h at-tra
tor. A naive approa
h to building a multi-attra
tor DS would be to �rst partitionthe spa
e and then learn a DS in ea
h partition separately this would however rarelyresult in the desired 
ompound system [Shukla and Billard, 2012℄. Due to the in�u-en
e of non-linear dynami
s, traje
tories that initialize in one region 
ould 
ross theboundary and 
onverge to the attra
tor of the other region. In a real s
enario, 
ross-



182 5. Generation and Adaptation of Robot Skillsing over may take the traje
tories towards unrea
hable regions. Also, traje
toriesthat en
ounter the boundary may swit
h rapidly between di�erent dynami
s leadingto jittery motion [Shukla and Billard, 2012℄.To ensure the traje
tories remain within the region of attra
tion of their respe
-tive attra
tors, an approa
h 
an be adapted in whi
h ea
h of the original DS ismodulated so that the generated traje
tories always move away from the 
lassi�erboundary. [Shukla and Billard, 2012℄ developed a system that ensured stri
t 
lassi-�
ation a
ross regions of attra
tion for ea
h DS, 
losely following the dynami
s ofea
h DS and ensuring that traje
tories in ea
h region rea
hed their desired attra
-tors. [Shukla and Billard, 2012℄ presented the Augmented-SVM model for 
ombiningnon-linear DS through a partitioning of the spa
e. The resulting model behaves as amulti-stable DS with attra
tors at the desired lo
ations.[Khansari-Zadeh and Billard, 2011℄ presents an embedding of di�erent ways ofperforming a task in one single model. As stated above, sometimes it may be ne
-essary to exe
ute a single task in di�erent ways starting from di�erent areas in thespa
e and a single DS driving the motion is not su�
ient. Their work uses SEDSto integrate di�erent motions into one single dynami
. The robot follows distin
ttraje
tories starting from di�erent points in the workspa
e. Two di�erent SEDSmodels, M̄1
RS,M̄

2
RS 
an be 
ombined just by 
on
atenating their parameters, su
hthat the parameter of the new model 
an de�ned as π =

[π1; π2]

(π1 + π2)
, µ = [µ1µ2] and

Σ = [Σ1Σ2]. While reprodu
tions lo
ally follow the desired motion around ea
h set ofdemonstrations, they smoothly swit
h from one motion to another in areas betweendemonstrations [Khansari-Zadeh and Billard, 2010a℄. The proposed method o�ers asimple but reliable pro
edure to tea
h a robot di�erent ways of performing a task;however, a more 
omplex method is required in order to provide a better �t for themultiple dynami
s and prevent possible interferen
e among models when swit
hingbetween di�erent dynami
s in traje
tories 
lose to the border of ea
h attra
tor region.In this work, in order to generate a new skill made of the 
ombination of severalRobot Skills Models previously learned and stored in the knowledge base, we developeda method taking from the above approa
hes. Two di�erent SEDS models are �rst
ombined by 
on
atenating their parameters. Then, an area of in�uen
e for the DSattra
tor is de�ned based on the non-linear weighting fun
tion hk(ξ) of the SEDSmodels expressed as a non-linear sum of linear dynami
al systems as in Eq. 3.24. Anew weighting fun
tion h̃(ξ) = αk(ξ, h)hk(ξ) for the single model must be built outof the original weighting terms hk(ξ), as in the merging of the models, however inthis 
ase the hk(ξ) terms must be strongly biased su
h as that the in�uen
e over thetraje
tory 
omes at any time from only one model, therefore, the αk(ξ, h) fun
tionmust have a 
ompletely di�erent form that for the merging of the robot skill models.Figure 5.11 and 5.12 illustrate the results for 
ombining two and three robot skillsto generate a new skill model. The pro
ess for updating a learned Robot Skill Modelis summarized in Table 5.3.
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Fig. 5.11: Combining the dynami
s of two skills into a single task model.
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Fig. 5.12: Combining the dynami
s of three skills into a single task model.



184 5. Generation and Adaptation of Robot SkillsAlgorithm: Combination of learned robot skillInput: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .1. Cal
ulate the prior π̃, as π̃ =

[π1;π2; ...;πn]

(π1 + π2)2. Cal
ulate the mean µ̃, as µ̃ = [µ1µ2...µn]3. Cal
ulate the 
ovarian
e Σ̃, as Σ̃ = [Σ1Σ2...Σn]4. Build the weighting fun
tion h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).5. ENDOutput: Combine Robot Skill Model, MRScombine
, given by ∑K

k=1
h̃k(ξ)(Akξ + b

k).Tab. 5.3: Pro
edure for 
ombining learned models of a robot skill.5.7 Transition between Robot SkillsA desirable operation over the basi
 set of primitive skills 
onsists of the sequen
ingand transition between robot skill models in order to generate 
omplex behaviourswith smooth transformation among the reprodu
tion of di�erent skill motions.The simplest way to join several DS would be just to perform one robot skill untilit rea
hes the end point of the motion and then, 
ontinue with the reprodu
tion ofthe next DS starting at that point; that is, the end point of the �rst DS is used as thestarting point of the se
ond DS and so on. This approa
h is very simple, but it 
learlyhas 
ertain drawba
ks, mostly stemming from the unnatural slowing and restartingbehaviour that the 
lose-to-zero velo
ities at the end of the movement traje
tory inthe original DS would produ
e.[Kulvi
ius et al., 2012℄ fo
used an approa
h for joining movement sequen
es mod-ifying the learned DMP exempli�ed in a handwritten appli
ation. The method isbased on the modi�
ation of the original DMP formulation. The new method 
anreprodu
e the target traje
tory with high a

ura
y regarding both the position andthe velo
ity pro�le and produ
es smooth and natural transitions in position spa
e, aswell as in velo
ity spa
e.Smooth transitions between theDS representing the robot skills 
ould be produ
edby modifying the parameters of the DS to generate a trans
riti
al bifur
ation at themoment the �rst DS rea
hes its attra
tor, pushing the system dynami
s towards theattra
tor of the se
ond DS. In a trans
riti
al bifur
ation a �xed point inter
hanges itsstability with another �xed point as the parameter is varied [Strogatz, 1994℄. In thistype of bifur
ation an attra
tive stable �xed point is ex
hanged, when they 
ollide, sothe unstable �xed point be
omes stable and vi
e versa. A robot skill would reprodu
ethe traje
tory as in a normal 
ase towards its target attra
tor, when the �rst motionis 
lose to rea
hing the attra
tor, the bifur
ation would 
hange the stable nature ofthe attra
tor in order to move the system from this state towards the target attra
torof the following skill DS.
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hes, as well as others, are important 
ase studies. Per-forming di�erent tasks and exe
uting di�erent robot skills with smooth, natural andstable transitions between them is an important goal for humanoid roboti
s.5.8 Summary of the ChapterThroughout this 
hapter a review of the algorithms developed for the generationand adaptation of the robot skills has been given. Humanoid robots working besidehumans in 
omplex dynami
 environments are required to perform a wide repertoire oftasks. E�orts to generate roboti
 skills 
an only have a real implementation value fordeveloping humanoid roboti
 systems if the models of the skill 
an be operated uponto generate new behaviours of in
reasing levels of 
omplexity. Se
tion 5.2 presents areview of related approa
hes aiming at the adaptation of learned skill models and thedevelopments for the generation and adaptation of the robot skills. Se
tion 5.3 pre-sented dynami
al properties inherent to the models of a robot skill, su
h as robustnessto spatio-temporal perturbations, independen
e on time, and generalizable to unseeninitial 
onditions. Stability 
onditions required for generating stable DS representa-tions of the skill were reviewed as well as a method to expand appli
ability of theDS approa
h with me
hanism for obsta
le avoidan
e. In this 
hapter, pro
esses bywhi
h, using the already learned model of a robot skill and the extra
ted 
onstraintsknowledge of the 
urrent task, the model of a skill 
an be adapted to reprodu
e a newtask were des
ribed. Di�erent modalities were developed and implemented that allowfor the adaptation and generation of new skill models based on the already learnedmodels of skills stored in the knowledge base. Di�erent modes are presented for theadaptation, update, merger, and 
ombination of the Robot Skills Models. Se
tion 5.4presented the adaptation of a task model by updating a robot skill. Updating pre-viously learned skills is a very important ability for humanoid robots, allowing themto in
rease and improve their available skill set. A developed method for updatinga robot skill was presented in Table 5.1. Se
tion 5.5 presented the generation of atask model by merging robot skills. Skills 
an be generated by merging two or moremodels into a new skill. New models of a skills 
an be generated by merging two ormore models into a new skill in order to expand the robot skill set and in
rease itsrange of a
tion. A developed method for merging robot skills was presented in Table5.2. Se
tion 5.6 presented the generation of a task model by 
ombining robot skills.Models of a skill 
an be 
ombined to generate new models that en
ompass a largerspe
trum of the attra
tor dynami
s and allowing to generalize the models of the skillsto regions outside their original demonstrations. A developed method for 
ombiningrobot skills was presented in Table 5.3. Se
tion 5.7 dis
ussed the generation of a taskmodel by transitioning between robot skills. For humanoid robots to be 
apable ofworking su

essfully in the 
apa
ity in whi
h they are envisioned, it is of vital im-portan
e that they present ample and robust skill sets. The ability to learn robotskills is a key aspe
t, yet learning by itself is not su�
ient, the 
apa
ity to operateover the learned robot skill, su
h as the merger, update and 
ombination of skills, isne
essary.
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6. REPRODUCTION OF ROBOT SKILLS6.1 Outline of the ChapterThis 
hapter presents the reprodu
tion of the generated task models by a hu-manoid robot platform operating under task 
onstraints. The robot reprodu
tion ofskills follows the framework presented in Chapter 2, employing the systems developedfor learning robot skills in Chapter 3, the representation of robot skill in a knowledgebase in Chapter 4, and the generation and adaptation of robot skills in Chapter 5.Figure 1.3 shows the framework proposed throughout this work for the robot skills'adaptation of learned models to task 
onstraints. In this 
hapter the implementa-tion of the various systems developed in the framework for learning and adaptationof skills to task 
onstraints are also presented, see Figure 6.1. Finally, experimen-tal results and analysis validating the framework proposed throughout this work arepresented; di�erent evaluation s
enarios are des
ribed to test the performan
e of thevarious modules implemented in our framework and to provide separate validation forthe operation of the system for storing and retrieving robot skills from the knowledgebase; the system for generating and adapting the robot skills to the 
onstraints of thetask, and the evaluation of the 
omplete developed framework. The organization ofthis 
hapter is as follows:
• Se
tion 6.2 des
ribes the development of the proposed framework for learningand adaptation of the robot skills and the experimental set up for the validationof the framework. Here, the roboti
 platform used in this work is presented witha des
ription of its stru
ture, joints and sensor distribution. Also, a des
rip-tion of the evaluation s
enarios to test the performan
e of the framework andthe implemented modules is given. To validate the proposed framework andmodules, the experiments would be performed over di�erent s
enarios.
• Se
tion 6.3, presents the implementation of the learning system. The robot skilllearning module 
olle
ts the learning pro
esses and algorithms used for learningand en
oding the models of the skills. The development and operation of themodule for learning the robot skills is des
ribed in this se
tion.
• Se
tion 6.4, presents the implementation of the knowledge base system. Therobot skill knowledge module 
ontrols the developed knowledge base for thestoring and retrieval of the learned models of the skills. A des
ription of thedevelopment and the pro
ess for building and navigating the knowledge base isgiven in this se
tion.
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AlgorithmFig. 6.1: Deployment diagram for the proposed 
ognitive framework for learning andadaptation of robot skills. The framework is formed by a robot skill learn-ing module, a per
eption and intera
tion module, a robot skill knowledgemodule, a robot skill generation and adaptation module, and a robot skillreprodu
tion module.

• Se
tion 6.5, presents the implementation of the task model generation and adap-tation system. The robot skill generation and adaptation module governs thepro
ess by whi
h the learned model of a skill 
an be operated to reprodu
e anew task, in
luding the adaptation, update, merger, 
ombination, or transitionof the skill models. The development and operation of the module for adaptingrobot skills is des
ribed in this se
tion.
• Se
tion 6.6, presents the implementation of the reprodu
tion system. The robotskill reprodu
tion module is in 
harge of produ
ing the adequate 
ontrol signalsto the robot for the reprodu
tion of robot skills. A des
ription of the develop-ment and operation of the module for the robot reprodu
tion of skills is givenin this se
tion.
• Se
tion 6.7, presents the experimental results and analysis for validation of theproposed framework over the evaluation s
enarios des
ribed in the previousse
tion of this 
hapter. Di�erent evaluation s
enarios are employed to test theperforman
e of the various modules implemented in our framework. Demonstra-tions are organized over three major s
enarios to provide separate validation forthe knowledge base system, the task model generation and adaptation system,and the 
omplete developed framework.6.2 Development of the Robot Skills FrameworkThe framework proposed in this thesis is meant to allow the following: for anoperator to tea
h and demonstrate to the robot the motion of a task skill it mustreprodu
e; to build a knowledge base of the learned skills knowledge allowing for its
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lassi�
ation and retrieval; to adapt and generate learned models of a skillto new 
ontexts for 
omplian
e with the 
urrent task 
onstraints.The framework proposed here was developed as a 
ognitive model intended toprovide the robot with an essential 
ognitive ability for learning and adaptation ofskills. Though it is not a primary 
onsideration in this work, our framework 
anbe thought of as part of a level in the hierar
hy of a more 
omplex ar
hite
ture, oras a �rst stepping stone upon whi
h to in
rementally build more 
omplex 
ognitivepro
esses. The goal of the developed framework is to provide a minimum degree ofintelligen
e for the humanoid robot, that is, the ability to sense the environment,learn, and adapt its a
tions to perform su

essfully under a set of 
ir
umstan
es.The framework provides humanoid robots with systems that allow them to 
on-tinuously learn new skills, represent their skills' knowledge and adapt their existingskills to new 
ontexts, as well as to robustly reprodu
e new behaviours in a dynami
alenvironment. The 
ognitive framework for learning and adaptation of robot skills ismade up of several modules, as is represented by the diagram on Figure 6.1. Theframework is formed by modules for the learning of robot skills, the per
eption andintera
tion with the environment, the management and representation of skill knowl-edge, the generation and adaptation of skill models, and the reprodu
tion of robotskills.The robot skill learning module 
olle
ts the learning pro
esses and algorithms usedfor learning and en
oding the models of the skills. The per
eption and intera
tionmodule is in 
harge of pro
essing the outside information of the robot's workingenvironment to use in the other modules. The robot skill knowledge module 
ontrolsthe developed knowledge base for the storing and retrieval of the learned models ofthe skills. The robot skill generation and adaptation module govern the pro
ess bywhi
h the learned model of a skill 
an be operated to reprodu
e a new task, whetherthe adaptation, update, merger, 
ombination, or transition of the skill models. Therobot skill reprodu
tion module is in 
harge of produ
ing the adequate 
ontrol signalsto the robot for the reprodu
tion of robot skills.Roboti
 PlatformIn order to test the proposed systems the HOAP-3 Humanoid Robot was used as atest platform, Figure 6.2. The HOAP-3 was designed to resemble the human shape, ona small s
ale, with a 
omplete humanoid 
on�guration with two legs and arms, a headwith vision and sound 
apa
ities, and grip-able hands. The small humanoid robotHOAP-3 is about 60 
m in height, and weighs about 8 kg, so that it be
omes quiteeasy to 
ontrol and move while maintaining the whole stability [Pierro et al., 2009℄.The HOAP robots were designed for a broad range of appli
ations for Resear
h andDevelopment of robot te
hnologies.In 2001 Fujitsu produ
ed its �rst 
ommer
ial humanoid robot named HOAP-1,the �rst in its series of humanoid robots, HOAP stands for �Humanoid for OpenAr
hite
ture Platform� [Riezenman, 2002℄, its su

essor, HOAP-2 was announ
ed in2003. It has a height of 48 
m and weight of 6.8 kg. The model used in this work is anevolution from the previous HOAP and HOAP-2 robot family. The HOAP-3 robot
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Fig. 6.2: The HOAP-3 robot platform. HOAP robots were designed for a broadrange of appli
ations for Resear
h and Development of robot te
hnologies.HOAP-3 is about 60 
m in height, and weight about 8 kg. It 
an performwalks on �at terrain, sumo movements and dan
ing and grasp thin obje
ts.was announ
ed in 2005, adding movable axes for the head and hands, CCD 
ameras, ami
rophone, a speaker and LEDs to show expression. HOAP 
an su

essfully performwalks on �at terrain, sumo movements and dan
ing and grasp thin obje
ts, su
h aspens, brushes, et
.The 
ontrol ar
hite
ture operates on RT-Linux mounted on a embedded PC-104
omputer, Pentium 1.1 GHz pro
essor with 512 Mb of RAM memory and a Compa
tFlash drive of 1 Gb 
apa
ity. The 
ommuni
ations with the robot platform 
ouldbe done via a USB interfa
e or by means of an on board Wi-Fi IEEE802.11g 
om-muni
ation. The robot ele
troni
s are mounted on the robot's ba
k and prote
tedwith a ba
kpa
k 
asing. Additionally, a 
ontainer on the robot's 
hest allows for are
hargeable 24V NiMH battery to be loaded on to it, the battery pa
k allows forapproximately a 30 min autonomy operation.The HOAP-3 stru
ture is made out of a total of 28 degrees of freedom (DOF),powered by DC motors for the legs, waist and arms DOF, and servo motors for theoperation of the hands and legs. The distribution of the DOF is as follows:
• 6 DOF for ea
h robot arm, 4 DOF for the arm, 2 DOF for the hand.
• 6 DOF for ea
h leg.
• 3 DOF in the head, for the pit
h, yaw, and roll.
• 1 DOF for the waist.In addition the robot platform sensory system is equipped di�erent sensors en-dowing the robot with:
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Fig. 6.3: The HOAP-3 robot dimensions and distribution of joints and sensors 
a-pabilities. The HOAP robot is equipped with 28 DOF, additionally it havea gyros
ope, an a

elerometer, and various for
e sensors, and two 
ameras.
• Posture sensors (a gyros
ope sensor and a

eleration sensor).
• Conta
t sensors (for
e sensor in every 
orner of ea
h foot).
• Grip sensors (for
e sensors in the thumbs).
• Vision sensors (Two USB 
ameras in the head).Figure 6.3 shows HOAP-3 robot stru
ture and sensor distribution. Its stru
tureand sensor system allows to try di�erent 
ontrol ar
hite
ture, thought to be used ina 
ollaborative system.Per
eption SystemA per
eption system was developed for the operation of the HOAP-3 robot. Theper
eption system 
onsists of a stereo vision system, making use of both robot 
am-eras, and an intera
tion system, making use of a human-robot interfa
e for high-level
ommuni
ation with the robot.Sin
e the HOAP-3 robot platform is equipped with two 
ameras, stereo vision isused when it is possible, given the disposition and angle of view of 
ameras. Whenobje
ts 
annot be per
eived by both 
ameras, i.e. inside the workspa
e area of arms(
lose to robot), the estimations are made by mono
ular vision.Re
ognition of the obje
ts is based on blob dete
tion by 
olor �ltering and area
omparison. Obje
ts are re
ognized based on their 
olor properties and blob size.
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Fig. 6.4: Stereo vision with 
ameras disposed in re
ti�ed 
on�guration.First of all the images are �ltered by 
olors. The 
olor segmentation method 
onsistsof sele
ting a prism for ea
h 
hannel in the HSV 
olor domain. The pixels are 
olorlabelled and similar regions are grouped into blobs. Sanity 
he
ks are applied to everyblob to avoid wrong dete
tions and 
orresponden
es. For example, the dimension ofevery blob is 
he
ked and when they are too small, su
h blobs are reje
ted. Anotherimportant sanity 
he
k is the horizon view, whi
h 
onsists of 
alibrating maximumheight of obje
ts in the 
amera plane. When blobs are not in the feasible zone forgrasping, they are �ltered out. When the blobs satisfy sanity 
he
ks and mat
h withthe 
olor properties of some obje
t, they are 
onsidered as the dete
tion of an obje
t.Be
ause the humanoid platform is equipped with two 
ameras emulating humaneyes, these inputs 
an be used for estimating depth information. The typi
al steps fordetermining depth using a two-
amera vision system, stereopsis, are i) 
alibration of
ameras, ii) establishment of 
orresponden
es between features of both 
ameras andiii) re
onstru
tion of 3D 
oordinates of dete
tions in the s
ene. The basis of stereopsisis epipolar geometry, whi
h states that the line 
onne
ting opti
al 
entres of both
ameras, baseline, interse
ts the image planes in the epipoles. A simpli�ed 
ase ofstereopsis is the re
ti�ed 
on�guration of 
ameras, whi
h redu
es the dimensionalityof sear
h spa
e for a 
orresponden
e from 2D to 1D. This 
on�guration 
onsists ofboth image planes being parallel, and hen
e, the baseline also being parallel to imageplanes, sending the epipoles to in�nity. In addition, epipolar lines of all possibledete
tions 
oin
ide with the images' rows, and 
orresponden
es between dete
tionof both images 
an be found by mat
hing pixels linewise. Considering the re
ti�ed
on�guration, depth 
an be re
overed by using the notion of disparity, Figure 6.4.The stereo vision system implemented in the robot uses the weighted 
enter of the
olor labelled blobs. The epipolar line is stated as the weight average of blobs usingthe number of pixels of the blobs as the weight fa
tor.The human-robot interfa
e is user friendly and it gives an intuitive way for anon-expert user to intera
t with the humanoid robot HOAP-3. Main fun
tionalitiesin the HRI user interfa
e are the graphi
al 
ontrol 
omponent, allowing the operatorto move the robot in several dire
tions at di�erent speeds, rotate it and stop it.And the high-level button 
ontrols whi
h allow the operator to request the robot toperform several high-level a
tions. The overall performan
e of the algorithms in the
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Fig. 6.5: Des
ription of experiment A.1 in the knowledge base s
enario. (upper-left) World and obje
t frames are instantiate from the robot view. (upper-right) As it explores the s
ene new obje
ts are added, and information forexisting ones are updated. Out of view obje
ts (grayed out) remain in theknowledge base and their position are 
hanged to a relative value re�e
tingtheir expe
ted lo
ation. (bottom-left) Robot is tasked with �nding thered ball, and defaults to looking for it starting in its last known lo
ation.(bottom-right) Robot 
ontinues its sear
h looking for the red ball until itis found in a new position or it is not found and the obje
t instan
e isremoved from the knowledge base.per
eption system is not an element of this thesis, and the sele
tion of the per
eptionsystem 
omponents was made on the 
riteria of availability and easy integration withthe rest of the framework. For further explanations of the per
eption system see[Pierro et al., 2012a℄.Des
ription of Knowledge Base S
enarioHere we provide a general des
ription of a demonstrator for the evaluation of theknowledge base s
enario performan
e. Quantitative evaluation of knowledge pro
ess-ing systems is hardly possible sin
e many of its features are di�
ult to re�e
t innumbers. However the system 
an be evaluated in a qualitative form. Several exper-iments were 
ondu
ted to prove the validity of the system and to test the operationof the developed knowledge representation and the knowledge base module.A �rst experiment involves the HOAP-3 robot operating in a kit
hen setting. TheHOAP-3 robot would stand in front with a top view, from the 
ameras in its head, ofan assortment of obje
ts 
ommonly expe
ted in a kit
hen or dinner s
ene, i.e., 
ups,plates, forks, knifes, et
., see Figure 6.5. The available obje
ts 
ome from a toy set andwere 
hosen so their size and shape 
an �t properly with HOAP-3 robot stru
ture;also, the available obje
t present bright, solid 
olors fa
ilitating the re
ognition ofobje
ts by their 
olor properties in the per
eption system.This experiment would go as follows, the HOAP-3 robot would look around the
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hemati
 view of the Knowledge Base S
enario experiment A.1.s
ene as the per
eption system instantiates obje
t frames from the re
ognized obje
tsin its way, and modify and upkeep its world event frame in the knowledge base.The obje
ts in the environment would be taken in and out the robot �eld of viewor moved around the s
ene by an agent; also the robot would be asked to fo
us ondi�erent obje
ts throughout the demonstration as its task dire
tive is 
hanged by theagent. The purpose of this s
enario is to prove the performan
e of the knowledgerepresentation and developed knowledge base to maintain relevant information in theknowledge base in a dynami
 environment with 
hanging world and task events duringits operation.This demonstrator highlights the operation and intera
tion of the per
eption andknowledge systems to instantiate the di�erent frames in the knowledge base and buildthe a
tive view event frame out of the extra
ted knowledge and 
onstraints from the
urrent task and world events. There are 2 modules involved for this s
enario:
• The per
eption system: for dete
tion and tra
king of obje
ts in the table.
• The knowledge base system: for instantiating the di�erent frames in the knowl-edge base a

ordingly.Figure 6.6 shows a s
hemati
 view of the overall knowledge base s
enario experimentdes
ribed above. The per
eption system, through the vision system, is in 
harge ofanalysing the environment of the robot as 
aptured with the robot 
ameras, re
og-nizing obje
ts that are present and 
omputing their lo
ation. The knowledge basesystem would re
eive this information from the per
eption system and would instan-tiate obje
t frames from the re
ognized obje
ts present, and build the knowledgerepresentation of the s
ene in the knowledge base. As the robot moves around, theenvironment or the s
ene is 
hanged by adding, moving, or removing obje
ts the
ontents on the knowledge base are updated.This s
enario is meant to provide proof of 
on
ept of how frames in the knowledgebase are instantiated from the per
eption of the environment and how the knowledgebase maintains and upkeeps its knowledge representation over time in a 
hangingenvironment. Further development of this s
enario would add more fun
tionality in
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Fig. 6.7: Des
ription of experiment A.2 in the knowledge base s
enario. At thebeginning the task 
an be started by either pi
king the 
up or the spoon.(left) The HOAP-3 robot starts the task by grasping the blue 
up. (
enter-left) With the 
up and the spoon in its hands the robot performs the a
tionskill to put the spoon inside the 
up. (
enter-right) Finally, the HOAP-3robot pla
es the blue 
up on the sau
er plate. (right) State of the knowledgebase at some step during exe
ution. From the Task and World Events theA
tive View Event is built to drive the a
tion exe
ution.the following subse
tions to highlight the operation of other systems in the developedframework.A se
ond experiment would have an agent and the HOAP-3 robot intera
ting to
omplete a simple task. The task in this 
ase requires the robot to pi
k up a 
upand a spoon in ea
h hand and then to put the spoon inside the 
up; then �nally itwould put down the 
up in front of it. The agent would provide the robot with the
up and spoon obje
ts so it 
an pi
k them up; also the agent would indi
ate to therobot where to put down the 
up, see Figure 6.7.Exe
ution of the demonstration 
ould vary depending on the a
tions of both thehuman agent and the HOAP-3 robot. At the start of the demonstration the robotis given the task event frame knowledge for the desired behaviour 
ontaining theknowledge of the 4 a
tion skills needed to 
omplete the a
tion, pi
k spoon, pi
k 
up,pla
e spoon in 
up, pla
e 
up down. Extra
ting the adequate a
tion would depend onthe agent intera
tion and the 
ontent of the rest of the knowledge base. The purposeof this demonstration is to validate the performan
e of the developed knowledge basein a dynami
 intera
tion with an agent where the invo
ation of an a
tion skill is
ontrolled by the representations in the knowledge base as des
ribed in Chapter 4.This demonstration highlights the operation of the knowledge base and how therepresentations of obje
t, a
tion, task event, world event and a
tive view event framesare used to 
ommand the robot exe
ution of the desired task. There are 4 modulesinvolved in the operation of this s
enario:

• The per
eption system: for dete
tion and tra
king of the obje
ts.
• The learning system: for tea
hing the robot a set of robot skills.
• The knowledge base system: for representing the obje
t, a
tion, task event,world event and a
tive view event frames, used to 
ommand the robot exe
utionof the desired task.



196 6. Reprodu
tion of Robot Skills
Vision System

Obj Recognition

Knowledge
Base 
Data Storage

Real World Scene

Knowlede Base 
Instant

Knowledge Base 
Data Management

Kinaesthetic Demo Learning Algorithm

Robot Controller

Real Robot Agent

Robot 
Skill 
Model

Fig. 6.8: S
hemati
 view of the Knowledge Base S
enario experiment A.2.
• The robot reprodu
tion system: for 
ontrolling the robot exe
ution.Figure 6.8 shows a s
hemati
 view of the overall knowledge base s
enario experimentdes
ribed above. The per
eption system handles the intera
tion with the user and thedete
tion of obje
ts in the environment. The knowledge base system would re
eive thisinformation from the per
eption system and would instantiate the frames and builtthe knowledge representation of the s
ene in the knowledge base. The knowledge basesystem would sele
t and a
tivate an a
tion skill when the 
onditions in the knowledgerepresentation a�ord su
h a
tion. On
e an a
tion is sele
ted, the HOAP-3 robot
ontroller would exe
ute the robot 
ommands required for the skill reprodu
tion.This demonstrator s
enario is meant to provide proof of how a
tion exe
utionis invoked by the state of the representation frames present in the knowledge base.Further development of this s
enario would add more fun
tionality in the followingsubse
tions to highlight the operation of other systems in the developed framework.Des
ription of Skill Generation and Adaptation S
enarioIn this subse
tion, a general des
ription of a demonstrator for the evaluation ofthe performan
e of the robot skill generation and adaptation s
enario is provided.To this end, several experiments were 
ondu
ted to prove the validity of the systemand to test the operation of the developed robot skill generation and adaptationmodule. Experiments were designed to test the performan
e of the di�erent robotskills' operations des
ribed in Chapter 5. The demonstrators in this subse
tion were
hosen as very simple s
enarios in whi
h to have proving ground in whi
h to testdi�erent robot skills and skill generation and adaptation me
hanisms.As a �rst s
enario, we'll 
onsiderer a table tennis robot task. In this setting theHOAP-3 humanoid robot would stand equipped with a table tennis paddle, from atable tennis toy set, of an appropriate size and handle shape to �t the HOAP frameand the grasp 
apabilities of its hands, see Figure 6.9.
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Fig. 6.9: Des
ription of experiment B.1 in skill generation and adaptation s
enario.HOAP-3 robot performs di�erent tennis shots: (left) HOAP-3 robot per-forms a forehand shot. (
enter) HOAP-3 robot performs a smash shot.(right) HOAP-3 robot performs a forehand-smash shot generated from themerger of the forehand and smash shots.The limitations of the robot systems and vision tra
king do not allow for realtime reprodu
tion of a robot table tennis game, however that is not the intended goalof the demonstrator. The fo
us in this experiment would be on the learned RobotSkill Models and on the operation of the algorithm in Chapter 5 for the merger ofrobot skills in order to generate new, more 
omplex, skills given the robot's additionala
tion for performing tennis shots from the ones that are previously learned by therobot.The HOAP robot is required to exe
ute di�erent tennis shot a
tions to hit a tabletennis ball moved towards the robot. Originally 3 robot skills' models are taught tothe HOAP-3 robot to hit an approa
hing ball 
oming from its left, right, or above,to provide the robot with the skills to perform a forehand, a ba
khand, or a straightsmash shot. To expand the robot skill set, two learned skill models are merged toobtain a new Robot Skill Model. In this 
ase a forehand and a ba
khand will bemerged with the smash shot skill to generate two more skills for forehand-smash andba
khand-smash shots.This demonstrator highlights the operation of the proposed algorithms in Chapter5 for the merging ofRobot Skills Models. There are 4 modules involved in the operationof this s
enario:
• The per
eption system: for the dete
tion and tra
king of the table tennis ball'sposition.
• The learning system: for tea
hing the robot a set of skills for reprodu
ingdi�erent tennis shots.
• The generation and adaptation system: for generating new robot skills from themerger of two learned models of a skill.
• The robot reprodu
tion system: for 
ontrolling the robot skill exe
ution of atennis shot.
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Fig. 6.10: S
hemati
 view for experiment B.1 in the robot skill generation and adap-tation s
enario.Figure 6.10 shows a s
hemati
 view of the overall generation and adaptation s
enarioexperiment des
ribed above. This s
enario is a demonstrator for the merger of robotskills presented in Chapter 5. First, demonstrations are given, re
orded with a Mi-
rosoft Kine
t sensor, to the learning module to en
ode the models of the robot skillsfor the forehand and smash tennis shots. Then the learned robot skills are fed to theskill merger algorithm to generate a new robot skill model for a forehand-smash shotfrom the merger of the two previous skills. Finally, the model of the skill is given tothe HOAP-3 robot 
ontroller for the exe
ution of the skill.This demonstrator s
enario is meant to provide proof of 
on
ept of how the gen-eration and adaptation system 
an operate over previously learned robot skills forgenerating new, more 
omplex, skill a
tions and for in
reasing the s
ope of operationin the given available skills to expand the range of task whi
h 
an be performed bythe HOAP-3 humanoid robot. Further development of this s
enario would strive tobring more fun
tionality in the following subse
tions to highlight the operation ofother systems in the developed framework.A se
ond demonstrator was designed to test the performan
e and evaluate the de-veloped methods for the update and 
ombination of Robot Skill Models as des
ribedin Chapter 5. To validate the proposed methods for generating new skills from previ-ously learned models, by updating or 
ombining the Robot Skills Models a very simples
enario was 
hosen in whi
h the robot would be required to grasp a plasti
 
up, fromthe kit
hen toy set used in the previous s
enario, see Figure 6.11.The 
ontemplated task requires that the robot be able to grasp the plasti
 
uplo
ated in any possible pla
e in a �
upboard�, whi
h 
onsists of two shelves, a bottomand a top shelf. The HOAP-3 robot must be able to grasp the 
up, as long as it isinside the robot arm's workspa
e, in any of six possible general lo
ations in relationto the robot arm; three on the bottom shelf and three on the top shelf, for example,a 
up 
ould be pla
ed at the left-bottom, right-bottom, 
enter-bottom, or left-top,right-top, 
enter-top, of the robot. Initially, only the skills for learning to grasp the
up pla
ed on the bottom shelf are taught to the robot by the methods des
ribed inChapter 3. The 
omplete task would be una
hievable with the robot skills learned sofar, sin
e the skill reprodu
tion would not generalize well to the target's new position
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Fig. 6.11: Des
ription of experiment B.2 in skill generation and adaptation s
enario.The HOAP-3 robot must grasp a 
up pla
ed at any position in eitherof the two shelves of the "
upboard" s
enario. Initially only skills forgrasping the 
up in the bottom shelf are taught to the robot. To generalizethe skill to the target's new position at the top shelf the skills learnedto grasp the 
up at the bottom shelf must be updated. To generalizea
ross the whole working spa
e the three models of the robot skill, forright-, left- and 
enter-, are 
ombined into a single model of the attra
tordynami
s. (top-row) Robot is taught a grasp skill motion for the 
uppla
e in the bottom shelf. By the update of the robot skill a new modelis generate to allow the HOAP-3 robot to grasp the 
up pla
e at thetop shelf. (bottom-row) By the 
ombination of various robot skills theHOAP-3 robot 
an grasp the 
up pla
e at its right, 
enter or left, usinga single model of the skill.on the top shelf. To grasp the 
up, pla
ed on the top shelf, at either side of the robotthe skills learned to grasp the 
up on the bottom shelf must be updated to generatethe required new robot skill models. Finally, to generalize a
ross the whole workingspa
e the three models of the robot skill, for right-, left- and 
enter-, are 
ombinedinto a single model of the attra
tor dynami
s. Figure 6.11 illustrates the s
enario.This demonstrator highlights the operation of the proposed algorithms in Chapter5 for the update and 
ombination of Robot Skills Models. There are 3 modules involvedin the operation of this s
enario:
• The learning system: for tea
hing the robot a set of skills for reprodu
ingdi�erent grasp a
tions.
• The generation and adaptation system: for generating new robot skills from the
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hemati
 view for experiment B.2 in the robot skill generation and adap-tation s
enario.update of the learned models of a skill and the 
ombination of di�erent learnedskill models into a single model of the attra
tor dynami
s.
• The robot reprodu
tion system: for 
ontrolling the HOAP-3 exe
ution of therobot skills.Figure 6.12 shows a s
hemati
 view of the overall generation and adaptation s
enarioexperiment des
ribed above. This s
enario is a demonstrator for the 
ombinationof the robot skills method presented in Chapter 5. First demonstrations are given,re
orded by kinaestheti
 tea
hing, to the learning module to en
ode the models of therobot skills for grasping traje
tories at the possible lo
ations, left, right and in front ofthe robot. Then the learned robot skills are fed to the skill 
ombination algorithm togenerate a new robot skill model from the 
ombination of the previous skills. Finally,the model of the skill is given to the HOAP-3 robot 
ontroller for exe
ution of theskill.This demonstrator s
enario is meant to provide proof of how the generation andadaptation system 
an operate over learned robot skills for in
reasing the s
ope ofavailable skills for the performan
e of the HOAP humanoid robot. Further develop-ment of this s
enario would add more fun
tionality in the following subse
tions tohighlight the operation of other systems in the developed framework.Des
ription of Robot Skill Reprodu
tion S
enarioAs a �nal evaluation a 
ouple of general demonstrators' s
enarios were imple-mented for the validation of the robot skill reprodu
tion and to test the 
ompletedeveloped framework for the learning and adaptation of robot skills. Several experi-ments were 
ondu
ted to prove the validity of the system and to test the operation ofthe developed framework. Experiments were designed, requiring the humanoid robotto reprodu
e di�erent Robot Skill Models throughout the unfolding of the task inorder to test the performan
e of the overall system and the operation and intera
tion
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Fig. 6.13: Des
ription of experiment C.1 in the robot skill reprodu
tion s
enario.HOAP-3 robot performs di�erent tennis shots, as learned and generatedfrom the previous experiment. (left) HOAP-3 robot performs the fore-hand smash shot. (right) HOAP-3 robot performs a ba
khand-smashshot. The knowledge base sele
ts the appropriate a
tion to exe
ute theproper tennis shot out of the instantiated frames knowledge.of the di�erent modules in the framework for learning skills, representing knowledge,generation and adaptation of models and robot skill reprodu
tion.As a �rst s
enario we'll review the table tennis robot task des
ribed in the skillgeneration and adaptation s
enario. The setting is the same as before with the HOAP-3 humanoid robot equipped with a table tennis paddle, and a set of learned robotskills to perform di�erent tennis shots, namely a ba
khand, a forehand, and a smashshot, plus the generated merged forehand-smash and ba
khand-smash shots. Thepurpose of this s
enario is to prove the viability of the developed representations andknowledge base system in Chapter 4 for sele
ting the appropriate robot skills for atennis shot to hit the table tennis ball from its available a
tion frames and per
eivedworld state knowledge.With the HOAP robot, paddle in hand, in a resting position, the per
eption systemdete
ts a table tennis ball that is moved towards the robot. The system 
omputes therelevant information from re
ognition of the ball, and extra
ts from the knowledgebase, the appropriate learned robot skill models to reprodu
e the a
tion to hit theball under the 
urrent 
ir
umstan
es, see Figure 6.13.This demonstrator highlights the operation of the per
eption system and theknowledge base system to instantiate the proper frames in the knowledge base and ex-tra
t from this information the needed Robot Skills Models. Additionally, it is meantto highlight as well, the operation of the systems for generation and adaptation andfor robot reprodu
tion of the Robot Skills Models. There are 5 modules involved inthe operation of this s
enario:

• The per
eption system: for dete
tion and tra
king of the table tennis ball.
• The learning system: for tea
hing the robot a set of skills for reprodu
ingdi�erent tennis shots.
• The knowledge base system: for sele
ting the appropriate robot skills for atennis shot out of the instantiated frames knowledge.
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Fig. 6.14: S
hemati
 view for experiment C.1 in the robot skill reprodu
tion s
e-nario.
• The generation and adaptation system: for generating new robot skills from thelearned models of a skill.
• The robot reprodu
tion system: for exe
uting the robot skill for an appropriatetennis shot.Figure 6.14 shows a s
hemati
 view of the overall skill reprodu
tion s
enario experi-ment des
ribed above. This s
enario is a demonstrator for the evaluation of the robotskill reprodu
tion, and the operation of the 
omplete developed framework, with themain fo
us on the performan
e of the knowledge base system to extra
t from itsinformation, the needed skill models for the robot's su

essful exe
ution. For thiss
enario, demonstrations are �rst given to the learning module, re
orded with a Mi-
rosoft Kine
t sensor, to en
ode the models of the robot skills for three tennis shots,forehand, ba
khand, and a smash. Subsequently, the learned robot skills are stored bythe knowledge base system. During operation, a table tennis ball will move towardsthe HOAP-3 robot, with the per
eption system and the knowledge base system, theinformation of the position and traje
tory of the ball is used to re
over and sele
t theneeded robot skills for a
tion reprodu
tion and perform the proper tennis shot skillin the 
urrent situation.This demonstrator s
enario is meant to provide proof of 
on
ept of how the knowl-edge base system re
overs and sele
ts robot skills for a
tion reprodu
tion based on theinstantiated knowledge frames, stored and represented by the developed knowledgebase. Together with the previous experiment, evaluating the generation and adapta-tion system, the proposed demonstrator validates the performan
e of the developedframework to learn, store and adapt the robot skill for exe
uting di�erent a
tions,
omplying with the task 
onstraints, with the HOAP-3 humanoid robot.As a �nal experiment we'll revisit the kit
hen or dinner table s
enario and expandthe demonstrators presented in the previous se
tions. In this s
enario the HOAP-3robot is required to 
omplete a setting up a dinner servi
e task behaviour in 
on-jun
tion with a human agent. The purpose of the demonstrator is to test the overall
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ription of experiment C.2 in the robot skill reprodu
tion s
enario.HOAP-3 robot sets a �dinner servi
e� 
onsisting of a fork, a knife, a sau
erplate, a 
up and a spoon. (top-row) Still 
aptures from the HOAP-3 robotperforming in the robot skill reprodu
tion s
enario. (bottom-row) Stateof the knowledge base at the exe
ution step from the top-row. Obje
tsand a
tions not in the A
tive View Event are grayed out. Obje
ts andA
tions key to the 
urrent robot reprodu
tion are highlighted in red.operation of the developed framework, as well as to validate the performan
e of everyindividual module and intera
tion between themselves.The sequen
e of exe
ution of the task 
ould vary depending on the a
tions of boththe human agent and the HOAP-3 robot. The plan for the demonstrator requiresthe robot to set up a �dinner servi
e� 
onsisting of a fork, a knife, a sau
er plate,a 
up and a spoon, see Figure 6.15. Robot skills to grasp the di�erent obje
t aretaught to the robot by the methods des
ribed in Chapter 3. Exe
ution of the taskis instigated by the agent when putting on the table a yellow pit
her obje
t. Therobot would set the rest of the obje
ts on the table, their positions in relation to thepivot pit
her obje
t. The obje
ts to pla
e are provided to the robot by the agent,and 
ould be in any possible pla
e, therefore the learned Robot Skill Models must alsobe updated, merged, and 
ombined by the methods des
ribed in Chapter 5 as in thes
enario in the previous se
tion. The invo
ation of robot a
tion skills is 
ontrolled bythe representations in the knowledge base des
ribed in Chapter 4 as in the s
enarioin previous se
tions.This demonstrator highlights the operation of the individual modules as well asthe overall performan
e of the overall framework for learning and adaptation of skillsto task 
onstraints; involving the per
eption of obje
ts and intera
tion with the agent,the learning of various robot skills, the representation of knowledge in the knowledgebase, the generation and adaptation of the skill models and the adequate reprodu
tionof the robot skills. There are 5 modules involved in the operation of this s
enario:

• The per
eption system: for dete
tion the obje
ts involved in the task.
• The learning system: for tea
hing the robot a set of robot skills.
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Fig. 6.16: S
hemati
 view for experiment C.2 in the robot skill reprodu
tion s
e-nario.
• The knowledge base system: for representing the obje
t, a
tion, task event,world event and a
tive view event frames used to 
ontrol the robot exe
ution.
• The generation and adaptation system: for the update and merger of learnedmodels of a skill and the 
ombination of di�erent learned skill models into singlemodels of the attra
tor dynami
s.
• The robot reprodu
tion system: for exe
uting the robot skill for an appropriate
ompletion of the task.Figure 6.16 shows a s
hemati
 view of the overall skill reprodu
tion s
enario ex-periment des
ribed above. This s
enario is a demonstrator for the evaluation of therobot skill reprodu
tion and the overall operation of the 
omplete developed frame-work; involving the usage of the per
eption, the learning, the knowledge base, theadaptation, and the reprodu
tion systems. For this s
enario, various demonstrationsof skills, re
orded with the HOAP-3 robot, are �rst given to the learning module,to en
ode the models of the robot skills for the di�erent a
tions required for the�dinner servi
e� task. Subsequently the learned robot skills are stored by the knowl-edge base system. During operation, the user would provide obje
ts to the robot,by pla
ing them in its a
tion �eld, both of vision and manipulation. The per
eptionsystem would handle the intera
tion with the user and the dete
tion of obje
ts inthe environment. The knowledge base system would re
eive this information fromthe per
eption system and would instantiate the frames and build the knowledge rep-resentation of the s
ene in the knowledge base. Through this intera
tion with theuser and the environment, the knowledge base system would sele
t the 
orrespondingskills to a
tivate them as the 
onditions in the knowledge representation a�orded su
ha
tions. On
e the ne
essary robot skills are sele
ted, the generation and adaptationsystem would be in 
harge of building the appropriate task model satisfying, the de-sired 
ommand and 
onstraints of the environment for reprodu
ing the appropriateskill a
tion. Finally the HOAP-3 robot 
ontroller would exe
ute the robot 
ommandsrequired for skill reprodu
tion.
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enario is meant to provide proof of 
on
ept of how the knowl-edge base operates to instantiated frames from the per
eption of the environment,and how the knowledge base maintains and upkeeps its knowledge representation overtime in a 
hanging environment, as well as how a
tion exe
ution is invoked by thestate of the representation frames present in the knowledge base. Additionally, thedemonstrator s
enario provides validation for the generation and adaptation systemand how it operates over learned robot skills for in
reasing the s
ope of available skillsfor the performan
e of the HOAP humanoid robot.6.3 Learning the Robot SkillsThe 
apability to learn and tea
h a robot the ne
essary robot skills is 
learly a
ru
ial part of the developed framework. Therefore the robot skill learning modulehas a 
entral importan
e in our framework. In Chapter 3 the methods employedfor learning the models of a robot skill have been des
ribed. In this se
tion thedevelopment and operation of the robot skill learning module will be presented.Humanoid robots working alongside humans must deal with 
ontinuously 
hang-ing environments and a huge variability of tasks; therefore, algorithms for learningand extra
ting important features of task a
tions are fundamental. The robot skilllearning module is naturally responsible for allowing the humanoid robot to learn themodels of robot skills. This requires the module to provide the me
hanism needed forgathering the demonstration data from a tea
her agent and for en
oding the motionsinto a model of the robot skill. The robot skill learning module 
olle
ts motion datafrom demonstrations, pro
esses it and builds the demonstration data set that feedsthe learning algorithms. The SEDS algorithm is employed to learn an estimate ofthe motion through a set of �rst order non-linear multivariate dynami
al systemsin a statisti
al approa
h. Figure 3.8 illustrates the 
ontrol �ow for the operation ofthe robot skill learning module. The learning systems are required to a
quire skillsand developed task knowledge of how to a
t in order to provide a robot with a suf-�
ient number of skills that permit it to perform autonomously in an unstru
turedenvironment.The robot skill learning module 
olle
ts the learning pro
esses and algorithms usedfor learning and en
oding the models of the skills. There are three subsystems in thismodule; a subsystem for gathering demonstration data; a subsystem for buildingan estimate of the demonstration with the learning algorithm; and a subsystem foren
oding the robot skill model. Figure 6.17 shows the deployment diagram for therobot skill learning module.The subsystem for gathering demonstration data is made up of three pro
esses. At�rst a tea
her agent input data is 
olle
ted, Chapter 3 presented di�erent modalitiesfrom whi
h the tea
her demonstration 
ould be 
olle
ted. Se
ondly, a prepro
essingstep is performed to transform the 
olle
ted data to ensure 
orresponden
e with therobot system. A �nal third step pro
ess the raw data from the previous step to buildthe demonstration data set as required to feed the learning algorithm. The operationof the subsystem for gathering demonstration data is handled by an external pro
es-
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Fig. 6.17: Deployment diagram for the robot skill learning module. There existthree subsystems in this module, a subsystem for gathering demonstrationdata, a subsystem for building an estimate of the demonstration with thelearning algorithm, and a subsystem for en
oding the robot skill model.sor with di�erent implementations for the re
ording of the tea
her demonstrations.Three modalities were presented in Chapter 3. For the teleoperation of the robot bymeans of kinaestheti
 tea
hing, the robot en
oders are used and ea
h joint motionis re
orded at a rate of 1000Hz, and saved in an appropriate �le, storing the datafor a given demonstration; these are then re-sampled to a �xed number of points topro
ess the raw data into the required demonstrations dataset. For the OpenRavesimulated environment, the pro
ess goes as before, but a simulated model of the robotis implemented and it is used instead of the real robot sensor. For the re
ording ofvisual demonstrations, a Mi
rosoft Kine
t sensor is used, a software system was im-plemented to make use of the skeleton tra
king 
apabilities provided by the OpenNIapi, the motions of a tea
her in front of the sensors are re
orded, later the tea
herre
orded joints are transformed to mat
h the 
orresponding robot joints.The learning algorithm subsystem handles the learning of the robot skill as de-s
ribed in Chapter 3; the algorithm for the building of the demonstration with SEDS
an be found in Table 3.3. The subsystem for en
oding the robot skill model is in
harge of preparing and expressing the learned estimates of the motions as RobotSkill Models for the rest of the framework. The learning algorithm pro
ess is 
arriedout o�-line. The implemented system is derived from the SEDS library provided by[Khansari-Zadeh and Billard, 2011℄. The �le with the re
orded demonstration data ispreviously provided by the subsystem for gathering demonstration data. A �rst pre-pro
essing step is 
arried out to build the adequate dataset needed by the algorithm.The MATLAB numeri
al 
omputing environment is used for the implementation ofthe learning algorithm subsystem in our framework, implementing the GMM, GMR,and SEDS algorithms. A model is obtained with the θ parameters en
oding the robotmotion dynami
s. In the �nal step a �le is outputted, storing the learned Robot SkillModels.
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Fig. 6.18: Deployment diagram for the robot skill knowledge module. There existthree subsystems in this module, a subsystem for the data entry to theknowledge base, a subsystem for the knowledge base data storage, and asubsystem for the knowledge base data management.6.4 Navigating the Robot Skill Knowledge BaseIn Chapter 4 the knowledge base for the storing and retrieval of the learned mod-els of the skills was des
ribed. In this se
tion the development and the pro
ess forbuilding and navigating the knowledge base is given. For a roboti
 system to performdi�erent skills and tasks in a 
hanging and unstru
tured s
enario, it is important tohave me
hanisms to organize the a
quired knowledge in a manner that allows it tobe retrieved in order to use it to drive its a
tions. The robot skill knowledge moduleis in 
harge of managing the knowledge base and the pro
essing of the knowledgerepresented within it. This requires the module to provide the me
hanism by whi
ha
quired knowledge about obje
ts, a
tions and events of the task and the state of theworld is represented in the knowledge base, and also how this knowledge is operatedto extra
t from it ne
essary information for the robot's su

essful 
ompletion of itstasks. Figure 4.8 illustrates the 
ontrol �ow for the operation of the robot skill knowl-edge module. Developing appropriate stru
tures in whi
h to organize the a
quiredknowledge, to allow the retrieval of it to use it in ful�lling the system goals is key ifhumanoid robots are to be 
apable and �exible enough to handle the 
hallenges ofworking alongside humans in 
omplex natural environments.The robot skill knowledge module governs the operation of the knowledge base andthe instantiation and maintenan
e of the di�erent frames in the developed knowledgerepresentational stru
ture. Task and World Event Frames are instantiated, from theinformation provided by the per
eption module, and the A
tive View Event Frame
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tion of Robot Skillsis built from them with the 
onstraints of the task. There are three subsystems inthis module, a subsystem for the data entry to the knowledge base, a subsystemfor the knowledge base data storage, and a subsystem for the knowledge base datamanagement. Figure 6.18 shows the deployment diagram for the robot skill knowledgemodule.The knowledge base data entry subsystem works as a middleware between theknowledge base data storage subsystem and the robot skill learning module for up-loading robot skills models and a
tion, obje
t and task 
lasses for storage into theknowledge base. The knowledge base holds all ne
essary information for reprodu
tionof the skills in the environment; knowledge of the task would be distributed amongthe representation of obje
ts, a
tions and events of the task. Operations of the knowl-edge base data entry subsystem are made o�-line. Entries into the knowledge baseare made to stored the needed frames for the task. Robot Skill Models are generatedas explained in the Robot Skill Learning Module and stored in the knowledge base.The obje
ts and task frames entries are made beforehand by a human operator toensure the appropriate knowledge for the task exe
ution is stored in the knowledgebase. Some approa
hes exist for on-line autonomous generations of this knowledge'sdata stru
tures, su
h as in the RoboEarth proje
t [Waibel et al., 2011℄, whi
h 
ouldbe studied for future implementation.The knowledge base data storage subsystem works as a database 
olle
ting andorganizing the robot skill knowledge as per the representational stru
ture dis
ussedin Chapter 4. Entries in the knowledge base are implemented using the XML markuplanguage, following the stru
ture and tag labels as ne
essary for the di�erent knowl-edge frames as presented in Chapter 4. The physi
al implementation of the knowledgebase is on an a

ompanying PC outside of the robot main system. Communi
ationswith the robot on-board 
omputer are 
arried out using a WLAN network.The knowledge base data management subsystem is at the heart of the robotskill knowledge module. The knowledge base data management subsystem handlesthe operation and performan
e of the knowledge base, presented in Chapter 4; theknowledge of the environment and goals taken form the per
eption module is rep-resented in terms of the World Event Frame and Task Event Frame, with Obje
tand A
tion Frames representing knowledge about available obje
ts and a
tions re-spe
tively. From the knowledge of these frames an A
tive View Event Frame of thefo
used knowledge promoting the agent's exe
ution is built. Looking up the knowl-edge base storage for the given obje
t and a
tion a�ordan
e frames yields the neededmodels of the skill, M̄RS, required by the module for its operation. In the knowledgebase data management subsystem, sear
h and reasoning operations over the storedknowledge are 
arried out. The implementation of the knowledge base data manage-ment subsystem was made using SWI-Prolog and the Python high-level programminglanguage. A YARP layer was implemented for the 
ommuni
ations between the robotskill knowledge module and the rest of the systems.
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Fig. 6.19: Deployment diagram for the robot skill generation and adaptation mod-ule. There exist three subsystems in this module, a subsystem for extra
t-ing data from the knowledge base, a subsystem for operating upon therobot skill with the adaptation algorithm, and a subsystem for generatingthe task models.6.5 Generating the Robot Skills Task ModelsThe robot skill generation and adaptation module is a vital part of the developedframework. In Chapter 5, the algorithms developed for the generation and adaptationof the robot skills were des
ribed. In this se
tion the development and operation ofthe robot skill generation and adaptation module will be presented. For humanoidsto 
ope with working in 
ontinuously 
hanging environments and performing a widevariability of tasks, it is imperative to endow them with me
hanisms that support theadaptation of their skills and behaviours to generate new ones �tting their 
ontext.The robot skill generation and adaptation module is in 
ontrol of handling the pro-
ess by whi
h learned models of a skill are adapted for an unseen 
ontext. The robotskill generation and adaptation module is provided with knowledge of the state of theenvironment and the 
onstraints of the task extra
ted from the robot skill knowledgemodule; using both, the already learned model of a skill, and the extra
ted 
onstraintsinformation of the 
urrent task, the model of the skill is adapted to reprodu
e thetask. Figure 5.2 illustrates the 
ontrol �ow for the operation of the robot skill gen-eration and adaptation module. Me
hanisms are needed to endow systems with the
apa
ities to adapt their a
quired skills expanding the system's knowledge and abilityto a
t in the environment.The robot skill generation and adaptation module supervises the pro
ess by whi
hthe learned model of a skill 
an be operated to reprodu
e a new task, in
luding theadaptation, update, merger, 
ombination, or transition of the skill models. There arethree subsystems in this module, a subsystem for extra
ting data from the knowledgebase, a subsystem for operating upon the robot skill with the adaptation algorithm,and a subsystem for generating the task models. Figure 6.17 shows the deployment
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tion of Robot Skillsdiagram for the robot skill generation and adaptation module.The subsystem for extra
ting data from the knowledge base is made up of twopro
esses; �rst it re
overs data from the robot skill knowledge module and se
ondly itdistributes appropriately this data to the rest of the subsystems for their operations.This subsystem implements a middleware between the knowledge base and the restof the systems.The adaptation algorithm subsystem handles the pro
ess of operating upon thelearned robot skills, a �rst step from the information re
eived from the previoussubsystem would help it de
ide whi
h type of method is required for adaptation;afterwards the 
hosen algorithm would work on the given robot skill models as de-s
ribed throughout Chapter 5. The adaptation algorithms were implemented usingthe MATLAB numeri
al 
omputing environment.The subsystem for generating the task models is in 
harge of preparing and ex-pressing the adapted Robot Skill Models in a form suitable for robot reprodu
tion.As a �nal step, a �le is outputted storing the 
omputed task model.6.6 Reprodu
ing the Robot Skills Task ModelsObviously all e�orts in our framework would be useless if the robot were notequipped with proper me
hanisms for the motor 
ontrol of the robot skill reprodu
-tion. The robot skill reprodu
tion module is in 
harge of produ
ing the adequate
ontrol signals to the robot for the reprodu
tion of robot skills. In this se
tion, thedevelopment and operation of the robot skill reprodu
tion module will be presented.The robot reprodu
tion module is assigned with the task of providing suitable 
on-trollers that 
onvert kinemati
 variables into appropriate motor 
ommands. Therobot skill reprodu
tion module is given as input from the previous modules in theframework; the model of a robot skill as a GMM, as explained in Chapter 3. The �rststep is to 
ompute the desired target value ξ̇ through the GMR pro
ess, as given inChapter 3. This would 
ompute the desired target values for referen
e of the HOAProbot 
ontrol system. Figure 6.20 presents the 
ontrol strategy of the robot skillreprodu
tion module, for details see [Pierro et al., 2009℄.This s
heme 
onsiders several blo
ks. On
e a 
ommand has been re
eived, therobot distinguishes if it is a 
ommand for the walking generation or for the armsmovement. The walking patterns of the robot have been designed based on the the-ory of the 3D Linear Inverted Pendulum Mode presented in [Kajita et al., 2001b℄.[Monje et al., 2008℄ presents studies for the posture stability 
ontrol. If the re
eived
ommand requires a movement of the arms, as in the 
ase of a grasping task, thesele
tion of the suitable arm is �rst 
onsidered. Finally, the traje
tory of the arm isevaluated online through the algorithm of kinemati
 inversion [Si
iliano et al., 2009℄,on
e the 
ommand provides the distan
e and the orientation from the obje
t. The ori-entation referen
e for the obje
t is 
al
ulated with the support of the unit quaternionpresented in [Chiaverini and Si
iliano, 1999℄.In order to de
ide the best arm to perform the grasping, the rea
hable workspa
e isdivided into three areas: in parti
ular, the two areas that 
an only be rea
hed by one
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Fig. 6.20: Control strategy of the robot skill reprodu
tion module.

Fig. 6.21: Workspa
e of Hoap-3 arms. Zone of servi
e of right arm is depi
ted inblue while red are represent the zone rea
hable by left arm.
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Fig. 6.22: Deployment diagram for the robot skill reprodu
tion module. The modulehas three subsystems, a subsystem for 
omputing the regression of themodel with GMR to obtain the desired target 
ommands, a subsystemfor produ
ing the adequate 
ontrol signals from the target 
ommands,and a subsystem to 
ommuni
ate the 
ontrol signals to the robot andmonitor the HOAP-3 robot exe
ution.of the arms and the workspa
e that 
an be rea
hed by both arms. Figure 6.21 showsthe three areas. Sin
e there is only one arm that 
an rea
h the �rst two areas, wedon't have to de
ide anything. In the 
ase of work areas that 
an be rea
hed by botharms, the system should de
ide the one whose manipulability is higher, 
onsideringthe de�nition of manipulability stated in [Si
iliano et al., 2009℄
(q) =√det

(J (q)JT (q)) (6.1)where J is the Ja
obian matrix of the 
orresponding arm and q the joint positions ofthat arm.The robot skill reprodu
tion module 
ontrols the exe
ution of robot skills. Themodule has three subsystems, a subsystem for 
omputing regression of the modelwith GMR to obtain the desired target 
ommands, a subsystem for produ
ing theadequate 
ontrol signals form the target 
ommands, and a subsystem to 
ommuni
atethe 
ontrol signals to the robot and monitor the HOAP-3 robot exe
ution. Figure6.22 shows the deployment diagram for the robot skill reprodu
tion module.The HOAP-3 
ontrol systems is in 
harge of 
omputing the appropriate 
ommandto 
ontrol the exe
ution in real-time of the humanoid robot, the 
ontrol system hasbeen presented above in Figure 6.20. The robot 
ommand subsystem handles the
ommuni
ations from the developed framework and its subsystems and the real robotagent for the a
tual reprodu
tion and exe
ution by the HOAP-3 robot. The physi
alimplementation of the robot 
ontrol system is made on three PCs; an on-board PCimplements the robot 
ontrol systems; an auxiliary PC implements the knowledge andlearning systems; and a laptop 
omputer implements the ?? and per
eption systems.A YARP layer was implemented for the 
ommuni
ations between pro
esses.



6.7. Experimental Evaluation 2136.7 Experimental EvaluationPreviously, in Se
tion 6.2, a series of experimental evaluation s
enarios weredes
ribed. The evaluation s
enarios were designed with the intent to present ademonstration of the overall performan
e of the framework developed through thiswork and the operation of its di�erent modules. The evaluation of roboti
 systems,and knowledge base roboti
s systems in parti
ular, is a 
ompli
ated issue in whi
hthere are not readily available standardized evaluations or established ben
hmarks[Tenorth and Beetz, 2013℄. The experimental evaluations presented in this se
tionare aimed at providing proof of 
on
ept for the developed framework. Here the majorfo
us of interest lies not in the measurement of performan
e and e�
ien
y metri
sbut in the validation of the viability of the proposed system and the 
apabilities of theframework in dealing with a range of di�erent and in
reasingly 
omplex situations.The demonstration will test the operation of the humanoid robot and the devel-oped framework as it is required to 
omplete distin
t tasks. Di�erent s
enarios arepresented in order to highlight how the 
omponents of our framework 
ontribute toa
hieving realisti
 tasks, and that the implementation of the 
apabilities for learning,knowledge manipulation and adaptation of skills are fundamental for the developmentof viable humanoid robots.Several experiments were 
ondu
ted to validate the proposed systems. A �rsts
enario evaluates the performan
e of the per
eption and knowledge base modules. Alater s
enario deals with the performan
e of the robot skill generation and adaptationmodule. The �nal s
enario is made to evaluate the performan
e of the robot skillreprodu
tion and the 
omplete developed framework for learning and adaptation ofrobot skills.Evaluation of Knowledge Base S
enarioThe �rst demonstrators were devised for testing the operation of the knowledgebase s
enario. The aim of the knowledge base s
enario is to demonstrate how thehumanoid robot employs the knowledge base module for the instantiation and upkeepof information from its environment per
eption and the obje
ts that are present init, as they are relevant for its task. It also presents the performan
e of knowledgebase modules for storing Robot Skill Models and for retrieving and invoking the skillsknowledge from the knowledge base when the information is needed to perform therobot skill in the 
ompletion of a task.Two main experiments were 
arried out with the HOAP-3 humanoid robot in thiss
enario, as des
ribed in Se
tion 6.2. In the �rst demonstrator a humanoid robotwould look around its environment as a human agent moves and manipulates variousobje
ts under the robot's �eld of view. The robot would instantiate and upkeepthe obje
t's knowledge as they be
ome present and modi�ed through the humanagent intera
tion with the environment, keeping up to date information of the knownobje
ts to answer queries from the human agent about the state of 
ertain obje
ts.The se
ond demonstrator presents a humanoid robot with the dire
tive to 
ompletea given task. The knowledge of the task and world state in the knowledge base would
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Fig. 6.23: Knowledge Base S
enario Experiment A.1: di�erent snapshots from theexe
ution of the task in the demonstrator. The robot looks around theenvironment keeping in the knowledge base information of the obje
tsstate. The human agent moves and takes in and out of view the di�erentobje
ts at will. At di�erent stages of the demonstrator the robot is askto lo
ate an obje
t.a�ord the robot the possibility of 
ompleting its task by extra
ting the ne
essary robotskill models to perform the required skill motions needed to su

essfully 
omplete thedesired task.For the �rst demonstrator, the HOAP-3 robot looks around the s
ene as theper
eption system re
ognizes obje
ts and instantiates or upkeeps their obje
t framesin the knowledge base. Obje
ts in the environment are taken in and out of the robot�eld of view or moved around the s
ene; also the robot would be asked to fo
us ondi�erent obje
ts throughout the demonstration as its task dire
tive is 
hanged by theagent. Figure 6.6 shows a s
hemati
 view of the �rst demonstrator experiment inthe knowledge base s
enario. The fo
us of this demonstrator is on instantiation andupkeeping of obje
t frames in the knowledge base.Figure 6.23 shows di�erent snapshots from the exe
ution of the task in the �rstdemonstrator. The experiment exe
ution in this demonstration s
enario would de-velop as follows, the experiment starts with the HOAP-3 robot standing looking downat a table in front of it. The human agent arranges di�erent obje
ts on the table forthe robot to re
ognize. In the �rst step the HOAP-3 robot s
ans the s
ene fromleft to right, instantiating obje
ts it 
an re
ognize. After the s
an step is 
ompletedin the subsequent steps, the human agent rearranges any number of obje
ts, whileadditionally, the robot is asked to lo
ate one of the obje
ts. In this stage the robotwould look up the obje
t's last known lo
ation information from the knowledge baseand begin to look for the obje
t from there; assuming the requested obje
t is onethat the human agent moved around. In this state the robot's main fo
us is to lo
atethe requested obje
t while a ba
kground pro
ess is still in 
harge of instantiating andupkeeping the rest of the obje
ts in the robot �eld of view. The robot would eitherlo
ate the obje
t or 
omplete one s
an of the s
ene and assume the obje
t has beenremoved and delete its instan
e from the knowledge base. The human agent would
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Fig. 6.24: Knowledge Base S
enario Experiment A.1: di�erent snapshots from theper
eption system during exe
ution of the task in the demonstrator.repeat this for various obje
ts during the experiment. In Figure 6.23 the robot is �rstseen looking for the red ball whi
h it lo
ates and later the yellow `egg' whi
h it 
an't�nd.Figure 6.24 presents the operation of the per
eption system during the exe
ution ofthe demonstrator experiments. Re
ognition of the obje
ts is based on blob dete
tionby 
olor �ltering and area 
omparison. The performan
e of the 
omputer visionalgorithms is not an element of this thesis, and the sele
tion of the per
eption system
omponents was made on the 
riteria of availability and easy integration with therest of the framework. In general, the per
eption system works adequately for whatit is needed, and there were only problems re
ognizing the knife and spoon obje
ts;see 
enter images in Figure 6.24, that were too bright and didn't a

urately re�e
ttheir 
olours making them invisible for the re
ognition algorithm.Figure 6.25 presents the operation of the knowledge base system during the exe
u-tion of the demonstrator experiments. As new obje
ts are being re
ognized, instan
esof the obje
ts are 
reated in the knowledge base storing information of their proper-ties, in this 
ase their 
olour and lo
ation. When obje
ts are moved by the humanagent intera
ting with the environment, obje
ts' instan
es of the knowledge base up-date their information. The system fo
uses on obje
ts that are in its 
urrent �eldview and that are important to its goals. The Figure 6.25 shows the 
ontents of theknowledge base; in the lower row images they 
orrespond to the state of the systemat the moment of the images from the per
eption system in the above row. Obje
ts'instan
es for obje
ts that are out view are grayed out and their lo
ation property is
hanged to a relative value to re�e
t loss of 
ertainty of their position; this value isthen used as an indi
ation of where to expe
t the obje
t to be and the starting pointto begin an exploration to look for it. Obje
t instan
es for obje
ts that are key tothe robot goal are shown in blue; here the robot was asked to �nd the red ball, these
ond image, and the 
yan 
up, the fourth image. When an obje
t 
an't be foundagain in the environment, in this 
ase the yellow `egg' in the third image, its obje
t
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Fig. 6.25: Knowledge Base S
enario Experiment A.1: di�erent snapshots from theknowledge base system exe
ution of the task in the demonstrator.instan
e is removed from the knowledge base.The goal of this demonstrator s
enario is to show how frames in the knowledgebase are instantiated from the per
eption of the environment and how the knowledgebase maintains and upkeeps its knowledge representation over time, in a 
hangingenvironment. The 
apa
ity to manage the knowledge of the environment is an im-portant a�air for humanoid robots. While for industrial roboti
s or robots workingin 
ontrolled environments where knowledge of obje
ts and events around them areknown and 
an be planned for in advan
e, for a humanoid robot working in a dy-nami
 setting the state of the environment 
an have almost an unlimited number of
on�gurations and 
an 
hange unexpe
tedly at any moment. The knowledge basesystem allows the robot to build representations of obje
ts in its environment and tokeep tra
k of 
hanges that may o

ur. Also the knowledge base system is needed tohelp over
ome some faults from the per
eption system and the problem of not alwayshaving available 
omplete and reliable information from the environment.For the se
ond demonstrator the HOAP-3 robot and a human agent intera
t to
omplete a simple task requiring the robot to pi
k up a 
up and a spoon in ea
h handand then to put the spoon inside the 
up; then �nally it puts down the 
up in frontof itself. Exe
ution of the demonstration 
ould vary depending on the a
tions of boththe human agent and the HOAP-3 robot. Figure 6.8 shows a s
hemati
 view of these
ond demonstrator experiment in the knowledge base s
enario.Figure 6.26 shows di�erent snapshots from the exe
ution of the task in the se
onddemonstrator. The experiment requires for the HOAP-3 robot to 
omplete the taskof putting a spoon inside a 
up and putting the 
up down on a plate. Completion ofthis task has di�erent steps, pi
king up the 
up, pi
king up the spoon, pla
ing thespoon inside the 
up and pla
ing the 
up on top of the plate; sele
tion of whi
h skillsis exe
uted and when depends on the environment state and the intera
tion with thehuman agent. Exe
ution of the experiment would develop as follows: �rst the robot
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Fig. 6.26: Knowledge Base S
enario Experiment A.2: di�erent snapshots from theexe
ution of the task in the demonstrator. Depending on the state of theenvironment and the human agent intera
tion the robot perform di�erentrobot skills.pi
ks up the spoon in its left hand, then the human agent brings the 
up near tothe robot's workspa
e, depending on the position of the 
up, the robot would eitherinvoke from the knowledge base the �pi
k up 
up� or �pla
e spoon� skills. Eventuallythe robot's right hand is in possession of the 
up with the spoon inside it, and theknowledge base invokes the exe
ution of the skill motion for putting the 
up down onthe plate. In Figure 6.26 the robot 
an be seen exe
uting di�erent skills.Figure 6.27 presents the operation of the per
eption system during the exe
utionof the demonstrator experiments. Obje
ts are re
ognized based on their 
olour prop-erties and blob size. From the images it 
an be seen that some problems 
an takepla
e when the human agent or the robot platform arm enter the 
amera's �eld ofview, as o

lusions and false re
ognitions 
an happen. Typi
ally, these issues 
an betaken 
are of by the blobs' size and area in
onsisten
y with expe
ted obje
ts' prop-erties, or by their failed instan
es being removed from the knowledge base sin
e their
onstant movement made them disappear too qui
kly for them to a�e
t the operationof the system.The operation of the knowledge base system during the exe
ution of the demon-strator experiments 
an be seen in Figure 6.27. The knowledge base presents infor-mation for the environment and the task exe
ution. The task frame holds knowledgeof the a
tions to 
arry out by the robot for the exe
ution of the task. A
tions high-lighted in blue re�e
t the 
urrent invo
ation of that a
tion's knowledge for the robotreprodu
tion of the skill. A
tions that have been 
ompleted are dea
tivated and high-lighted in grey. The sele
tion and a
tivation of whi
h skill motion to 
arry out next,is 
ompletely determined by the skill initial 
onditions being mat
hed to the state ofthe environment. Therefore, the sequen
e of exe
ution of the task is 
ontrolled by the
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Fig. 6.27: Knowledge Base S
enario Experiment A.2: di�erent snapshots of the ex-e
ution of the demonstration illustrating the operation of the per
eptionsystem and the knowledge base system.human agent as it intera
ts with the robot and the environment and fa
ilitates theobje
ts and 
onditions needed for the robot to ful�l the task. A potential problem isdetermining whi
h a
tion has pre
eden
e when many of them 
an satisfy their 
ondi-tions at the same time. The tasks 
onsidered in the demonstrator didn't present thisissue, sin
e the robot's limited workspa
e prevented the 
onditions for pi
king up the
up and pla
ing the spoon to be satis�ed at the same time. This issue has not beenfully explored so far, and as a �rst simpli�
ation pre
eden
e is determined by theorder of the a
tions in the task frame as determined by the programmer of the task;although not satisfa
tory for every s
enario, this solution is probable enough for many
ommon tasks. The use of some form of long time planner 
ould be e�e
tive to solvethis issue by assigning pre
eden
e by determining how the de
ision of performing onea
tion over another 
ould a�e
t the exe
ution of the task several steps ahead.The goal of this demonstrator s
enario is to show how a
tion exe
ution is invokedby the state of the representation frames present in the knowledge base. Figure 6.28presents a storyboard of the performan
e of the system during the exe
ution of thedemonstrator experiments with snapshots taken at various stages. A knowledge baseapproa
h for robots working in unstru
tured environments, where the exe
ution ofthe task 
annot be s
ripted beforehand is fundamental if they are to be able to worksu

essfully. Without su
h a system the robot would be un�t to respond to anyunforeseen deviation from the plan, and be largely ine�e
tive to perform in all butthe most ideal of situations. The knowledge base system allows the robot to keep
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Fig. 6.28: Knowledge Base S
enario Experiment A.2: di�erent snapshots duringthe exe
ution of the demonstration. The top row and the bottom rowrepresent two di�erent reprodu
tion of the experiment.tra
k of the environment and the state exe
ution of the task, this provides the systemwith �exibility to deal with di�erent states at a parti
ular point with out losing fo
usof the global task obje
tive.Evaluation of Skill Generation and Adaptation S
enarioHere the demonstrators are oriented to the evaluation of the performan
e of therobot skill generation and adaptation s
enario. The aim of the skill generation andadaptation s
enario is to demonstrate how the operations of the humanoid robot
an be expanded from an original set of learned robot skills by operating over theRobot Skill Models as presented in Chapter 5, in order to generate new models ofrobot skills. In this s
enario the performan
e of the learning module for learningand en
oding Robot Skill Models is presented �rst. The human agent would providedi�erent tea
hing demonstrators to the robot, gathered from the methods des
ribed inChapter 3 to build a �rst set of skill models. Se
ondly, the methods for merger, updateand 
ombination of Robot Skill Models are validated by applying them in di�erentsituations allowing the humanoid robot to a
hieve its task obje
tives, unrea
hablewith its original skill set, by employing newly generated robot skills.Two main experiments were 
arried out with the HOAP-3 humanoid robots inthis s
enario, as des
ribed in Se
tion 6.2. In the �rst demonstrator, a humanoidrobot is equipped with a table tennis paddle and taught to perform di�erent tennis
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Fig. 6.29: Generation and Adaptation S
enario Experiment B.1: di�erent snapshotsfrom the exe
ution of the task in the demonstrator. Re
ording of thetea
her demonstrations for the forehand and smash shot skill with a kine
t
amera (the kine
t images are mirrored). HOAP-3 robot reprodu
tion ofthe learned forehand and smash shot skill.shots, then additional tennis shots skills are generated by the merger of di�erentlearned skill shots. For the se
ond demonstrator, the humanoid robot is required tograsp an obje
t from various possible initial lo
ations, while being taught to performthe skill motions to grasp it for only a limited number of lo
ations. The 
ompletetask would be una
hievable with the limited robot skills set learned at �rst sin
e theskill reprodu
tion would not generalize well to every target's lo
ation. To generalize,a
ross the whole working spa
e models of the robot skill are 
ombined into a singlemodel of the attra
tor dynami
s.For the �rst demonstrator in this s
enario the HOAP robot is required to exe
utedi�erent tennis shot a
tions to hit a table tennis ball. Originally, robot skills' modelsare taught to the HOAP-3 robot to hit an approa
hing ball, providing the robot withthe skills to perform a forehand shot and a straight smash shot. To expand the robotskill set, the two learned skill models are merged to obtain a new Robot Skill Model fora forehand-smash shot. Figure 6.10 shows a s
hemati
 view of the �rst demonstratorexperiment in the generation and adaptation s
enario.Figure 6.29 shows di�erent snapshots from the exe
ution of the task in the �rstdemonstrator. The experiment exe
ution in this demonstration s
enario would de-velop as follows: �rst, a human tea
her is re
orded exe
uting demonstrations forthe forehand and smash tennis shot skill motions. The tea
her demonstrations arere
orded with the use of a kine
t 
amera tra
king the skeleton of the user during thedemonstration. Robot Skill Models are en
oded from the demonstrations followingthe SEDS learning me
hanism reviewed in Chapter 3. With the learned robot skills,the robot is given the 
apa
ity to su

essfully perform a forehand tennis shot andstraight up smash shot skill motion.Figures 6.30 and 6.31 summarizes the pro
ess of en
oding the tennis shot skillmotions presented above. The �gures show a 3D reprodu
tion of the learned skillstraje
tories, the training data from the re
orded demonstrations of the skill and theen
oded SEDS models of the robot skill.In order to expand the robot skill set and in
rease its range of a
tion for the table
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s with various reprodu
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Fig. 6.32: Generation and Adaptation S
enario Experiment B.1: Generating theforehand-smash shot skill from the merger of the learned forehand andsmash shot skill models. HOAP-3 robot reprodu
tion of the forehand-smash shot skill.tennis task, the two learned skill motions are merged through the methods presentedin Chapter 5. Figure 6.32 illustrates the pro
ess of generating the forehand-smashskill model from the merger of the forehand and smash robot skills learned in Figures6.30 and 6.31. Being 
apable of expanding a robot set of learned skills is 
learly animportant issue as robots will be asked to perform an in
reasing number of a
tivitiesand learning and programming every possible skill into the robot is infeasible. Asstated in the previous 
hapters, the properties of the learned Robot Skill Modelsen
oded with the SEDS method form Khansari will hold for the merged Robot SkillModels generated here. Learning the robot skills with SEDS as a model of the motionsdynami
s has several desirable properties that have been stated before in previous
hapters. This allows the robot to have an en
oded model, generalizing the dynami
sof the motion, that 
an respond to perturbations on the exe
ution of the task and
hanges to the initial 
onditions.The se
ond demonstrator requires that the HOAP-3 robot grasps a 
up obje
tlo
ated in any possible pla
e in a �
upboard�, whi
h is made up of two shelves, abottom and a top shelf. The HOAP-3 robot must be able to grasp the 
up, as longas it is inside the robot arm's workspa
e, in any of six possible general lo
ations inrelation to the robot arm: three on the bottom shelf and three on the top shelf.At �rst, the only skills learned by the robot are for grasping the 
up pla
ed on thebottom shelf. To grasp the 
up, pla
ed on the top shelf, at either side of the robot,the skills learned to grasp the 
up on the bottom shelf must be updated to generatethe required new robot skill models. Figure 6.12 shows a s
hemati
 view of the se
onddemonstrator experiment in the generation and adaptation s
enario.The experiment exe
ution in this demonstration s
enario would develop as follows:�rst a human tea
her is re
orded exe
uting demonstrations for grasping a plasti
 
upobje
t lo
ated on the bottom shelf of a �
upboard�. The tea
her demonstrations are
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Fig. 6.33: Generation and Adaptation S
enario Experiment B.2: tea
hing and learn-ing the skill motion for grasping a 
up in the bottom shelf of the �
up-board�.
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Fig. 6.34: Generation and Adaptation S
enario Experiment B.2: updating the skillmotion for grasping a 
up in the top shelf of the �
upboard�.re
orded by means of kinaestheti
 tea
hing, with a human agent moving the HOAP-3robot arm through the demonstration of the skill. Figure 6.33 shows the pro
ess oftea
hing and learning the skill motion in the �rst demonstrator. Robot Skill Models areen
oded from the demonstrations following the SEDS learning me
hanism reviewedin Chapter 3. The desired goal is for the robot to have the 
apa
ity to su

essfullygrasp the 
up out of the �
upboard� regardless of its possible position inside it. Thatis, the 
up 
ould be pla
ed to the left, right or in front of the robot on either the top orbottom shelf. Trying to generalize the learned skill for grasping on the bottom shelfto perform a grasp on the top shelf would not be su

essful. To grasp the 
up whenpla
ed on the top shelf, the learned Robot Skills Models must be updated, employingthe method presented in Chapter 5. Figure 6.34 shows the pro
ess of updating theskills of the bottom shelf grasping for performing the grasp skill for pla
ements of the
up on the top shelf of the �
upboard�.Figure 6.35 summarizes the pro
ess for generalizing the learned skill for graspingthe 
up obje
t out of the �
upboard� regardless of its possible lo
ation. The �gureshows the performan
e of the system during the exe
ution of the demonstrator exper-iments su

essfully grasping the 
up when pla
ed to the left-bottom, right-bottom,
enter-bottom, left-top, right-top, 
enter-top, of the robot.In order to expand the robot skill set and in
rease its range of a
tion to en
ompass
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Fig. 6.35: Generation and Adaptation S
enario Experiment B.2: di�erent snapshotsfrom the exe
ution of the task in the demonstrator. Grasping the 
upwhen pla
ed to the left-bottom, right-bottom, 
enter-bottom, left-top,right-top, 
enter-top, of the robot.a larger spe
trum of the attra
tor dynami
s, the Robot Skills Models must be 
ombin-able into new models. This allows more 
omplex tasks than those presented duringdemonstrations to be 
arried out, generalizing the models of the skills to regions out-side their original demonstrations. To generalize the skill a
ross the whole workingspa
e of the shelves in the �
upboard�, the three models of the robot skill, for right,left and 
enter, grasping motion on a shelf, are 
ombined into a single model of theattra
tor dynami
s. Figure 6.36 illustrates the 
omplete behaviour of the generatednew skills models. For humanoid robots to be 
apable of working su

essfully in the
apa
ity in whi
h they are envisioned, it is of vital importan
e that they present am-ple and robust skill sets. The ability to learn robot skills is a key aspe
t to a
hievingthis, yet learning by itself is not su�
ient; the 
apa
ity to operate over the learnedrobot skill, su
h as the merger, update and 
ombination of skills, is ne
essary. Updat-ing previously learned skills is a very important ability for humanoid robots, allowingthem to in
rease and improve their available skill set. Combining di�erent robot skillsallows the expansion of the s
ope of appli
ation of the learned skills and generalizesthem to new 
ontexts. One important gain from the 
ombination of robot skills 
omesfrom in
reasing the a

ura
y of the generalized behaviour. The generation of a modelby 
ombining robot skills is ne
essary in order to improve the task exe
ution.Evaluation of Robot Skill Reprodu
tion S
enarioFor the �nal s
enario, two general demonstrators were implemented for validatingthe 
omplete developed framework for learning and adaptation of robot skills. Thegoal for the robot skill reprodu
tion s
enario is to demonstrate the operation and inte-gration of all the overall systems in the framework for the performan
e of a humanoidrobot in a 
omplex uns
ripted environment intera
ting with a human agent.
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Fig. 6.36: Generation and Adaptation S
enario Experiment B.2: 
ombine skillmodel allows to en
ompass a larger spe
trum of the attra
tor dynami
s.Di�erent exe
utions of the task grasping the 
up at di�erent lo
ations.Two main experiments were 
arried out with the HOAP-3 humanoid robot in thiss
enario, as des
ribed in Se
tion 6.2. In the �rst demonstrator we 
omplete the tabletennis s
enario from the previous subse
tion. Here, the HOAP-3 robot would standequipped with a table tennis paddle waiting for an approa
hing ball to hit with anappropriate tennis shot skill. For the se
ond demonstrator the previous s
enariosinvolving the HOAP-3 robot employing kit
hen obje
ts are expanded. Here, therobot is required to 
omplete a setting up of a dinner servi
e task behaviour withassistan
e from a human agent.For the �rst demonstrator in this s
enario the HOAP robot is expe
ted to simulatea game of table tennis. The humanoid robot stands, paddle in hand, expe
ting a tabletennis ball to be moved towards it. The per
eption system would re
ognize the balland extra
t the appropriate learned robot skill models to reprodu
e the a
tion fromthe knowledge base. Figure 6.14 shows a s
hemati
 view of the �rst demonstratorexperiment in the robot skill reprodu
tion s
enario.Figure 6.37 shows a set of di�erent snapshots 
aptured during the exe
ution ofthe task in the �rst demonstrator. A su

essful exe
ution of the experiment in thisdemonstrator would develop as follows: the HOAP-3 robot starts the experimentstanding at a rest position, with a table tennis paddle in its right hand, waiting foran approa
hing ball to hit with an appropriate tennis shot skill. The limitations ofthe per
eption and of the robot itself don't allow for a real-time reprodu
tion of thetask, therefore, the ball is handled by a human agent who approa
hes it to the robot
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ontrolled speed. The per
eption system re
ognizes the ball at a 
ertain distan
efrom the HOAP-3 robot position, sin
e providing 
omplete a

urate estimation ofthe ball's position when moving is not possible by the per
eption system, we simplifythings and divide the spa
e into quadrants and make a rough estimate of what theball �nal position will be, based on whi
h quadrant the ball was travelling in at there
ognizing step.After the per
eption system re
ognizes the ball an instan
e of the ball obje
t is
reated on the knowledge base. Sin
e the pre
ise position of the ball is not needed,the ball obje
t instan
e holds only the estimate for whi
h quadrant the ball is in.The knowledge base also holds the task event frame for the demonstrator 
onsistingof the Robot Skill Models for performing the tennis shots. There are 4 Robot SkillModels in the task event frame from the skill learned in the previous s
enario, wehave a forehand and smash shot skill, and also from the previous s
enario we havea forehand-smash shot skill generated from the merger of the other two skill models.One additional skill was learned for the demonstrator for the performan
e of a ba
k-hand shot employing the same methodology as it was for learning the other RobotSkill Models. When the ball is re
ognized by the per
eption system 
rossing one ofthe quadrants the appropriate skill a
tion is invoked from the task event frame for therobot reprodu
tion. Figure 6.37 shows the HOAP-3 robot performing the di�erenttennis shot skills as it intera
ts within the demonstrator; the 
entral image is at theonset of the motion, and the right image is at the end of the motion; the left imagedepi
ts the state of the system leading to the reprodu
tion of the tennis shot skill. Forthe experimental run illustrated by Figure 6.37 the `point' begins with the HOAP-3robot returning a ba
khand shot (�rst row), followed by two su

essful forehand shots(only one is depi
ted, se
ond row), then the HOAP-3 robot performs a smash shot(third row), and �nally the `point' 
on
ludes with a forehand-smash shot return fora s
ore of �love, 15�.The se
ond demonstrator requires the robot to set a �dinner servi
e� 
onsisting ofa fork, a knife, a sau
er plate, a 
up and a spoon, in 
onjun
tion with a human agent.The purpose of the demonstrator is to test the overall operation of the developedframework, as well as validating the performan
e of every individual module andintera
tion between themselves. The sequen
e of exe
ution of the task 
ould varydepending on the a
tions of both the human agent and the HOAP-3 robot. Figure6.16 shows a s
hemati
 view of the se
ond demonstrator experiment in the robot skillreprodu
tion s
enario.Figure 6.38 depi
ts a storyboard of the performan
e of the se
ond demonstratortaken from several snapshots, 
aptured from the exe
ution experiment. A standardrun-through the demonstration s
enario would develop as follows: �rst the robotis given the task of setting up �dinner servi
e� at the table in front of it, and allne
essary robot skill a
tions and task event frames are stored in the knowledge base.The task begins with the robot standing in front of the empty table. The �nal set-upof the table requires a plate to be pla
ed in the 
enter, a 
up is pla
ed on top of theplate, and a spoon is pla
ed inside the 
up, a fork and knife �ank the plate at its leftand right sides respe
tively. Completing the task requires the performan
e of severaldi�erent skills, the sele
tion of whi
h skill is to be 
arried out by the robot at ea
h
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Fig. 6.37: Robot Skill Reprodu
tion S
enario Experiment C.1: di�erent snapshotsfrom the exe
ution of the task in the demonstrator.
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omes from the a
tions being a�orded to the robot by the environment, throughthe intera
tion with a human agent, in the knowledge base. Therefore, the sequen
eof exe
ution of the task is governed by the human agent as it is him who 
hooses theorder in whi
h to provide the robot with the needed obje
ts. Certain items, however,have pre
eden
e over others, i.e. the plate must be pla
ed on the table before the
up, sin
e the 
up goes on top of it.The �rst obje
t to be pla
ed on the table is a `red' 
ontainer box, from whi
hthe HOAP-3 robot pi
ks up the obje
ts, when available. A human agent would then
hoose from the pool of obje
ts of the task one obje
t to be pla
ed by the robot,and would set it on the 
ontainer box, Figure 6.38 top left image shows the instan
ewhere the human agent sets the �rst obje
t for that run of the task, in that 
ase aplate. The HOAP-3 robot per
eption would re
ognize the obje
t in the 
ontainer box,when this happens an obje
t frame instan
e is 
reated in the knowledge base, andthe a
tion frames in the task event frame are 
he
ked out to �nd whi
h, if any, mat
his invoking 
onditions from the 
urrent state of the world frame, in order to beginreprodu
tion of a skill. On
e an a
tion is 
hosen, the Robot Skill Model parameters
θ = {π, µ,Σ} are re
overed from the knowledge base system and provided to therobot skill reprodu
tion model for performing the a
tual reprodu
tion of the skill, asin the GMR pro
ess des
ribed in Chapter 3. The robot will pi
k up the given obje
tand 
arry out the required operations with it to pla
e the obje
t where ever it willbe appropriate.The rest of the task will 
ontinue in this way, with the human agent initiatingthe performan
e of a
tion skills to an obje
t as determined by his intera
tion withthe robot agent by presenting it with the obje
ts. Figure 6.38 shows the HOAP-3robot performing a di�erent skill from this intera
tion in 
ompleting the setting up�dinner servi
e� task. From left to right, starting at the top row, the human agent�rst presents the robot with the yellow plate, then the robot pi
ks the plate up, therobot transports the plate to the position where it must be pla
ed, and �nally therobot puts the plate down on the table; a little assistan
e is required by the humanagent in that instan
e as the robot 
on�guration of the wrist DOF makes it di�
ultfor the robot to orientate the plate for dropping it gently on the table. The se
ondrow begins with the human agent presenting the robot with the fork; then the robotpi
ks it up, the robot then swit
hes the fork to its left hand, and �nally drops it onthe table. The third row begins with the human agent presenting the robot with theknife, then the robot pi
ks it up, the robot then transports it to the position where itmust be pla
ed, and �nally the robot puts the knife down on the table at the side ofthe plate; a little assistan
e is also required from the human agent. The fourth rowdepi
ts the operations with the spoon obje
t whi
h goes the same as with the fork;the skill a
tions to handle them are the same, ex
ept for the �nal step in whi
h thespoon is not set down on the table as it needs to go inside the 
up. The �fth rowbegins with the robot pi
king up the 
up from the human agent; it then transportit towards its left, and transport the spoon towards the 
up; �nally the robot pla
esthe spoon inside the 
up and return to rest with the 
up with the spoon in its righthand. The �nal row depi
ts the HOAP-3 robot performing the skill a
tion to pla
ethe 
up on top of the plate and 
omplete the task experiment.
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Fig. 6.38: Robot Skill Reprodu
tion S
enario Experiment C.2: di�erent snapshotsfrom the exe
ution of the task in the demonstrator.



6.8. Summary of the Chapter 2316.8 Summary of the ChapterThroughout this 
hapter the development and implementation of the frameworkand the di�erent modules that 
ompose it have been des
ribed. Also, the experimen-tal s
enarios are des
ribed and results and analysis are presented for the validationof the framework proposed throughout this work. Di�erent evaluation s
enarios weredeveloped to test the performan
e of the various modules implemented in our frame-work and to provide separate validation for the operation of the system. Se
tion 6.2des
ribed the development of the framework as well as the experimental set up forvalidating it, and the roboti
 platform used in this work, 
omplete with a des
riptionof its stru
ture, joints and sensor distribution. In Se
tion 6.3 the implementation ofthe robot skill learning module was des
ribed. Se
tion 6.4 presented the implementa-tion of the knowledge base system. In Se
tion 6.5 the development and operation ofthe robot skill generation and adaptation module is des
ribed. Se
tion 6.6 presentsthe implementation of the robot skill reprodu
tion module in 
harge of produ
ing theadequate 
ontrol signals to the robot for the reprodu
tion of robot skills. Finally inSe
tion 6.7, a des
ription of the experimental results and analysis for validation ofthe proposed framework over the evaluation s
enarios is given. Di�erent evaluations
enarios are employed to test the performan
e of the various modules implemented inour framework. Demonstrations are organized over three major s
enarios to provideseparate validation for the knowledge base system, the generation and adaptationsystem, and the 
omplete developed framework.
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7. DISCUSSION AND FUTURE WORKWork on this thesis �rst started under the s
ope of a European proje
t for thedevelopment of humanoid robots for 
ollaborative working environments. It then
ontinued, through various other proje
ts, always linked to the issues and 
hallengesof designing and 
reating humanoid robots whi
h are 
apable enough of working andaiding their human partners during its everyday tasks. The prime motivation of thiswork, and of the humanoid roboti
s �eld in general, is in the development of humanoidrobots, and their 
ontrol me
hanisms, with 
omparable skills and behaviours to thoseof humans. The main idea being that human-like robots would be favoured to performin the real world and that the use of humanoid robots that 
an give support inperforming human daily a
tivities would signi�
antly help people in work sites, homesand in dangerous or emergen
y situations.Before this vision 
an be
ome a reality, many important 
hallenges need to beaddressed. These 
hallenges en
ompass a whole range of issues from lo
omotion andmotor 
ontrol, to per
eption, intera
tion and 
ognitive behaviour and intelligen
e.In Chapter 2 a review of the developments and 
hallenges in humanoid roboti
sresear
h, and of di�erent proposals for intelligent agents' ar
hite
tures for roboti
systems, was presented. There is mu
h work to be done to improve the 
apabilitiesof humanoid robots for lo
omotion, per
eption, intera
tion, 
ognitive behaviour and
ompeten
e at performing tasks. Progress in all of these aspe
ts is vital and separatee�orts at improving ea
h one of these issues is of 
ru
ial importan
e; however, truebreakthroughs in the development of fully fun
tional humanoid robots 
an only o

urwhen advan
es in all of these issues 
an be done 
on
urrently.The �eld of roboti
s has 
ertainly seen some advan
es in these issues over theyears, with great usage of roboti
s for industry, surveillan
e, entertainment and man-ufa
ture appli
ations. However, the performan
e of humanoid roboti
s remains hin-dered by these issues, in parti
ular the requirement for intelligent 
ognitive behaviour.Humanoid robots must present intelligent, natural, predi
table and reasonable be-haviours, and development of intelligent 
ontrols to resemble this is a major 
hallenge.Resear
h into 
ognitive ar
hite
tures 
onstitutes a solid basis for building intelligentsystems, but even though some attempts in the �eld have been made for providing
ognitive pro
esses for humanoid robots, there are not fully developed 
ognitive ar-
hite
tures readily available with the 
apabilities of endowing robots with the neededfun
tional intelligen
e. The 
ognitive approa
hes are 
entred on the me
hanism thatallows for the generation of thought and the interior workings of 
ognition; this 
allsfor an organization of intelligen
e in terms of 
ognitive models. Models of 
ognitionmust be embodied pro
esses that 
apture the unfolding of 
ognition in time, mindfulof the asso
iated sensory and motor surfa
es embedded in the environment.
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ussion and Future WorkOne major 
ontribution of this work is the development of a framework, as pre-sented in Figure 2.6, for a 
ognitive model for the generation and adaptation of learnedrobot skill models for 
omplying with task 
onstraints. In the developed frameworka knowledge base of the skills is built with the models of the skills learned throughdemonstrations. During the exe
ution, the 
onstraints of a requested task are ex-tra
ted from the per
eptual system from the working environment and the models ofan appropriate skill are retrieved from the skills knowledge base. With all availableinformation, a new adapted task model is generated for reprodu
tion.The framework developed in this work was proposed as a 
ognitive model intendedto provide the robot with an essential 
ognitive ability for learning and adaptation ofskills. Though it is not a primary 
onsideration of this work, our framework 
an bethought of as one module level in the hierar
hy of a more 
omplex ar
hite
ture, oras a �rst stepping stone upon whi
h to in
rementally build more 
omplex 
ognitivepro
esses. The goal of the developed framework is to provide a minimum degreeof intelligen
e for the humanoid robot. The ultimate goal of the �eld, as statedbefore, 
alls for fully fun
tional humanoid robots 
apable of performing any type oftask as a human agent would, and 
apable of working, 
ollaborating and intera
tingwith humans, sharing the same spa
e, tools, and a
tivities. This vision requires forrobots to present full level 
ognitive and intelligent ar
hite
tures, however, 
urrentdevelopments are not yet even nearly 
lose to these 
apa
ities, and our dis
ussionneeds to start at some point in a basi
 fun
tional level of intelligen
e. The reviewof intelligen
e, on Chapter 2, lead to re
ognizing as a minimal desirable level ofintelligen
e for our humanoid robots the ability to sense the environment, learn, andadapt its a
tions to perform su

essfully under a set of 
ir
umstan
es.The developed framework provides humanoid robots with systems that allow themto 
ontinuously learn new skills, represent their skill's knowledge, and adapt theirexisting skills to new 
ontexts, as well as to robustly reprodu
e new behaviours ina dynami
al environment. The 
ognitive framework for learning and adaptation ofrobot skills is made up from several modules, in
luding modules for the learning ofrobot skills, the per
eption and intera
tion with the environment, the managementand representation of skill knowledge, the generation and adaptation of skill models,and the reprodu
tion of robot skills.A skill in our 
ontext has been de�ned as a motor traje
tory motion learned by theagent, an a
quired ability for the exe
ution of a task. Imitation Learning approa
heswere used to tea
h a robot how to a

omplish a given task. To learn the skills motiona time independent model of the motion dynami
s was estimated through a set of�rst order non-linear multivariate dynami
al systems. Despite Imitation Learning
lear advantages, it would be impra
ti
al to tea
h the robot skills for every task andsituation, therefore, it was ne
essary to extend the approa
h in a way that allows theadaptation of previously learned motion skills to new 
ontexts. The models of a skillare adapted to generate a new task by operating over the given robot skill models.The system must be able to store and latter retrieve and use their knowledge oflearned skills. The knowledge base holds all ne
essary information for reprodu
tionof the skills in the environment. Knowledge of the task is distributed among therepresentation of obje
ts, a
tions and events of the task and the state of the world.
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ussion on Learning Robot Skills 2357.1 Dis
ussion on Learning Robot SkillsThe ability to learn robot skills is one of the most important for developing hu-manoid robots. While programming robots to perform a series of required tasks is
ertainly possible for industrial roboti
s, humanoid robots are required to perform awide repertoire of tasks working beside humans in 
omplex dynami
 environments,making a learning approa
h a ne
essity. Learning systems are required to a
quireskills and develop task knowledge of how to a
t. Algorithms for learning and extra
t-ing important features of task a
tions are fundamental in order to build intelligentbehaviours. Chapter 3 reviewed the �eld of Learning from Demonstration (LfD) andthe pro
ess and methods used for learning and en
oding the models of the robotskills. LfD formulates user-friendly methods by whi
h a human user 
an tea
h arobot how to a

omplish a given task, simply by demonstrating this task, and gener-alizing the demonstrated movements a
ross a set of demonstrations. Also, di�erentmethodologies for gathering the demonstrations were reviewed, various te
hniques fortea
hing and building the demonstrations datasets were presented like, kinaestheti
tea
hing, visual demonstrations, motion 
apturing systems to re
ord demonstrations,or generating robot traje
tories with virtual reality or simulated environments.For tea
hing and learning the di�erent sets of skills LfD algorithms and modalitieswere implemented and evaluated. In this thesis the robot skills were learned in aDynami
al System approa
h. The approa
h is based on learning time independentmodels of the motion dynami
s estimated through a set of �rst order non-linearmultivariate dynami
al systems.Through the work on this thesis, a number of Imitation Learning te
hniques havebeen studied and implemented in tea
hing and learning with the robot, the di�erentsets of skills employed in the rest of the framework. Three algorithms to learn thedynami
s of demonstrated motions were studied. A �rst approa
h was implementedlearning the skills with multivariate Gaussian fun
tions; however, this formulation
ould not guarantee the learning of a stable estimate of the dynami
s. The BMmethod was implemented next; this method 
ould produ
e a model of DS with lo
alasymptoti
 stability at the target. Finally the SEDS method was reviewed with twoobje
tive fun
tions: SEDS-likelihood and SEDS-MSE. The SEDS formulation to learnthe underlying dynami
s of a motion 
an guarantee that estimates of the dynami
sare globally asymptoti
ally stable at the target.Methodologies used for the reprodu
tion of the learned motion dynami
s of therobot skills were reviewed, 
omparing the performan
e of the methods presentedthrough this work. Validation was performed of the performan
e of the methods were
ompared a
ross the demonstrated motions, the estimates of several 2-D and 3-Dmotions were learned. For learning the Robot Skill Models through the experimentspresented in this work, the SEDS-likelihood was employed. Learning the robot skillswith SEDS as a model of the motions dynami
s has several desirable properties thathave been outlined before in other 
hapters. This allows the robot to have an en
odedmodel generalizing the dynami
s of the motion, that 
an respond to perturbations onthe exe
ution of the task and 
hanges to the initial 
onditions.
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ussion and Future WorkFuture WorkThis work reviewed various topi
s in the area of learning robot skills and ImitationLearning. A module was su

essfully implemented allowing the robot to learn skillsfrom demonstrations. However, there remain some issues and pertinent 
onsequentstudies as follows:
• Di�erent te
hniques were examined for gathering the tea
hers' demonstrationsin this work, an interesting possible topi
 requires the study of how demonstra-tions of the same skill re
orded by di�erent te
hniques 
an be used jointly forthe training of a robot skill with an LfD algorithm.
• Also, more in-depth studies and 
omparisons of the te
hniques for gatheringdemonstrations with a user experien
ed fo
us on mind would be relevant andhelpful for de
iding the me
hanism by whi
h a skill would better be demon-strated to the tea
her.
• The role of the tea
her and how the quality of the provided demonstrationsin�uen
es and determines the robot behaviour has not been fully explored.
• This work reviewed several learning algorithms and settled on using the SEDS-Likelihood algorithms sin
e it had better overall results and fa
ilitated imple-mentation. However, many di�erent algorithms exist in the literature, any oneof them with their strengths and weaknesses. Me
hanism for determining whi
halgorithms 
ould be better suited for the learning of a skill out of the demon-strated data would be an interesting topi
 for future resear
h.
• Employing di�erent learning algorithms in the same system naturally 
ompli-
ates the intera
tions that di�erent skills, with di�erent en
odings, 
ould havewith the rest of the system. This leads to the need to resear
h me
hanisms bywhi
h di�erent en
odings of a skill 
ould be transform from one to another.
• An interesting topi
 of resear
h, not su�
iently explored, in this work is howthe information en
oded within the model of a robot skill 
an be used for the
ategorization and re
ognition of skills.7.2 Dis
ussion on Representation of Robot SkillsFor a roboti
 system to perform di�erent skills and tasks in a 
hanging and un-stru
tured s
enario, it is important to endow them with a framework in whi
h toorganize their a
quired knowledge in a manner that allows it to be retrieved it inorder to use it to deal with the 
urrent 
ontext 
onstraints. In Chapter 4, a knowl-edge base of skills was developed and implemented. The knowledge base allows forthe storage, 
lassi�
ation and retrieval of learned models of skills. A knowledge baseis populated with robot available skills, learned by demonstration, for later repro-du
tion. A method for the representation of the knowledge of the skills and task
onstraints needed for reprodu
tion was developed.



7.2. Dis
ussion on Representation of Robot Skills 237The learned motion primitives 
an be used as a way of having 
omprehensiverepertoires of robot skills. Chapter 4 reviewed similar approa
hes aimed at buildingrepertoires of basi
 robot motor skills whi
h 
an represent a basi
 set of elementarymovement primitives. Most of these approa
hes generally o�ered little advi
e on howthe library of skills 
ould be used to sele
t and adapt the primitives to deal withdi�erent 
onditions, or their me
hanisms for representing their knowledge.An important 
hallenge for roboti
s, and parti
ularly for robots a
ting on un-stru
tured dynami
 environments, is in dealing with internal representation and un-derstanding of the world. The embodied view of 
ognition 
all for representations tobe limited, physi
ally grounded to the environment and oriented towards a parti
ularuse. Approa
hes from arti�
ial intelligen
e and logi
 base reasoning see the worldmore as dis
rete time experien
es. Yet the state and a
tion representations are dy-nami
. The robot a
tions and thinking must be pro
esses of intera
ting 
hange in theenvironment. The dynami
al system theory approa
h is an appropriate alternative tothe traditional formats of representations. Dynami
al systems 
an store knowledgeand have this stored knowledge in�uen
e their behaviour.The prin
ipal aim for the humanoid robot is to take a
tions, as situated agents,that are appropriate to their 
ir
umstan
es. Fitting representations are essential forthis goal. Thinking in terms of a
tions, and obje
ts, is not only intuitive but also
onvenient for a representational undertaking in roboti
s. Obje
t and a
tions areat the basis of robot performan
e. However, representational attributions must alsoin
lude information about the world and situations, events and goals, for e�e
tivesituated performan
e. Our representations in
luded information about obje
ts anda
tions, the world and situations, events and goals, for e�e
tive situated performan
e.A stru
ture built on frames has been adopted in this work. The knowledge of theenvironment and goals is represented in terms of World Event Frames and TaskEvent Frames, with Obje
t and A
tion Frames representing knowledge about availableobje
ts and a
tions respe
tively. From their knowledge, an A
tive View Event Frameis built from the fo
used knowledge promoting the agent's exe
ution.Future WorkThis work has introdu
ed many issues in the framework of knowledge and repre-sentations for robot skills. Some possible 
onsequent studies are as follows:
• Work on this thesis has tried to build a 
omprehensive set of skills knowledge,however, the sets we are able to build are still limited 
ompared to what a robotworking in a real world situation would be able to develop over time. Furtherresear
h is needed for topi
s of de
ision making and 
on�i
t resolution over thesele
tion of a proper path, when there are two or more viable 
hoi
es for a
tion.
• The topi
 of reasoning is a very large subje
t and there are several di�erentapproa
hes and appli
ations for reasoning with roboti
s. While studying themwas outside the s
ope of this thesis, future works would bene�t from a 
ompar-ative study of reasoning approa
hes and the appli
ation of di�erent methods asthey are best suited to a situation.
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• A further point of resear
h is on investigating how to handle ina

urate orunreliable per
eptions and information in the system and me
hanism by whi
hthe knowledge base 
ould re
over from erroneous and false assumptions.
• Work on this thesis has not fo
used on the 
reation or obtaining of plans, butassumed general plans to be already in the system and loaded into the taskevent frames; instead it has fo
used on me
hanisms for the robot exe
ution ofthe tasks' a
tions. Future work must review the pro
ess by whi
h humanoidrobots 
an learn, 
reate, 
hoose and modify their plans of a
tions.
• There are various di�erent approa
hes to related topi
s fo
used on the manage-ment of knowledge by roboti
 systems. An interesting topi
 of future resear
h isthe study and 
omparison of these systems; in parti
ular the ones that may beused to 
omplement the framework developed in this work, su
h as KnowRobor RoboEarth, whi
h 
ould lie at a higher, more abstra
t level of the 
ognitivehierar
hy while our framework lies at a lower level of a
tion exe
ution.7.3 Dis
ussion on Generation and Adaptation of Robot SkillsHumanoid robots are required to perform a wide repertoire of task working besidehumans in 
omplex dynami
 environments. Learning me
hanism are important forbuilding up this type of repertoire of robot skills; however, despite the 
lear advantagesof LfD approa
hes it would still be impra
ti
al for the human operator to tea
h therobot the skills for every ne
essary task and for every foreseen situation. E�ortsto generate roboti
 skills 
an only have a real implementation value for developinghumanoid roboti
 systems, if the models of the skill 
an be operated upon to generatenew behaviours of in
reasing levels of 
omplexity. Therefore, extending the LfDapproa
h of learning a skill model in a way that allows the adaptation of a robotpreviously learned motion skills to new unseen 
ontexts is ne
essary.The algorithms developed for the generation and adaptation of the robot skillswere reviewed in Chapter 5. In that 
hapter, the pro
ess by whi
h the model of askill 
an be adapted to reprodu
e a new task using the already learned model of arobot skill and the extra
ted 
onstraints knowledge of the 
urrent task was des
ribed.Di�erent modalities were developed and implemented that allow for the adaptationand generation of new skill models based on the already learned models of skills,stored in the knowledge base. Di�erent modes are presented for the adaptation,update, merger, and 
ombination of the Robot Skills Models.Models of a skill must be updatable; when given new information for the repre-sentation of a skill, the system must allow for the models to be improved. Updatingpreviously learned skills is a very important ability for humanoid robots, allowingthem to in
rease and improve their available skill set.Skills 
an be generated by merging two or more models into a new skill; multipledesired robot skills may be 
omposed from superposition of various models. Newmodels of a skill 
an be generated by merging two or more models into a new skill inorder to expand the robot skill set and in
rease its range of a
tion.



7.3. Dis
ussion on Generation and Adaptation of Robot Skills 239In order to expand the robot skill set and in
rease its range of a
tion to en
om-pass a larger spe
trum of the attra
tor dynami
s, the Robot Skills Models must be
ombinable into new models. This makes it possible to 
arry out more 
omplex tasksthan those presented during demonstrations, generalizing the models of the skills toregions outside their original demonstrations. One important gain from the 
ombina-tion of robot skills 
omes from in
reasing the a

ura
y of the generalized behaviour.The generation of a model by 
ombining robot skills is ne
essary in order to improvethe task exe
ution.For humanoid robots to be able of working su

essfully in the 
apa
ity they areenvisioned, it is of vital importan
e that they present ample and robust skill sets.Being 
apable of expanding a robot set of learned skills is 
learly an important issueas robots will be asked to perform an in
reasing number of a
tivities and learningand programming every possible skill into the robot is infeasible. The ability to learnrobot skills is a key aspe
t in a
hieving this; yet learning by itself is not su�
ient,the 
apa
ity to operate over the learned robot skill, su
h as the merger, update and
ombination of skills is ne
essary.Future WorkThroughout this work we have explored many di�erent issues for the generationand adaptation of robot skills. Some promising, derivable topi
s for future resear
hare as follows:
• Re
overing and handling safely interruptions, abrupt distortions, or miss exe-
utions during skill reprodu
tion is an important issue whi
h has not been fullyexplored during this work.
• For the evaluations performed during this work, a relative limited set of skillswas used in whi
h dis
riminating among robot skills was not an issue. Animportant topi
 for future resear
h is evaluating how 
an the system sele
t theproper skill primitives out of di�erent 
ompeting robot skills.
• The methods developed in this work for the update, merger and 
ombinationwere evaluated o�-line. Future work must fo
us on evaluating the viability ofperforming the developed methods in real time exe
ution.
• The methods developed in this work for operating on the robot skills rely onheuristi
 methods with a human input in sele
ting 
ertain appropriate param-eters. Future resear
h must evaluate methods by whi
h the system 
ould au-tonomously determine the proper parameters for the desired performan
e.
• Sequen
ing and transition operations between robot skill models in order togenerate 
omplex behaviours with smooth transitions is an important issue forfurther exploration.
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ussion and Future Work7.4 Dis
ussion on Reprodu
tion of Robot SkillsIn this work a framework has been developed for the generation and adaptation oflearned models of a skill for 
omplying with task 
onstraints. The framework is meantto provide humanoid robots with systems that allow them to 
ontinuously learn newskills, represent their skills' knowledge, and adapt their existing skills to new 
ontexts,as well as to robustly reprodu
e new behaviours in a dynami
al environment. Theframework for learning and adaptation of robot skills is made up from several modules,as represented by the diagram on Figure 6.1. The framework is formed by modules forthe learning of robot skills, the per
eption and intera
tion with the environment, themanagement and representation of skill knowledge, the generation and adaptation ofskill models, and the reprodu
tion of robot skills.The development and implementation of the framework and the di�erent modulesthat 
ompose the framework have been des
ribed throughout this work. A modulefor the robot skill learning based on the LfD paradigm was implemented. There arethree subsystems in this module; a subsystem for gathering demonstration data; asubsystem for building an estimate of the demonstration with the learning algorithmSEDS ; and a subsystem for en
oding the robot skill model. A module for the knowl-edge base system was also implemented. There are four subsystems in this module; asubsystem for the data entry to the knowledge base; a subsystem for the data extra
-tion from the knowledge base; a subsystem for the knowledge base data storage; anda subsystem for the knowledge base data management. Operation and developmentof the robot skill generation and adaptation module was also des
ribed. There arethree subsystems in this module; a subsystem for extra
ting data from the knowledgebase; a subsystem for operating upon the robot skill with the adaptation algorithm;and a subsystem for generating the task models. A robot skill reprodu
tion module,in 
harge of produ
ing the adequate 
ontrol signals to the robot for the reprodu
tionof robot skills, was implemented. This module has three subsystems; a subsystemfor 
omputing the regression of the model with GMR to obtain the desired target
ommands; a subsystem for produ
ing the adequate 
ontrol signals form the target
ommands; and a subsystem to 
ommuni
ate the 
ontrol signals to the robot.Chapter 6 presented the pra
ti
al experimentation and evaluation of the repro-du
tion of skills in the proposed framework. The experimental s
enarios are des
ribedand results and analysis are presented for the validation of the framework proposedthroughout this work. Di�erent evaluation s
enarios were developed to test the per-forman
e of the various modules implemented in our framework and to provide sep-arate validation for the operation of the system. Demonstrations are organized overthree major s
enarios to provide separate validation for the knowledge base system,the generation and adaptation system, and the 
omplete developed framework. Theproposed framework was demonstrated with a 
ommer
ial humanoid robot HOAP-3,endowing it with the 
apa
ity to learn skill models from a tea
her demonstrationand to store them in a knowledge base, and adapt the learned models of a skill toreprodu
e the required skills in di�erent 
ontexts.



7.4. Dis
ussion on Reprodu
tion of Robot Skills 241Future WorkThe work 
arried out in this thesis has led to the development and implementationof a framework for the learning and adaptation of robot skills evaluated in the HOAP-3 humanoid robot. But some minor issues remain and other questions have arisenduring the development pro
ess:
• To validate the developed framework we use the HOAP-3 robot. The HOAP-3provides a readily available humanoid testing platform, however, the HOAP-3robot still has many limitations. First, while its small size fa
ilitates the robotsstability and 
ontrol it severely limits the manipulation 
apabilities and range ofoperation of the HOAP-3 robot. It is also unequipped to handle most obje
ts,either be
ause of its size, shape or weight, limiting the a
tual number of tasksthe robot is able to perform.
• Developments in humanoid roboti
s have been marred by many of the sameproblems; di�erent issues severely limit their operation. Current performan
elevels of humanoid roboti
 platforms are far from the expe
ted goal of a roboti
partner working alongside its human 
o-workers. Though many advan
es havebeen made, there is still mu
h work to be done.
• Through this work many 
hallenges in relation to humanoid roboti
s have beenoutlined. Perhaps the most important standing 
hallenge is in relation to work-ing on the integration of solutions for all the di�erent 
hallenges at the sametime. A �nal answer for these 
hallenges must 
ome by working from the groundup on solutions that foster ea
h other in generating the desired behaviours.
• One major problem for the development of humanoid robots is the need for therobots to repli
ate behaviours and performan
es like those of humans. Thesedi�
ulties are not only in relation to the me
hani
al 
hallenges, but also in theproblem of 
omprehending human behaviour. There is no 
lear 
ut understand-ing about the me
hanism by whi
h humans' 
ognitive pro
esses develop. Thisla
k of knowledge and understanding of the internal workings of human intelli-gen
e makes reprodu
ing these behaviours an extremely 
ompli
ated 
hallenge.Work on roboti
s, arti�
ial intelligen
e and 
ognitive s
ien
e must work outfrom theories and reasonable assumptions and 
ontinuously review and updatethem as 
ontinuous developments shed new light on the problem.
• The framework developed in this work aims at providing the robot with essential
ognitive abilities for the learning and adaptation of skills. The framework hasbeen devised as a bottom level module that 
ould be part of the hierar
hy in amore 
omplex system, with the goal of providing a minimum fun
tional degreeof intelligen
e for a humanoid robot whi
h would be 
ontinuously in
reasedas the system develops further in a bottom-up approa
h. Future work will
onstantly fo
us on augmenting the framework 
ognitive 
apa
ities to generatebetter, more intelligent behaviours.
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• By 
hoosing to start from a bottom level de�nition of intelligen
e many assump-tions and simpli�
ations are made; this limits the possible s
ope of performan
efor the robots while redu
ing the 
omplexity of the systems. These issues mustbe handled and solved in future work as we 
ontinue to improve the system andmake it 
apable of performing ever more 
omplex behaviours.
• The skill learning module provides e�e
tive means for tea
hing the robot thedesired skills. However, the tea
hing pro
ess is not as smooth and streamlinedas it 
ould aspire to be, and a 
ertain level of pra
ti
e and familiarity with therobot platform is required from the tea
her in order to be e�
ient at provid-ing demonstrations. Future work must 
on
entrate on topi
s of human-robotintera
tion to improve the demonstration approa
h.
• The per
eption module implemented in this work was very simple; it fo
usedonly on re
ognizing obje
ts by their 
olor and size. This of 
ourse is verylimited; performan
e was also less reliable with 
hanging lightning 
onditions.Future work must develop the per
eption system further, or better yet work tointegrate existing more advan
e solutions with the rest of our framework.
• The skill knowledge module a�ords the robot me
hanisms by whi
h to sele
tskills to reprodu
e in di�erent 
ontexts. The implemented system is 
apableof performing under the demonstrated s
enarios. However, these demonstra-tions are still limited in terms of the number of possible 
hoi
es and situationsthey have to handle. Future work must provide 
omprehensive evaluations of
apabilities and limitations of the skill knowledge module in a larger range ofs
enarios.
• The skill adaptation module proves fun
tional for the requirements under thedesigned demonstrated s
enarios. However, the module in its 
urrent implemen-tation requires supervision from the operating user, future work must alwaysin
rease the degree of autonomy for the overall system. Also, future work wouldbene�t from testing and user evaluations employing di�erent users with varyinglevels of expertise.
• The implemented skill reprodu
tion module allows satisfa
tory 
ontrol of therobot performan
e in reprodu
ing various task. Future work is required to en-han
e the performan
e of the robot reprodu
tions, parti
ularly for improvingexe
ution speed and providing more natural, human-like, movements. Addi-tionally, future work must test and implement the developed framework on thefull s
ale humanoid robot platform TEO being developed at Universidad CarlosIII de Madrid.
• A �nal important point for future resear
h is in the integration of our frameworkwith other existing approa
hes. Working on developing our system under theROS (Robot Operating System) software framework would be an advantage sin
eROS is qui
kly be
oming a go to standard for roboti
s development and manyexisting ROS enabled solutions are available.
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